Home » Publication » 14704

Dettaglio pubblicazione

2016, 2016 50th Asilomar Conference on Signals, Systems and Computers, Pages 1009-1013

Parallel asynchronous lock-free algorithms for nonconvex big-data optimization (04b Atto di convegno in volume)

Cannelli Loris, Scutari Gesualdo, Facchinei Francisco, Kungurtsev Vyacheslav

We propose a novel parallel asynchronous lock-free algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer. This class of problems arises in many big-data applications, including deep learning, matrix completions, and tensor factorization. Key features of the proposed algorithm are: i) it deals with nonconvex objective functions; ii) it is parallel and asynchronous; and iii) it is lock-free, meaning that components of the vector variables may be written by some cores while being simultaneously read by others. Almost sure convergence to stationary solutions is proved. The method enjoys properties that improve to a great extent over current ones and numerical results show that it outperforms existing asynchronous algorithms on both convex and nonconvex problems.
ISBN: 9781538639542
Gruppo di ricerca: Continuous Optimization
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma