Home » Publication » 26975

Dettaglio pubblicazione

2022, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Pages 403-420 (volume: 13584)

Decentralized Update Selection with Semi-strategic Experts (04b Atto di convegno in volume)

Amanatidis G., Birmpas G., Lazos P., Marmolejo-Cossio F.

Motivated by governance models adopted in blockchain applications, we study the problem of selecting appropriate system updates in a decentralized way. Contrary to most existing voting approaches, we use the input of a set of motivated experts of varying levels of expertise. In particular, we develop an approval voting inspired selection mechanism through which the experts approve or disapprove the different updates according to their perception of the quality of each alternative. Given their opinions, and weighted by their expertise level, a single update is then implemented and evaluated, and the experts receive rewards based on their choices. We show that this mechanism always has approximate pure Nash equilibria and that these achieve a constant factor approximation with respect to the quality benchmark of the optimal alternative. Finally, we study the repeated version of the problem, where the weights of the experts are adjusted after each update, according to their performance. Under mild assumptions about the weights, the extension of our mechanism still has approximate pure Nash equilibria in this setting.
Gruppo di ricerca: Algorithms and Data Science
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma