Automated Service Composition
and Synthesis

Fabio Patrizi
SAPIENZA — Universita di Roma
patrizi@dis.uniromal.it
www.dis.uniromal.it/~patrizi

What are services?

Given, modular, decoupled SW blocks
Typically, non terminating

Common communication layer
Intended to serve (human or sw) clients

E.g.: travel agency, book seller, car rental

What are services? (2)

Company D
(client)

Company A
(provider)

(Web service interface

Logic for accessing to
internal systems

internal architecture &
middleware

internal internal
service logic service logic

Brescia - Feb 10, 2010

external architecture &

7

Web
| service

Web
| service

'mmb

middleware

| service

Web Web
service service

Company B
(provider)

Patrizi, F. - Automated Service Composition

and Synthesis

Company C
(provider)

Technology

Programs written in any language (Java, C++,...)

Export a description (typically, WSDL: offered
operations only)

Common protocol (typically, SOAP over HTTP)

Usually stateless, but we assume stateful

Composability

Patrizi, F. - Automated Service Composition
and Synthesis

Brescia - Feb 10, 2010

Service Composition

Community

Goal Service

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

The Composition Problem

* |nstance:
— A set of available services
— A (non available) goal service

e Solution:

— An orchestrator which coordinates, through
delegation, the available services so as to mimic the
goal service

 Examples of composed services:

— Expedia: orchestrates car rental, hotel reservation,
etc.

— Amazon: orchestrates book sellers

The Framework

e A service (abstract) model

* A notion of solution (or orchestrator)

The Roman* Model

(* As referred to by R. Hull@SIGMOD’04)

Service Conversational Model:

e Stateful behavior abstracted as a finite-state TS
* Transition labels: atomic operations (or actions)
* Final states: computation stops safely

e logout

Very high-level abstraction!

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

Orchestrators

Orchestrator: from histories and current request to service indices
Composition: good orchestrator, i.e., consistent delegations

c b
d
Service 1

Service 2
uuunuuuuuuuu‘ﬁ\w N
1 1 2 2 3 2 1 1 2 1 3 3 2 1 2

Advanced form of plan!

. Patrizi, F. - Automated Service Composition .
Brescia - Feb 10, 2010 and Synthesis Ser\nce 3 10

Orchestrators (2)

(Because everything is deterministic, action requests
and delegations enable state reconstruction)

1
2 1 0 2 1 0 2 1 0 2 1 O
o 0o 0 1.0 01 1 1 1 0 O
2 2 0 0 0 1 1 1 1 2 2 O
o 1.1 1 1 1 1 2 O O O O

History

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

11

Simulation Relation (intuition)

(TS, behaviors “include” TS,’s)

Simulation is over a possibly infinite horizon!

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

12

Formally

(Co-inductive definition: no base case)

Given TS, and TS,
S, =S, Iff:
1. “s, final” implies “s, final”
2. Foreach transitions; =25’ in TS,, there
exists a transition s, —2s’,in TS, s.t.
s, xS,

Computing a Simulation Relation

Algorithm ComputeSimulationRelation

Input: transition system TS, = <A, §, SO o, F>and
transition system TS; =< A, T, T°, 0;, F>

Output: the simulated-by relation (the largest simulation)

Body
R=SXT
R'=SXT-{(s;t) | seF; A (te F;)}
while (R #R’) {
R:=R’
R":=R"-{(s,t) [3sa.s =, A—=dt' .t " A (st')€ R}
}

return R’
Ydob

* Fixpoint computation
* Time Cost: O(n%)

Orchestrators, formally

Community TS: asynchronous product of available
services

An orchestrator is a witness of:
the Community TS simulates the goal service

The composition problem can be reduced to
searching for a simulation of the target service by
the Community TS[Berardi,Cheikh,DeGiacomo,P@IJFCS (‘08)]

Patrizi, F. - Automated Service Composition

and Synthesis o

Brescia - Feb 10, 2010

Complexity

Finding an orchestrator in the Roman Model is
an EXPTIME-complete problem

e Membership:
— Reduction to PDL-SAT

[Berardi,Calvanese,De Giacomo,Lenzerini,Mecella@ICSOCO03]

e Hardness

[Muscholl,Walukiewicz@FoSSaCS07].

— Reduction from existence of an infinite
computation in LB ATM (EXPTIME-hard)

Computing Orchestrators

Orchestrators can be seen as (possibly infinite)
state machines

In general, there may exist an infinite # of
orchestrators

Th.: if an orchestrator exists, then there exists one
which is finite
[Berardi,Calvanese,DeGiacomo,Lenzerini,Mecella@I|CSOCO03]

A finite structure (Orchestrator Generator) can be
computed that represents all, even infinite,
OI'ChEStratOrS[Berardi,Cheikh,DeGiacomo,P@IJFCS]

Orchestrator Generators

input_french

/v‘ input_german

output_italian

é N

input_french

input_french,c/{a,c}

/\F output_italian @ output_italian,c/{c}

input_german

T
U‘ ot statan @

O input_french

/\f‘ @ input_german
\ Q output_italian /
Patrizi, F. - Auto

Brescia - Feb 10, 2010

and Synthesis

18

Computing Orchestrators (2)

Simulation-based approach (Orch Gen):
Based on largest simulation computation

Optimal wrt worst-case time complexity
[Berardi,Cheikh,DeGiacomo,P@IJFCS]

Provides flexible solutions [Sardina,P,De Giacomo@KRO08]

The simulation can be computed directly or a game-
based approach can be adopted (see next part)

Symbolic MC technology available!

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

19

On Service Abstraction

e Services can be used to abstract a variety of
systems, not only web services

* |n general, entities that offer services to
external clients can be seen as services

e We think of a service as the abstraction of a
device, behavior or agent internal logic

On Service Actions

* So far, we considered actions that affect only
service states

* |[n general, service actions:

— Affect available service state

— Change the state of the domain that the service
acts in

Brescia - Feb 10, 2010

On Service Actions (2)

Ignition service
/ unlock set start \

_ lock stop release -
Car engine
4 start R
* %k
stop
_ /

Patrizi, F. - Automated Service Composition
and Synthesis

22

Brescia - Feb 10, 2010

Environment

GUARDS

Service transitions can be enabled/disabled
based on current Environment state

E.g., start can be performed only if the
Engine is off

Patrizi, F. - Automated Service Composition
and Synthesis

23

Action Compatibility

e So far, only matching actions are considered
“‘compatible”

* We can explicitly define an
Action-Compatibility Relation
Comp(a,a’,<t,s1,...,sn,db))

When the target service is in state t, the available
services in {s1,...,sn) and the environment, if present,
in db: action a’ can replace a

» Straightforward adaptation of both:
— Simulation relation definition
— Algorithm ComputeSimulationRelation

Extensions

Variants of this problem:

Nondeterministic available services
Partially observable available services
Distributed orchestrator

Data-aware services

Further (composition) problems:
 Multi-target composition
* Agent planning programs

ND available services

Nondeterminism: from partial knowledge or
very high-level abstraction

Goal services still deterministic (we know what
we want!)

“Conditional” form of composition

New notion of simulation needed, in order to
define orchestrators

ND-Simulation relation and
orchestrators

* |dea: preserve simulation regardless of
outcomes of available service transitions

e An ND-orchestrator is a withess of:

the Community TS ND-simulates the goal
service

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

27

Composition with ND services

Essentially as complex as when services are
deterministic (EXPTIME-complete)

Remark: at each step, after a transition, we need

to know the state that each service is in (Full
observability)

Partially observable services

e Conformant” (i.e., PO) form of composition
[DeGiacomo,DeMasellis,P@ICAPS09].

— ND available services
— There might be undistinguishable states

Partially observable services (2)

In general, exponential growth!

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

30

Orchestrators under partial
observability

* Orchestrators rely only on observations, not
on actual current states

* Function of observed histories (and current
request)

Brescia - Feb 10, 2010

An example

b

s e

Goal Service

Inability to distinguish between
states 1 and 2 prevents goal
service composition!

Patrizi, F. - Automated Service Composition
and Synthesis

32

Building Orchestrators under PO

* Approach based on belief construction

1. Transform all PO services into FO ones
(exponential in # of states)

2. Compute the orchestrator as in the ND case
* Complexity:
— EXPTIME-complete

— (Singly) Exponential in both # of services and their
size

Distributed Orchestrators

* What if a central coordinating entity is not

conceivable?
[Sardina,P,DeGiacomo@AAAIO07;DeGiacomo,delLeoni,Mecella,P@ICWS07]

Example

Patrizi, F. - Automated Service Composition 35

Brescia - Feb 10, 2010 and Synthesis

Local Orchestrators

Use a local orchestrator for each device
Local Orchestrators exchange messages

OBJECTIVE: Local orchestrators behave as if
they were, as a whole, centralized

Need for a (distributed) shared memory
(blackboard), modeled as Environment

Assumption: local orchestrators have FO on
their service state

Blackboard

Message Broadcasting

A

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

Brescia - Feb 10, 2010

Example

Patrizi, F. - Automated Service Composition
and Synthesis

storage

39

Computing Local Orchestrators

Th.: A centralized Orch exists iff Local ones exist
[Sardina,P,DeGiacomo@AAAIQ07]

So:

1. Build the centralized Orch (w/ any technique)
2. Split it into local ones (PTIME in C Orch size)
3. Attach each local orchestrator to a service

Multiple-Target Composition

* Generalization of Composition
[Sardina,DeGiacomo@I|CAPSO08]

— Realize a set of goal services, to be executed
concurrently, under a fair schedule

— Available services can switch the goal service they
are realizing

Multiple-Target Composition (2)

Available Services

Brescia - Feb 10, 2010

42

Solving Service Composition Problems

* Previous problems can be reduced to finite-
state, ND composition under Nondeterminism
and Full Observability

* Approaches based on LTL synthesis have been
adopted (we see a generalization in next part)

* The cost increases together w/ the ability to
capture richer scenarios

* All problems are in the same complexity class
* |n fact, all EXPTIME-complete

Data-Aware Services

* So far, we considered very high level action
abstractions, but:

— Agents may need to exchange messages (e.g.,
position, battery level,...)

— Web services often take input messages(e.g.,
users subscribe) and return output messages (e.g.,
pricelist)

* Services may need data manipulation
* Topic of interest in DB research, too

Web Service Example

The whole system shows an
infinite-state behavior
We get Undecidability!

Patrizi, F. - Automated Service Composition

and Synthesis 45

Brescia - Feb 10, 2010

Data-Aware Services (2)

* The presence of data is probably the major
obstacle in Service Science

e Results essentially based on data-abstraction
(reduction to symbolic data):

— [Deutsch,Sui,Vianu@JCCS-07]: (Temporal) Verification of web applications
— [Deutsch,Hull,PVianu@ICDTO09]: Verification of data-centric Business Processes
— [Berardi,Calvanese,DeGiacomo,Hull,Mecella@VLDBO05]: PDL-based Composition w/ data

— [P,DeGiacomo@IIWeb09]: Generalization of the notion of Simulation in the presence of
data

Agent Planning Programs

High-level programs built from goals
* To be executed in a dynamic domain
Branches represent goal selections

atWater atWater

atPeekl)é w
atHome

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

47

Agent Planning Programs (2)

Planning programs are possibly non-
terminating finite state programs whose
atomic instructions are requests for
achieve a goal @ while maintaining a

goal Y

The agent executing a planning program
chooses at each point in time which
atomic instruction to execute among
those that the program makes available
at that point

Agent Planning Programs (3)

achieve (myLoc=work) while maintaining true

achieve (myLoc=home A carLoc=home) while maintaining true

ach; :
Ve e (mLoc=pp)
e py " '€ maintain trye ~ &
QS
Q
true Q\Q
v
SA
, &
Q
&g
SF

Patrizi, F. - Automated Service Composition

Brescia - Feb 10, 2010 and Synthesis

49

Planning Program Environment

Planning programs are executed in a planning domain (or

Environment)

* State vars: | carLoc, myLoc : {home, work, pub, parking}, strike : {true false}

goByCar(x) with x : {home, parking, pub}
pre : myLoc=carLoc A carLoc#pub A mylLoc#x
post : myLoc=x A carLoc=myloc

 Operators: | goByBus(x) with x : {home, work, pub}
pre : Istrike A myLoc#x
post : myLoc=x

walk(x,y) with x,y : {(parking, work), (work, parking), (home, pub), (pub, home)}

pre : myLoc=x
post : mylLoc=y

* Initial state: | myLoc=home, carLoc=home, strike=true

Planning Program Environment (2)

Possible evolution of MyLoc when Strike=true

Patrizi, F. - Automated Service Composition
and Synthesis

Brescia - Feb 10, 2010

51

Planning Program Solution

To execute a planning program we must find plans for all goals in

the atomic instructions of the program

walk(parking,work)

goByCar(home)

goByCar(horme

walk(work,parking) walk(work,parking)

goByCar(home)

Patrizi, F. - Automated Se

Brescia - Feb 10, 2010 and Synthesis

52

Plan-based Simulation Relation

A binary relation R is a plan-simulation relation iff:
e (t,5) € Rimplies that

4
for all t _>achieve @ while maintaining P t
exists a,a,...a, s.t.

OS~—2,S1—7..=2>S,1 7245 S, (theplanisexecutable)

O} |= W, for $;=S,51...5,,.1 (the maintenance goal is satisfied)

O S, = (the achievement goal is satisfied)
O (t',Sn) cR (the simulation holds in resulting states)
Brescia - Feb 10, 2010 Patrizi, F. - Automated Service Composition

and Synthesis >3

Planning Program Solution (2)

* The solution of planning programs is based on
the computation of the plan-based simulation
relation

* Again, the problem is EXPTIME-complete

Conclusion

Services offer an interesting opportunity for
research: need for formal foundations

Several interesting problems, related to other
areas in CS:

— Database

— (Generalized) Planning

— Formal verification and synthesis

The complexity of the problem calls for efficient
solution techniques

Open problem: How to deal with data?

