
 Automatic
Composition of

Services
Fabio Patrizi

DIS
Sapienza - University of Rome

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

2

Overview

  Introduction to Services
  The Composition Problem
  Two frameworks for composition:

  Non data-aware services
  Data-aware services

  Conclusion & Research Direction

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

3

Services

Service 1

Service 2

Service 3

Service 4

•  Given, modular, decoupled blocks
•  Possibly distributed
•  Interacting
•  Possibility to compose!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

4

Services (2)

  Examples:
  A (typical) set of web services over a network
  A set of interacting autonomous agents

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

5

The composition Problem

  Instance:
  A set of available services
  A (non available) goal service

  Solution:
  An automaton which “mimics” the goal service, by

delegating goal interactions to available services

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

6

Service composition

Service 1

Service 2

Service 3

Service 4

Community

(G
oa

l S
er

vi
ce

)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

7

Modeling Services

  Focus on behavior (vs in/out description)

  High-level descriptions (e.g.,WSDL, BPEL,
process algebra) abstracted as
  Finite Transition Systems (cf.[vanBreugel&Koshkina,06])

  Classification: Det, Ndet, Data, No-data

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

8

Services as TSs

¬passengers | drive

passengers | stop

load_unload

recharge

go_ahead

Guarded

NDet With Data/Messages

searchPrice(x,p) ?carId(x)

!price(p)

Combination

?studId(id) chkStat(id,s)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

9

A Composition framework
for

Non data-aware services

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

10

The “Roman” Model[Berardi & al., ‘03, ’05]

  Focus on service behavior
  Atomic actions (abstract conversations)
  Asynchronous composition
  Extendible to NDet services (not here)
  Deterministic Goal service

R.Hull,
SIGMOD’04

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

11

The “Roman” Model (2)

  A Community of services over a shared alphabet A
  A (Virtual) Goal service over A

Community

Goal Service

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

12

The “Roman” Model (3)

Composite Service Goal Service REQUIREMENTS:

1.  If a run is executed by the Goal service, it
is executed by the “composed” service

2.  If the Goal service is in a final state, all
available services do

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

13

The “Roman” Model (4)

Composite Service

input_french

input_french

output_italian

output_italian

input_french

output_italian

IN GENERAL:
Not just a TS’ labeling, but a

function of community histories!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

14

Orchestrators

Orchestrators are functions of
community histories:

for each history and current action,
select the “right” available service

Can be thought of as TSs,
possibly infinite state

HOW TO COMPUTE
ORCHESTRATORS?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

15

Propositional Dynamic Logic

PDL[Fischer&Ladner, 79; Kozen&Tiuryn, 90;…]:
 Á ! P | ¬Á | Á1ÆÁ2 | hriÁ | [r]Á

  Formulae interpreted over Kripke structures
  PDL-SAT: find a structure satisfying ©

  EXPTIME in the size of ©

THEOREM[Berardi & al. ’03]:
A PDL formula © can be built which

is SAT iff an orchestrator exists

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

16

Encoding as PDL-SAT

|©| is polynomial in the size of services

i-th available service

additional domain-
independent conditions

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

17

Finding orchestrators (2)

Finding an orchestrator in the Roman
Model is EXPTIME-complete
  Membership:

  Reduction to PDL-SAT[Berardi & al. ‘03]
  Hardness:

  By reducing existence of an infinite computation in
LB ATM (EXPTIME-hard) [Muscholl & Walukiewicz ‘07]

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

18

Finding orchestrators

  THEOREM: If an orchestrator exists then
there exists one which is finite state[Berardi et al. ‘03]

  Size at most exponential in the size of
services S0,…,Sn,Sg

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

19

PDL Drawbacks

1.  Only finite state orchestrators
2.  Actual tools (e.g., Pellet@Univ. of Maryland) not

effective:
  Extracting models, thus orchestrators, not a

trivial task: for efficiency reasons, only
portions of the model are stored during
tableaux construction

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

20

Service Composition
Via

Simulation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

21

Simulation Relation

Given TS1 and TS2
s1 4 s2 iff:

1.  “s1 final” implies “s2 final”
2.  For each transition s1 !a s’1 in TS1, there exists

a transition s2 !a s’2 in TS2 s.t.
 s’1 4 s’2

TS1 is simulated by TS2 iff s01 4 s02

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

22

Simulation Relation, informally

c

b

a

a c

b

TS2

a
c

b

TS1

TS2 behaviors “include” TS1’s

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

23

Composition via Simulation
PDL Encoding contains the idea of simulation.

The composition problem can be reduced to search for
a simulation of the target service by the available
services’ asynchronous product [Berardi et al., ‘07]

St 4 S1…Sn ?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

24

Composition via Simulation (2)

Community

X

Asynchronous product

Target Service
Compute

Simulation

(if any)

Largest Simulation Relation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

25

Composition via Simulation (3)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

26

Orchestrators from Simulation

  Computing simulation is P in # of states
  # of states is Sn

  Complexity refinement (wrt PDL-Sat):

O(Sn+1)
Exponential in number of services

  EXPTIME, thus still optimal wrt worst-case

max
of states

of available
services

We get ALL orchestrators!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

27

Orchestrators from Simulation
(2)

Orchestrator Generator •  ALL orchestrators
•  Just-in-time composition
•  Can deal with failures

Community

Largest Simulation Relation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

28

b

a
a
c

TS2
b

a
a

c,b

TS2

Extension: ND-Simulation

  Non-det services (but det target)

  Generalization: ND-simulation
  Simulation preserved regardless of ND action

outcomes

a
b TS1

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

29

ND-Orchestrator

a

a

service 1

service 2

Target service

a

b

b

b

Observe
actual state

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

30

Tools for computing (ND-)
orchestrators

  Effective techniques & synthesis tools
developed by the verification community:
  TLV [Pnueli & Shahar 96]

  Based on symbolic OBDD representation
  Conceptually based on simulation technique

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

31

Application Scenarios

  Web service composition[Berardi et al., ‘07]
  An implementation from BPEL specifications @

DIS
  Distributed agents in a common environment,

with failures(work in preparation)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

32

“Unfortunately”…
… many services deal with data …

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

33

Dealing with data

Examples:
  Agents need to exchange messages (e.g.,

position, battery level,…)
  Web services take input messages (e.g.,

users subscribing a service) and return
output messages (e.g., pricelist)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

34

Dealing with data (2)

REMARK:
Infinitely many messages

may give raise to infinitely many states

PROBLEM:
Finite-state property no longer holds

We expect to get undecidability

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

35

COLOMBO[Berardi & al., VLDB‘05]

A general framework for web services with
messages

  Basic results in data-aware composition
  Asynchronous, Deterministic, finite-state

services with messaging
  Messages from infinite domains
  (Key-based) Access to a database through

atomic processes (i.e., parametric actions)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

36

COLOMBO (2)

DB:
PEOPLE(ssn, name,surname, income)
STUDENTS(id,ssn,exams,age,grant)

studentData

getIncome

checkEligibility

AS1 studId

assignGrant

id

ssn

ssn
inc

id

id

elig

studSsn

AS3 studId

AS2 studSsn

studInc

AS4 studId

studElig

id
ssn

Data from infinite
domains:

 Dom=, Dom·, Bool;

•  “Atomic” (transationally)
•  Stateless
•  Can read, insert, delete or
modify single tuples

•  Guarded automata
•  Deterministic
•  Messaging

•  Invoke atomic processes
•  Designed to interact with a client

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

37

Atomic processes
getIncome
 I:ssn; O:inc
Effects:
 inc := PEOPLE3(ssn)

checkEligibility
 I:id; O:eligibility
Effects:
 if (STUDENT4(id) == true)
 then eligibility := true
 else eligibility := false

assignGrant
 I:id
Effects:
 either
 modify STUDENT4(id, false)
 or
 no-op

Interface specification

Conditional effects
- over local variables / accessed values

Nondeterministic effects
(Finite branching)

- due to incomplete abstract model

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

38

Available services

AS1

? studSsn(ssn) getIncome(ssn,inc)

inc < 1000 | ! msg(“accepted”)

From client / service

To client / service

From / to same atomic process

State:
automaton state

+
variable configuration

inc >= 1000 | ! msg(“rejected”)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

39

Synchronization
1.  Wait for incoming messages (length-1 queues)
2.  Execute a fragment of computation
3.  After sending a message, either:

  Terminate (in a final state) or
  Go to 1.

  Client starts by sending a message
  Available services wait

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

40

System Execution

S4

DB

AP1

AP2

AP3

S3

S2 S1

C DB’ C’

S’1 S’’1

Linkage:
set of inter-service

communication
channels

(one-to-one only)

No external
modifications

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

41

Execution Tree

A system:
S=h C, { S1,…,Sn }, L i

Infinite tree evolution:
  Nodes are snapshots of service + DB states
  Edges are labeled by:

  Ground messages
  Process invocations
  DB states (pre / post transition)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

42

Execution Tree (2)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

43

Execution Trees’ “Essence”

Project the Execution Tree onto:
  Messages to/from client
  Atomic process invocations
  Effects on DB

REMARK: internal messages collapse!

S4

DB

AP1

AP2

AP3

S3

S2 S1

C DB C

S’1 S1

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

44

System Equivalence

DB C DB C

Two systems are equivalent iff they have
isomorphic essences!

(Equivalent in terms of what is observable)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

45

The Composition Problem in
COLOMBO

G C C

S4

S3

S2

S1

C M

GOAL:
•  Messages

•  Atomic processes

MEDIATOR:
•  Messages only

SERVICES (including CLIENT):
•  Only messages from/to mediator

COMPOSITION PROBLEM:
Build a linkage and a

“(p,q)-bounded” mediator such that
the obtained system is equivalent

to the goal

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

46

Solving the Composition
Problem in COLOMBO

  IDEA
  Reduce to the finite case

  OBSTACLES:
  Infinite messages and initial DB yield infinite

properties (e.g., send-ground-message)
  RESTRICTIONS needed

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

47

Restrictions

  Bounded # of new values introduced by the
client (wrt to initial DB state)

  Bounded # of DB lookups, depending on # of
new values the client introduces

  REMARK: number of new values are finite,
actual values still infinite

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

48

Symbolic representation

  Values are referred to by symbols
  Relevant features of symbols

  Relationships with
  All other symbols (wrt ·, =)
  Constants occurring in guards

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

49

Symbolic Value
Characterization

7 11 9

9 5 7

Relevant
constants:

{4,15}

r23 r22 r21

r13 r12 r11

svc = {r11>r12, r11<r13, r11<r21,
r11<r22, r11=r23, r11>4, r11<15,…}

12 14 13

13 8 12

Relevant
constants:

{4,15}

INTUITION:
Under restrictions, a bounded number of
symbols is sufficient to represent all executions

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

50

Symbolic execution tree
Finite set of

symbolic DB classes

Finite set of symbols
yields finite
branchings

Finite set of states!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

51

From Infinite to Finite
Each actual enactement has a

symbolic counterpart!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

52

Solution Technique & Issues
  (p,q)-bounded mediator:

  At most p states and q variables
  Reduction to PDL-Sat, with underconstrained

variables
  To be guessed
  Represent existence of links and mediator behavior

  Upper bound double-EXPTIME in p,q, size of target
and community services:
  Expect to get rid of p,q

  Derivable from target and available services’ structure?
  Complexity can be refined with a more efficient encoding?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

53

Conclusion & Future
Directions
  Good understanding of “behavioral” composition:

  Optimal technique for deterministic scenarios
  Ongoing extension to nondeterministic contexts w/ failures

  Starting point for data-aware services:
  General framework and first results, but severe restrictions

  Relax key-based access assumption?
  Remove, or derive, mediator bounds?
  Investigate over decidability bounds

  Flexible solutions
  PDL technique returns only one solution, what about simulation?

  Reasoning about infinite state systems
  Abstraction (cf., e.g., [Pnueli & al, VMCAI 05], [Kesten&Pnueli, 00])

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

54

Thanks For Your Attention!

  Questions?

