
A Classification of First-Order Progressable Action Theories in Situation Calculus

Stavros Vassos and Fabio Patrizi
Sapienza University of Rome

Rome, Italy
{vassos,patrizi}@dis.uniroma1.it

Abstract
Projection in the situation calculus refers to an-
swering queries about the future evolutions of the
modeled domain, while progression refers to up-
dating the logical representation of the initial state
so that it reflects the changes due to an executed ac-
tion. In the general case projection is not decidable
and progression may require second-order logic. In
this paper we focus on a recent result about the de-
cidability of projection and use it to drive results for
the problem of progression. In particular we con-
tribute with the following: (i) a major result show-
ing that for a large class of intuitive action theories
with bounded unknowns a first-order progression
always exists and can be computed; (ii) a compre-
hensive classification of the known classes that can
be progressed in first-order; (iii) a novel account of
nondeterministic actions in the situation calculus.

1 Introduction
The situation calculus is a logical language that is designed
for reasoning about action and change [McCarthy and Hayes,
1969]. A basic action theory (BAT) [Reiter, 2001] is a well-
studied type of theory in this language that describes what
holds in the initial state in a given domain, as well as how
the domain evolves under the effects of the available actions.
Such theories have been used to model various application
domains, including the environment that a robotic assistant
operates in, in order to provide deliberation capabilities as the
basis for pro-active or goal-oriented behavior, e.g., [Reiter,
1993; Levesque et al., 1997; De Giacomo et al., 2009].

One of the main reasoning tasks that BATs facilitate is dif-
ferent versions of the so-called projection problem, that is,
using entailment over this logical theory to answer queries
about the future evolutions of the initial state. For example,
one can formalize queries of the form “Is it true that condition
c will be true after actions a1, . . . , an have been performed?”
or “Is it true that c′ can never be true after action a′ is per-
formed?”. As BATs are based on first-order logic, this task is
quite difficult, in fact not decidable in the general case.

The so-called progression problem is the problem of updat-
ing the logical theory when actions are actually executed in
the world. Essentially, a BAT is like an elaborate database that

holds static information about the initial state and its possible
evolutions. When a particular action a1 is actually executed,
the BAT can be still used to answer queries about the current
state using queries of the form “Is it true that c is true after
a1 is executed?”, and similarly for queries about the future
of the current state. Nonetheless, as more and more actions
are executed this quickly becomes impractical. For example,
consider a robotic assistant that after a few hours or days of
operation may have to answer queries of the form “is it true
that c is true after a1, . . . , a10,000 are performed?”, only to
talk about its current state. Progression is concerned with up-
dating the description of the initial state in a way that is log-
ically correct. This is also a very difficult task as in general
second-order logic is required [Lin and Reiter, 1997].

Most of the work in this area lies within the two ex-
tremes of the trade-off between expressiveness and efficiency
in the following sense. (i) On the one hand, work related
to the theoretical framework of unrestricted action theories
has been able to facilitate advanced knowledge representation
features including accounts of time and concurrency, (e.g.,
[Reiter, 2001, Chapter 7]), epistemic states (e.g., [Scherl
and Levesque, 2003; Claßen and Lakemeyer, 2006]), on-
line action-based agent programming languages for behavior
and control (e.g, [Levesque et al., 1997; De Giacomo et al.,
2009]), and more, with the price that the reasoning methods
are impractical or even undecidable in the most general case.
(ii) On the other hand, the practical approaches for imple-
mented deliberation systems based on the situation calculus
have been very much restricted in expressiveness, where typ-
ically either complete information or a finite domain is as-
sumed in order to provide a realistic approach to reasoning.

Nonetheless, some recent results have explored approaches
that lie closer to a middle ground between these two extremes.
Regarding projection, the recent work of [De Giacomo et al.,
2012] investigates a boundedness assumption that allows ex-
pressing rich action theories, while also ensuring the decid-
ability of query answering through evaluation methods based
on model checking. Similarly, wrt progression there has been
a series of results about theories with actions that have a lim-
ited range of effects, such as local-effect and normal actions
[Vassos et al., 2008; Liu and Lakemeyer, 2009], thus allowing
for a first-order progression.

In this paper we follow the intuitions of [De Giacomo et
al., 2012] to introduce a new type of restriction that limits

incomplete information expressed in the theory to a bounded
number of unknowns (acting similarly to conditional tables
in database theory), but allows any type of action to be ex-
pressed. In particular we contribute with the following:

1. a major result showing that for a large class of action
theories with bounded unknowns a first-order progres-
sion always exists and can be effectively computed;

2. a comprehensive classification of the known classes that
can be progressed in first-order, also explaining their
representational differences using an intuitive example;

3. a new approach to modeling non-deterministic actions in
basic action theories, that is based on the intuitions from
the account of unknowns in 1.

2 Situation calculus
The situation calculus as presented by Reiter [2001] is a
three-sorted first-order language L with equality. The sorts
are used to distinguish between actions, situations, and ob-
jects (everything else). A situation represents a world his-
tory as a sequence of actions. The constant S0 is used to
denote the initial situation where no actions have occurred.
Sequences of actions are built using the function symbol do,
such that do(a, s) denotes the successor situation resulting
from performing action a in situation s. Actions need not be
executable in all situations, and the predicate Poss(a, s) states
that action a is executable in situation s. We will typically use
a to denote a variable of sort action and α to denote a term of
sort action, and similarly s and σ for situations.

A relational fluent is a predicate whose last argument is a
situation, and thus whose value can change from situation to
situation. We do not consider functional fluents as well as
non-fluent predicates and functions, but note that they can be
represented as relational fluents with some extra axioms. We
also assume a finite number of fluent and action symbols, F
and A, and an infinite number of constants C.

Often we need to restrict our attention to sentences in L
that refer to a particular situation. For example, the initial
knowledge base (KB) is a finite set of sentences in L that
do not mention any situation terms except for S0. For this
purpose, for any situation term σ, we define Lσ to be the
subset of L that does not mention any other situation terms
except for σ, does not mention Poss, and where σ is not bound
by any quantifier [Lin and Reiter, 1997]. When a formula
φ(σ) is in Lσ we say that it is uniform in σ [Reiter, 2001].

Also, we will use L2 to denote the second-order extension
of L that only allows predicate variables that take arguments
of sort object. L2

σ then denotes the second-order extension of
Lσ by predicate variables with arguments of sort object.

2.1 Basic action theories
We will be dealing with a specific kind of L-theory, the so-
called basic action theory D which has the following form
(for readability, we often omit leading universal quantifiers):

D = Dap ∪ Dss ∪ Duna ∪ D0 ∪ Σ

1. Dap is a set of action precondition axioms (APs), one
for each action function symbol Ai ∈ A, of the form
Poss(Ai(~x), s) ≡ Πi(~x, s), where Πi(~x, s) is in Ls.

2. Dss is a set of successor state axioms (SSAs), one per
fluent symbol Fi ∈ F , of the form Fi(~x, do(a, s)) ≡
Φi(~x, a, s), with Φi(~x, a, s) ∈ Ls. SSAs characterize
the conditions under which Fi has a specific value at sit-
uation do(a, s) as a function of situation s and action a.

3. Duna is the set of unique-names axioms for actions:
Ai(~x) 6= Aj(~y), and Ai(~x) = Ai(~y) ⊃ ~x = ~y, for each
pair of distinct action symbols Ai and Aj in A.

4. D0 is uniform in S0 and describes the initial situation.

5. Σ is a set of domain independent foundational ax-
ioms which formally define legal situations also using
a second-order inductive axiom in L2.

2.2 The problem of progression
The progression of a basic action theory (BAT) is the problem
of updating the initial KB so that it reflects the current state
of the world after some actions have been performed, instead
of the initial state of the world. In other words, in order to
do a one-step progression of the BAT D with respect to the
ground action α we need to replace D0 in D by a suitable set
Dα of sentences so that the original theory D and the theory
(D − D0) ∪ Dα are equivalent with respect to how they de-
scribe the situation do(α, S0) and the situations in the future
of do(α, S0). In a seminal paper, Lin and Reiter [1997] gave
a model-theoretic definition for the progressionDα ofD0 wrt
α and D that achieves this goal. Note that we will be using
Sα to denote the situation term do(α, S0).

Definition 1. Let M and M ′ be structures with the same do-
mains for sorts action and object. We write M ∼SαM ′ if the
following two conditions hold: (i) M and M ′ have the same
interpretation of all situation-independent predicate and func-
tion symbols; (ii)M andM ′ agree on all fluents at Sα, that is,
for every relational fluent F , and every variable assignment µ,
M,µ |= F (~x, Sα) iff M ′, µ |= F (~x, Sα).

Definition 2. Let Dα be a set of sentences in L2
Sα

. Dα is a
progression ofD0 wrt α if for any structure M , M is a model
of Dα iff there is a model M ′ of D such that M ∼SαM ′.

We now proceed to identify an extension of the relatively
complete theories of [Lin and Reiter, 1997] that can be pro-
gressed using first-order logic. In Section 4 we will show that
they indeed capture some natural cases that existing classes
of first-order progressable theories cannot encode.

3 Bounded unknowns
First we briefly review the notion of a relatively complete ini-
tial KB D0 [Lin and Reiter, 1997]. The idea is that for each
Fi∈F there is an axiom in D0 of the form:

∀~x(Fi(~x, S0) ≡ φi(~x)),

where φi(~x) is situation-independent and whose free vari-
ables are in ~x. In this wayD0 characterizes the truth value for
all atoms of Fi in S0 relatively to formulas that do not men-
tion situations; in our case, in terms of formulas φi built on
constants and equality (and possibly quantifiers). In the typi-
cal case when we assume uniqueness of names for constants,

D0 is a complete theory. For example the following axiom
states that there exactly two atoms true for In(x1, x2, S0):

∀x∀y(In(x, y, S0) ≡ (x=purse∧(y=keys∨y=wallet))).

There is a very simple way to progress a relatively complete
D0 wrt a ground action α as follows. For each Fi ∈ F ,
we start from the SSA for Fi, instantiated for α and S0:
∀~x(Fi(~x, Sα) ≡ Φi(~x, α, S0)). Then for every occurrence
of fluent atom Fj(~o, S0) in Φi(~x, α, S0), we replace the atom
by φj(~o). Essentially, the form of D0 allows us to replace
fluent atoms about S0 by their definition, and obtain a set of
sentences uniform in Sα that qualifies as a progression.

We propose a simple yet powerful extension of this type of
D0 that introduces existentially quantified variables to model
incomplete information, while also preserving the intuitive
progression strategy by substitution. The following states that
there are exactly two atoms true for In(x1, x2, S0), namely
In(purse, keys, S0) and In(purse, w, S0) for some w6=keys.

∃w.(w6=keys) ∧ ∀x∀y(In(x, y, S0) ≡
(x=purse∧(y=keys∨y=w))).

(1)

Note that (1) completely characterizes In(x, y, S0) relatively
to the formula on the right hand side, in which case w acts al-
most like a “null” value of normal databases along with pos-
sible constraints. As L includes infinitely many constants,
incomplete information over an infinite domain is implied.

We can build similar axioms about more than one fluent.
∃w1∃w2.(w1= loc1 ∧w2=north∨w1= loc2 ∧w2=east)

∧ ∀x(RobotAt(x, S0) ≡ x=w1)

∧ ∀x(RobotDir(x, S0) ≡ x=w2).

(2)

In this case we use w1, w2 to specify disjunctive in-
formation between fluent atoms of RobotAt(x, S0) and
RobotDir(x, S0). For instance, (2) could be used to represent
a state where a robot has only partial high-level knowledge of
its location and direction due to sensor interference.

We now formalize a new class of initial KBs based on us-
ing a single axiom for all (finitely many) fluent symbols in
L. This type of D0 is relatively complete but also allows
a rich form of incomplete information by means of existen-
tially quantified variables that we call unknowns. Unknowns
behave as Skolem constants but without departing from the
original language L. Also, as we will shortly see, this type
of KB allows a progression by substitution in the manner dis-
cussed at the beginning of the section.
Definition 3. An initial KB D0 is relatively complete with
bounded unknowns iff it is a sentence of the following form:

∃w1 · · · ∃wb. e(w1, . . . , wb)∧∧n
i=1 ∀~xi(Fi(~xi, S0) ≡ φi(~xi, w1, . . . , wb)),

where b is the bound on unknowns, ~xi is a tuple of variables of
size equal to the number of Fi object arguments, and e, φi are
first-order situation-independent formulas whose free vari-
ables are all in {w1, . . . , wb}, {~xi, w1, . . . , wb}, respectively.
Definition 4. A BATD over a language L with finitely many
fluent and action symbols and infinitely many constant sym-
bols is relatively complete with bounded unknowns iffD0 is a
consistent sentence of the form described in Definition 3 for
some bound b, and mentions all fluent symbols in L.

Note that no other constraint is imposed on any other part
ofD except forD0, in particular, there is no restriction on the
actions described in the successor state axioms (SSAs) inDss.
We now proceed to show that a first-order progression can be
obtained by means of a simple syntactic transformation.
Definition 5. Let D0 be as in Definition 3 with bound b.
We define T [ψ, ~w] as the transformation that replaces occur-
rences of fluent atoms of the form Fi(~o, S0) in ψ by the for-
mula φi(~o, ~w), where ~o is a tuple of terms of sort object, ~w is
tuple of variables of sort object of size b, and φi is the corre-
sponding formula characterizing Fi in D0.

The intuition is that by applying T to the right-hand side
Φi of the SSA for each Fi in L, we obtain a progression sim-
ilarly to the case investigated by Lin and Reiter [1997]. In
our case each of the fluent atoms is replaced by a formula
that also introduces new variables not mentioned in the SSA,
i.e., variables ~w that capture the unknowns. In order then
for the substitution to make sense, these unknowns need to
be referenced consistently by the same variable names in all
occurrences, and this is why they are given as input to T .
Theorem 1. Let D be a BAT over language L that is rela-
tively complete with bounded unknowns as in Definition 4,
and α a ground action term. Let ψ be the following sentence:

∃~w. e(~w) ∧
∧n
i=1∀~xi

(
Fi(~xi, Sα) ≡ T [Φi(~xi, α, S0), ~w]

)
,

where ~w is a set of variables of sort object distinct from all ~xi,
formulas e, φi characterize the constraints among unknowns
and the fluent atoms Fi inD0, Φi is the right-hand side of the
SSA for Fi, and T the transformation of Definition 5. Then ψ
is a progression of D0 wrt to α and D.

Proof. Let M be an arbitrary structure of L. By Definition 2
it suffices to show that M is a model of ψ iff there is a model
M ′ of D such that M ∼SαM ′.
(⇒): We construct the modelM ′ starting fromM and replac-
ing the truth value for all Fi ∈F s.t. M ′, µ ~xi~o

~w
~c |= Fi(~xi, S0)

iff M ′, µ ~xi~o
~w
~c |= φi(~xi) for all tuples of objects ~o in the do-

main, where ~c is a tuple of objects such that M ′, µ~w~c |= e(~w).
By the form of D0 and the construction of ψ it follows that
M ′ models D0 and the SSAs when instantiated with α, S0.
We then use the SSAs inDss to replace the truth value for flu-
ents in all situations other than S0, Sα, and axioms in Dap to
replace the extension of Poss. It follows that M ′ models D.
(⇐): It suffices to show that D |= ψ. Let M be an arbi-
trary model of D. M models D0, therefore there exists an
object vector ~c in the domain s.t. M,µ~w~c |= e(~w) (I) and for
all i, M,µ~w~c |= ∀~xi(Fi(~xi, S0) ≡ φi(~xi, ~w)) (II). M also
models Dss, therefore for all i, M,µ~w~c |= ∀~xi(Fi(~xi, Sα) ≡
Φi(~xi, α, S0)) (III). By (II),(III), and the definition of T it fol-
lows that M,µ~w~c |= ∀~xi(Fi(~xi, Sα) ≡ T [Φi(~xi, α, S0), ~w]),
which along with (I) implies that M |= ψ.

This form of D0 essentially limits all incomplete informa-
tion in D to what can be expressed in terms of the unknowns
~w and the global constraints in e(~w). Observe that this is true
not only for D0 and S0 but in fact for all future situations.
This may seem a little unintuitive, but indeed this is a prop-
erty of all BATs that comes from the structure of the SSAs.

That is, SSAs being definitions of the form “Fi in do(a, s)
is true iff condition Φi about s holds”, they cannot introduce
disjunctive or existential information; any incomplete infor-
mation about the truth value of fluents in any situation s has
to “link back” to S0 by means of conditions expressed in the
right-hand side of SSAs. This is also true for a normal unre-
stricted D0. The difference is that this form of D0 makes it
explicit that there is only a fixed number of variables that can
be used to formalize incomplete information at any time. We
use this observation in Section 5, to suggest a novel account
for representing nondeterministic actions in normal BATs.

4 A map of first-order progressable theories
We now categorize the known classes for first-order progress-
able BATs into two incomparable hierarchies: one that re-
lies on limiting the effects of actions by imposing syntactic
restrictions on the SSAs, and one that relies on imposing a
progression-friendly structure on the D0 that can be main-
tained. We compare two classes C1 and C2 based on expres-
sive power, by writing: C1 � C2, if for every theory D1 ∈ C1
there exists aD2 ∈ C2 (over the same language asD1) s.t. the
set of models of D1 and D2 coincide; C1 ≈ C2, if C1 � C2
and C2 � C1; and C1 ≺ C2, if C1 � C2 and C1 6≈ C2.

We start by introducing a motivating example.

A simple robot scenario that challenges progression
Consider an assistant robot capable of navigating and mov-
ing objects around in a grid-like world, where some ob-
jects such as bags and boxes may contain other objects. We
use the fluents introduced in Section 3 along with fluents
Holding,Connected and action moveFwd with the intuitive
meaning. We assume that the SSA for any fluent F has the
form: F (~x, do(a, s)) ≡ γ+F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s).

For RobotAt(x, s), γ+RobAt and γ−RobAt are as follows:

γ+RobAt : ∃z1∃z2. a = moveFwd∧RobotAt(z1, s)
∧ RobotDir(z2, s) ∧ Connected(z1, z2, x, s),

γ−RobAt : a = moveFwd .

Similarly for At(x, y, s), γ+At and γ−At are as follows:

γ+At : ∃z1∃z2∃z3. a = moveFwd∧RobotAt(z1, s)
∧RobotDir(z2, s) ∧ Connected(z1, z2, y, s)

∧(Holding(x, s) ∨ Holding(z3, s) ∧ In(z3, x, s))

γ−At : ∃z. a = moveFwd
∧(Holding(x, s) ∨ Holding(z, s) ∧ In(z, x, s)).

Note that when the robot moves, all the objects it carries
move, too. The SSAs for RobotDir, Holding, and In have the
intuitive formalization, while Connected is static, i.e., its SSA
copies the truth of atoms in S0 to all situations.

4.1 Restricting the effects of actions
The main intuition behind the approaches restricting the ef-
fects of actions is that by appropriately characterizing all flu-
ent atoms that may be affected by an action α, we can rely on
forgetting [Lin and Reiter, 1994] to unset the old truth value
for them, and then use Dss[α, S0] (the instantiated SSAs)

to set the new one; the rest of the fluent atoms remain un-
changed. The characterization of the affected fluents is made
possible by imposing a syntactic structure on SSAs.

Class BAT-SCF: BATs with strongly context-free actions
In strongly context-free actions [Lin and Reiter, 1997], each
of the γ∗(~x, a, s) formulas of SSAs (i.e., γ+ and γ−) is a
disjunction, whose disjuncts have the form ∃~z(a = A(~y)),
where ~x is included in ~y, and ~z are the remaining variables
of ~y. This has the effect that a ground action A(~o) essentially
dictates all the fluents that get affected by the execution of
the action. More formally, for a strongly context-free SSA it
follows by the uniqueness of names for actions that:

γ∗(~x, α, S0) ≡
∨
i(~x = ~ci).

A method for computing a first-order progression for BAT-
SCF is described in [Lin and Reiter, 1997]. Note that the
SSA for RobotAt is clearly not strongly context-free.

Class BAT-LE: BATs with local-effect actions
Local-effect actions [Liu and Levesque, 2005] imply a finite
number of affected atoms, but in a more expressive way. The
trick is similar to that for strongly context-free actions: every
γ∗(~x, a, s) is a disjunction, with disjuncts of the form ∃~z(a=
A(~y) ∧ φ(~y)), ~x included in ~y, and ~z the remaining variables
of ~y; however a context formula φ can be specified along with
every disjunct. The arguments of fluents that may be affected
by a ground action α still need to occur as arguments of α,
but this form of SSA allows for instance the following:

γ+RobAt : ∃z1∃z2. a = moveFwd(z1, z2, x) ∧ RobotAt(z1, s)
∧ RobotDir(z2, s) ∧ Connected(z1, z2, x, s),

γ−RobAt : ∃z1∃z2. a = moveFwd(x, z1, z2) ∧ RobotAt(x, s)
∧ RobotDir(z1, s) ∧ Connected(x, z1, z2, s),

As above, the uniqueness of action names implies:

γ∗(~x, α, S0) ≡
∨
i(~x = ~ci ∧ φ(~x)).

Since SSAs in BAT-SCF are special cases of BAT-LE’s,
BAT-SCF�BAT-LE. To prove that BAT-SCF≺BAT-LE, it
suffices to show some D in BAT-LE that cannot be “trans-
formed” into aD′ (over the same language asD) in BAT-SCF
with the same meaning in terms of models. The SSA above
can be used for this, as there is no way to “compile away” the
context formula for moveFwd(o1, o2, o3):

RobotAt(o1, s)∧RobotDir(o2, s)∧Connected(o1, o2, o3, s).

The context formula could be compiled into the action pre-
condition axiom, allowing execution of valid actions only,
thus resulting in a strongly-context free version of the SSA.
This, however, would work only with complete information
about RobotAt and RobotDir. If this is not the case, as, e.g., in
(2), a conditional effect through a context formula is needed
to allow each class of models to evolve appropriately.

The result that theories in BAT-LE admit a first-order pro-
gression was shown in [Vassos et al., 2008], while an exten-
sion of the result wrt computing the progression can be found
in [Liu and Lakemeyer, 2009]. Also note that the SSA for
RobotAt of our running example is not local-effect either.

Class BAT-NR: Normal actions
Normal actions [Liu and Lakemeyer, 2009] explore the idea
of characterizing the affected fluents from a logical perspec-
tive, taking advantage of the connection between progres-
sion and forgetting. In particular, a normal action may af-
fect infinitely many fluent atoms but in a way that progres-
sion amounts to forgetting a predicate (i.e., not just a finite
number of atoms). Under some conditions the result of for-
getting, which in general is second-order, can be expressed in
first-order logic by means of quantifier elimination.

The intuition behind normal actions is that a ground ac-
tion α is allowed to have non-local effects on a fluent F as
long as it has local effects on all fluents appearing in the
effect formulas γ∗F . For instance, consider the ground ac-
tion move(purse, loc1, loc2) for moving object purse together
with every object inside it from loc1 to loc2. Such action has
non-local effects on At(x, y, s), as it affects the location of
the objects inside purse, but these are not action arguments.
Nonetheless, assuming that In(x, y, s) is the only fluent men-
tioned in γ∗At, the action is normal, as it trivially has local-
effects on In(x, y, s), i.e., no effects on it whatsoever.

It is straightforward to show that BAT-LE�BAT-NR as
local-effect actions are a special case of normal actions by
their definition. To see why BAT-LE≺BAT-NR, consider ac-
tion move(purse, loc1, loc2) and case (1). When performing
the action, also the fluent atoms corresponding to items in-
side purse, e.g., At(keys, loc1, Sα) and At(keys, loc2, Sα), are
affected. In order for a local-effect version of the action to
be able to set these atoms to true and false respectively, the
object keys needs to be included in the action arguments. This
is even more problematic for arguments that are not known,
such as the other item w in the purse, implied by (1).

As a final note, observe that moveFwd in our motivating
example is not normal. Indeed, the action has non-local ef-
fects on RobotAt(x, s), which is mentioned in γ+RobAt. To see
this, one has to look at the technical details of Definition 4.4
in [Liu and Lakemeyer, 2009]: a ground action has local-
effects on fluent F if, using Duna and the action, γ+F and γ−F
can be simplified into a disjunction that explicitly states all
potentially affected ground atoms of F . Since in general the
agent may not know a-priori the boundaries of the world it is
situated in, the number of potential locations is not bounded,
hence such a simplification is not possible by only usingDuna.

BAT-CF: Context-free actions
We can now look into a generalization of BAT-SCF. BATs
with context-free effects, which we refer to as BAT-CF, al-
low the use of any γ∗ formula in SSAs, as long as it does
not mention situations, i.e., it is of the form γ∗F (~x, a) for a
fluent F (~x, s). Note that this goes beyond local-effects as
it allows, e.g., making all F atoms false by setting γ∗F to
a = A ∧ false. On the other hand, actions with local-effects
can express conditional effects with a γ∗ that depends on s.
As a result BAT-CF and BAT-LE are incomparable. It is also
straightforward that BAT-SCF ≺ BAT-CF. The final piece of
information missing is that BAT-CF≺ BAT-NR. This follows
from the definition of normal actions: even though a context-
free axiom may have non-local effects on some fluent F , by
definition it trivially has local-effects on all fluents mentioned

in γ∗F as it cannot mention situations.
We can now state the main result of this section.

Theorem 2. BAT-SCF≺{BAT-LE, BAT-CF}≺BAT-NR.

BAT-SCF and BAT-CF were investigated in combination
with restrictions on the initial KB in [Lin and Reiter, 1997].
This result also clarifies that just the restriction on the SSAs
is adequate for ensuring a first-order progression.

4.2 Restricting the initial KB
The class of BATs with a relatively complete KB, referred to
as BAT-RC, characterizes the truth value of all fluent atoms
in S0, in terms of formulas φi not mentioning situations. In
general L can include non-fluent predicates and functions,
and formulas φi can mention them. Similarly to the case
of theories with bounded unknowns, referred to as BAT-BU,
the initial KB can express incomplete information through
rigid symbols. In this sense the effect of an unknown w
s.t. w= c1 ∨ w= c2 can be encoded in a BAT-RC by using
a predicate P such that P (c1)∨P (c2) is included in the KB
and is not mentioned elsewhere in the KB.

Nonetheless, it is typical to consider BATs that do not in-
clude functions and functional symbols in order to avoid some
of the complications that arise in the treatment of terms, and
also encode predicates as static relational fluents. In this set-
ting, BAT-BU theories force incomplete information to be
treated at the level of variables as unknown values. In any
case, in the scope of BATs without predicates and functions
(adopted in this paper) BAT-RC express complete informa-
tion about all fluents, while BAT-BU allow for a bounded
number of unknowns, in which sense BAT-RC ≺ BAT-BU.

Finally, BAT-BU is the only class (of those known to admit
a first-order progression) able to capture the simple motivat-
ing example we introduced in the beginning of the section.

4.3 Combining action and KB restrictions
The restriction on bounded unknowns is inspired by a re-
cent result about decidability of verification –which includes
projection as a special case– over the class of the so-called
bounded BATs (BAT-BD) [De Giacomo et al., 2012]. A
BAT-BD theory entails that in all situations the number of
true fluent atoms is bounded by some fixed number. This re-
quires appropriate restrictions both on the initial KB and the
actions’ specification. Concerning actions, [De Giacomo et
al., 2012] introduce SSAs that either ensure a balance be-
tween “adding” and “removing” constants in the extension
of a fluent, or discard facts when a given bound is reached.
These intuitive restrictions are fairly common in applications
either because facts do not persist indefinitely or because one
eventually discards some facts. The BAT-BU class, on the
other hand, provides an intuitive syntactic structure for the
initial KB, ensuring that a first-order progression always ex-
ists and can be effectively computed. The term “bounded”
here is used to limit the number of “unknowns” instead of
that of known facts, as in BAT-BD.

The results on BAT-BD and BAT-BU suggest that combi-
nations of restrictions from both classes can be used to pro-
vide a solid ground for investigating practical deliberation
systems based on the situation calculus. Indeed, it is not hard

to see that the intersection of BAT-BU and BAT-BD includes
a wide range of theories that constitute a well-behaved class,
for which projection is decidable and a first-order progression
is always effectively computable. Moreover, these theories
make a direct link between representing dynamic domains in
the situation calculus and reasoning by means of methods de-
veloped in the theory of databases: (i) the proof of decidabil-
ity for bounded theories relies on abstractions based on the
notion of active domain; (ii) the form of the initial KB for
theories with bounded unknowns is essentially equivalent to
a conditional table [Imielinski and Lipski, 1984] when the
formulas in the KB are also quantifier-free.

5 Nondeterministic actions using unknowns
We now show the power of BAT-BU theories in modeling
nondeterministic actions. For simplicity we fix a number b
of coins, and use b different fluent symbols (Coin1–Coinb) to
represent their state and b different actions (flip1–flipb) to cap-
ture flipping. The idea is for each Coini to use one unknown
wi to characterize Coini(x, do(flipi, s)). In order to do this
we need to set wi to have two possible values, namely heads
or tails, and use an extra fluent Ndeti as a placeholder of dis-
junctive information. The next sentence is a D0 that models
this and also sets all coins to be “heads” in S0.

∃w1 · · · ∃wb.
∧b
i=1(wi=heads∨wi= tails)

∧
∧b
i=1 ∀x(Ndeti(x, S0) ≡ x=wi)

∧
∧b
i=1 ∀x(Coini(x, S0) ≡ x= heads).

The next SSAs then shows that we can “assign” Ndeti to
Coini(x, do(flipi, s)) to make it capture disjunctive informa-
tion about its state in the situation after flipping the coin:

Coini(x, do(a, s)) ≡ a=flipi ∧Ndeti(x, s)
∨ a 6=flipi ∧Coini(x, s),

Ndeti(x, do(a, s)) ≡ Ndeti(x, s).

Note that executing flipi has the effect of Coini not having
complete information any more:

D |= Coini(heads, S0),D 6|= Coini(heads, do(flipi, S0)),

D |=¬Coini(tails, S0),D 6|= Coini(tails, do(flipi, S0)),

D |=∀x(Coini(x, do(flipi, S0)) ≡ (x=heads∨x= tails)).

Observe also that as we discussed in Section 3, the disjunctive
information about Coini links back to that of Ndeti in S0.
Finally, an appropriate account for sensing (e.g., via a sensing
fluent SF(a, s) [Levesque, 1996]) can be used to settle the
fluent in being true for exactly one of the two outcomes.

6 Related work
The notion of progression for BATs was first introduced by
Lin and Reiter [1997]. They were also first to investigate re-
strictions that guarantee a first-order progression.

Liu and Levesque [2005] introduced the local-effect as-
sumption for actions when they proposed a weaker version
of progression that is logically incomplete, but remains prac-
tical. Vassos et al. [2008] showed that, under this assump-
tion, a logically correct first-order progression can actually be

computed by updating a finiteD0. Liu and Lakemeyer [2009]
showed how the result of [Vassos et al., 2008] on local-effect
progression relates to the notion of forgetting, and examined
the more expressive normal actions.

A different approach to first-order progression involves
identifying wide classes of queries that can be performed over
a basic action theory wrt which a first-order progression is
guaranteed to be correct (even though it may be incorrect
in the general case). This was also first investigated by Lin
and Reiter [1997] who showed that for answering projection
queries that are uniform in some situation σ, a first-order pro-
gression is always adequate. Shirazi and Amir [2005] proved
a similar result in the context of logical filtering. Vassos et al
[2008] extended this result showing that un-nested quantifi-
cation over situations may also be allowed.

Outside of the situation calculus, Thielscher [1999] de-
fined a dual representation for basic action theories based on
state update axioms that explicitly define the direct effects of
each action, and investigated progression in this setting. In
this work the update relies on expressing the changes using
constraints which may need to be conjoined to the original
database, which is similar to the idea of replacing fluent atoms
by their definition in the relatively complete initial KBs.

Perhaps the most relevant work related to nondeterminis-
tic actions in situation calculus is the use of a disjunction of
SSAs, introduced by [Lin, 1996] in the context of nonmono-
tonic logics. Unlike our approach though, their account oper-
ates at the level of meta-theory and cannot be used to reason
about future situations by means of regular entailment.

7 Conclusions
In this paper we created a map of all known theories that ad-
mit a first-order progression and, inspired by recent results
about decidability of verification for BAT-BD, extended it
with the class BAT-BU of theories with bounded unknowns
for which we proved that a first-order progression always ex-
ists and can be effectively computed. We also showed that
BAT-BU theories generalize BATs with a relatively complete
KB, and that they can capture nondeterministic actions. Fur-
ther, we argued that the theories falling into the intersection of
BAT-BU and BAT-BD form a well-behaved class of practical
interest, which guarantees decidability of projection and ef-
fective computability of first-order progression. This is a ma-
jor advancement, since until now such properties were guar-
anteed for special (less intuitive) classes, and only for the two
problems separately. Finally, we pointed out that such a class
builds a link between the situation calculus as a representation
formalism and reasoning techniques developed in the context
of database systems, a link that we intend to exploit in future
work, to devise efficient methods for projection and progres-
sion, under restrictions inspired by pragmatic approaches in
the database context.

Acknowledgments
The authors acknowledge the support of EU Projects FP7-
ICT 257593 (ACSI) and FP7-ICT 318338 (OPTIQUE).

References
[Claßen and Lakemeyer, 2006] Jens Claßen and Gerhard

Lakemeyer. Foundations for knowledge-based programs
using ES. In Patrick Doherty, John Mylopoulos, and
Christopher A. Welty, editors, Proceedings, Tenth Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), pages 318–328, 2006.

[De Giacomo et al., 2009] Giuseppe De Giacomo, Yves
Lespérance, Hector J. Levesque, and Sebastian Sardina.
Multi-Agent Programming: Languages, Tools and Appli-
cations, chapter IndiGolog: A High-Level Programming
Language for Embedded Reasoning Agents, pages 31–72.
Springer, 2009.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories and decidable verification. In Gerhard
Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning:
Proceedings of the Thirteenth International Conference
(KR), 2012.

[Imielinski and Lipski, 1984] Tomasz Imielinski and Witold
Lipski. Incomplete information in relational databases. J.
ACM, 31(4):761–791, September 1984.

[Levesque et al., 1997] H. J. Levesque, R. Reiter,
Y. Lespérance, F. Lin, and R. B. Scherl. Golog: A
logic programming language for dynamic domains.
Journal of Logic Programming, 31(1-3):59–83, 1997.

[Levesque, 1996] Hector Levesque. What is planning in the
presence of sensing? In The Proceedings of the Thirteenth
National Conference on Artificial Intelligence, AAAI-96,
pages 1139–1146, Portland, Oregon, August 1996. Amer-
ican Association for Artificial Intelligence.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter.
Forget it! In Russell Greiner and Devika Subramanian, ed-
itors, Working Notes, AAAI Fall Symposium on Relevance,
pages 154–159, Menlo Park, California, 1994. American
Association for Artificial Intelligence.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress
a database. Artificial Intelligence, 92(1-2):131–167, 1997.

[Lin, 1996] Fangzhen Lin. Embracing causality in specify-
ing the indeterminate effects of actions. In AAAI/IAAI, Vol.
1, pages 670–676, 1996.

[Liu and Lakemeyer, 2009] Yongmei Liu and Gerhard Lake-
meyer. On first-order definability and computability
of progression for local-effect actions and beyond. In
Proc. IJCAI-09, pages 860–866, 2009.

[Liu and Levesque, 2005] Y. Liu and H. J. Levesque.
Tractable reasoning with incomplete first-order knowledge
in dynamic systems with context-dependent actions. In
Proc. IJCAI-05, Edinburgh, Scotland, August 2005.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of artifi-
cial intelligence. Machine Intelligence, 4:463–502, 1969.

[Reiter, 1993] R. Reiter. Proving properties of states in the
situation calculus. Artificial Intelligence, 64(2):337–351,
1993.

[Reiter, 2001] R. Reiter. Knowledge in Action. Logical Foun-
dations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[Scherl and Levesque, 2003] R. Scherl and H. J. Levesque.
Knowledge, action, and the frame problem. Artificial In-
telligence, 144(1–2):1–39, 2003.

[Shirazi and Amir, 2005] Afsaneh Shirazi and Eyal Amir.
First-order logical filtering. In Proc. of IJCAI-05, pages
589–595, 2005.

[Thielscher, 1999] M. Thielscher. From situation calculus to
fluent calculus: State update axioms as a solution to the
inferential frame problem. Artificial Intelligence, 111(1-
2):277–299, July 1999.

[Vassos and Levesque, 2008] S. Vassos and H. J. Levesque.
On the progression of situation calculus basic action the-
ories: Resolving a 10-year-old conjecture. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI), pages 1004–1009, 2008.

[Vassos et al., 2008] S. Vassos, Gerhard Lakemeyer, and
H. J. Levesque. First-order strong progression for local-
effect basic action theories. In Proceedings of the Eleventh
International Conference on Principles of Knowledge
Representation and Reasoning (KR-08), pages 662–272,
2008.

