Constraints (2008) 13:407-436
DOI 10.1007/s10601-007-9028-6

Evaluating ASP and Commercial Solvers
on the CSPLib

Toni Mancini - Davide Micaletto - Fabio Patrizi -
Marco Cadoli

Published online: 25 January 2008
© Springer Science + Business Media, LLC 2007

Abstract This paper deals with four solvers for combinatorial problems: the com-
mercial state-of-the-art solver ILOG oprLsTUDIO, and the research answer set pro-
gramming (ASP) systems DLV, SMODELS and cMoODELS. The first goal of this research
is to evaluate the relative performance of such systems when used in a purely
declarative way, using a reproducible and extensible experimental methodology. In
particular, we consider a third-party problem library, i.e., the CSPLib, and uniform
rules for modelling and instance selection. The second goal is to analyze the marginal
effects of popular reformulation techniques on the various solving technologies.
In particular, we consider structural symmetry breaking, the adoption of global
constraints, and the addition of auxiliary predicates. Finally, we evaluate, on a subset
of the problems, the impact of numbers and arithmetic constraints on the different
solving technologies. Results show that there is not a single solver winning on all
problems, and that reformulation is almost always beneficial: symmetry-breaking
may be a good choice, but its complexity has to be carefully chosen, by taking into
account also the particular solver used. Global constraints often, but not always, help
opL, and the addition of auxiliary predicates is usually worth, especially when dealing
with ASP solvers. Moreover, interesting synergies among the various modelling
techniques exist.

T. Mancini (X) - D. Micaletto - F. Patrizi - M. Cadoli

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
via Salaria 113, 00198 Roma, Italy

e-mail: tmancini@dis.uniromal.it

D. Micaletto
e-mail: micaletto@dis.uniromal.it

F. Patrizi
e-mail: patrizi@dis.uniromal.it

M. Cadoli
e-mail: cadoli@dis.uniromal.it

@ Springer



408 T. Mancini et al.

Keywords Declarative constraint modelling - Constraint programming -
Problem reformulation - Experimental evaluation among solvers -
Answer Set Programming - OPL

1 Introduction

The last decade has witnessed a large effort in the development of solvers for com-
binatorial problems. The traditional approach based on writing ad hoc algorithms,
complete or incomplete, or translating in a format suitable for Integer Programming
solvers,' has been challenged by the use of libraries for Constraint Programming
(CP), such as ILOG soLvER,” interfaced through classical programming languages,
e.g. C++ or Prolog. At the same time, the need for a higher level of abstraction
and declarativeness led to the design and development of general purpose languages
and systems for constraint modelling and programming —e.g. AMPL [16], opL [36],
xPRESS'"® or Gams [7]- and languages based on specific solvers, such as pLv [20],
SMODELS [26], CMODELS [21], AsSAT [22], or LiNGo [14].

The availability of such declarative languages has been, of course, a major step
ahead towards the ripening of the constraint programming paradigm: by giving
greater emphasis to the problem modelling task, the user is in principle relieved from
the responsibility of dealing with many procedural, algorithmic, and technological
aspects. All such issues are ideally left to the system.

On the other hand, with these languages, it is now the quality of the problem
model that plays a fundamental role in solvers’ efficiency: it is in fact very well-known
that the most simple, intuitive, and straightforward formulations for a given problem
rarely are the most efficient ones, and several techniques have been proposed in the
literature in order to reformulate the original model into equivalent ones that are
more efficiently evaluable by the solver at hand. Such techniques include symmetry-
breaking (cf., e.g., [9, 15, 23, 28]), abstraction of constraints and variables (cf., e.g.,
[2, 12, 17, 18]), addition of implied constraints and of auxiliary variables (cf., e.g.,
[33, 38]), and use of global constraints (cf., e.g., [30]).

The afore-mentioned techniques have been often dealt with in the literature on a
per problem basis, and only little work has been performed in order to understand
how much they are expected to perform on a new problem, when using a given
solving technology. Arguably, this knowledge, coupled with theoretical studies that
generalize and standardize such reformulation techniques, is fundamental in order to
build declarative constraint programming systems that automatically tweak the user’s
models in order to boost their performance. This is mandatory in order to provide the
users with the possibility of writing simple and declarative constraint models for their
problems, without dramatically loosing in efficiency, and is ultimately an obliged step
in order to spread the use of the constraint programming paradigm towards non-
specialists.

Such evolution is actually not new: a similar process has been experienced
during the past decades in the development of languages and systems for querying

le.g. ILOG cpLEX, cf. http://www.ilog.com/products/cplex.
2cf. http://www.ilog.com/products/solver.

3cf. http://www.dashoptimization.com.
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databases: without the existence of effective tools for query preprocessing and
optimization (cf., e.g., [35]), the relational model and modern query languages like
SQL would improbably spread through real applications.

With such a long-term goal in mind, in previous work [2, 3, 23, 24] we showed
how problem models can be regarded as logical formulae, how several of the
afore-mentioned techniques for model reformulation may be generalized and highly
standardized, and how automated tools can be practically used in order to check their
applicability for the problem at hand. This led to the possibility, by the solving engine,
to effectively perform specification-level analysis of the user’s model, and automatize
several reformulation tasks.

In this paper we consider four well-known systems for constraint solving, and per-
form an extensive experimentation in order to answer the following main questions:

1. How do such systems perform when used in a purely declarative way?
2. Which are the effects of problem reformulation and other modelling aspects in
their overall efficiency?

The last question poses, in turn, two more issues:

2.a.  Which are the most promising reformulation techniques for any given solving
technology?

2.b. How do the systems perform when two or more “good” reformulation tech-
niques are used together?

The systems we consider are one Constraint Programming solver, i.e., ILOG opPLSTU-
p1o,* and three answer set programming (ASP) solvers, namely pLv,? sMODELS,® and
cmopiLs.” ILOG opPLSTUDIO is a commercial state-of-the-art system for Constraint
Programming that relies on the declative language opL [36] and on the well-known
solvers cpLEX (linear) and soLVER (backtracking-based, non linear) produced by
ILOG. opLstuDIO uses default search strategies based on dynamic variable and value
ordering heuristics, in case no explicit procedure is given by the user. For simplicity,
in the following we refer both to the language and the implementation as opL.

As for ASP instead, it emerged in the late ‘90s as a new logic programming
paradigm, having its roots in non-monotonic reasoning, deductive databases and
logic programming with negation as failure. Much research has been carried out in
the last years in order to develop efficient and purely declarative solvers based on
this semantics, and several systems, mainly produced in universities, are nowadays
available. Our choices were directed to some of the most well-known solvers in this
area. However, very promising competitors have recently been released, e.g., cLASP,?
that deserve much attention. Interestingly, many ASP solvers, among which SMODELS
and CMODELS, share the specification language through the common parser LPARSE.?
Finally, while bLv and SMODELS use proprietary solving engines, CMODELS compiles

4cf. http://www.ilog.com.

Scf. http://www.dbai.tuwien.ac.at/proj/dlv/.

Ocf. http://www.tcs.hut.fi/Software/smodels/.

7cf. http://www.cs.utexas.edu/users/tag/cmodels.html.
8¢f. http://www.cs.uni-potsdam.de/clasp.

9cf. http://www.tcs.hut.fi/Software/smodels.
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ASP specifications, when given together with an instance, into an instance of the
Propositional Satisfiability problem (SAT). This last issue is an important argument
for the inclusion of CMODELS in our experiments, since it allows to compare Constraint
Programming with the fertile research on SAT, which produced many efficient
solvers (cf., e.g., [19] and http://www.satcompetition.org for the recent impressive
advances).

At the higher level, the systems considered exhibit interesting differences, includ-
ing availability (opL and ASP solvers are, respectively, payware and freeware sys-
tems, the latter often being open source), paradigm (resp. algebraic and rule-based
with minimal model semantics) and expressiveness of the modelling language (e.g.,
availability of arrays of finite domain variables vs. boolean matrices), compactness of
constraint representation (e.g., availability of global constraints).

In order to answer the questions stated above, we present a reproducible and
extensible experimental methodology. In particular, we consider a large third-party
problem library, i.e. the CSPLib,'° very well-known in the Constraint Programming
community, and uniform rules for modelling and instance selection. As for the refor-
mulation techniques subject of our experiments, we consider symmetry breaking, the
use of global constraints, and that of auxiliary variables and predicates. Moreover, we
try to assess how negatively numbers and arithmetics influence performance.

In this way, we aim to evaluate the marginal impact that each issue has on the
performance of the different solvers. The significance of the experiments is achieved
by considering a large set of problems and a high number of instances. As a side-
effect, we also aim to advance the state of knowledge on the good practices in
modelling for some important classes of solvers.

Comparison among different solvers for CP has already been addressed in the
literature: in particular, we recall [13] and [37] where SOLVER is compared to other
systems such as, e.g., 0z [34], cLAIRE,'! and various Prolog-based engines. Moreover,
some benchmark suites have been proposed, cf., e.g., COCONUT [31]. Also on
the ASP side, which has been the subject of much research in the recent years,
benchmark suites have been built in order to facilitate the task of evaluating improve-
ments of their latest implementations, the most well-known being ASPARAGUS!?
and ASPLib."3 However, less research has been done in comparing solvers based
on different formalisms and technologies, and in evaluating the relative impact of
different features and modelling techniques. In particular, very few papers compare
ASP solvers to state-of-the-art systems for CP. To this end, we cite [11], where two
ASP solvers are compared to a CLP(FD) Prolog library on six problems: Graph
coloring, Hamiltonian path, Protein folding, Schur numbers, Blocks world, and
Knapsack, and [27], where ASP and Abductive Logic Programming systems, as well
as a first-order finite model finder, are compared in terms of modelling languages
and relative performances on three problems: Graph coloring, N-queens, and a
scheduling problem.

10¢f. http://www.csplib.org.

Ief. http://claire3.free.fr.

12¢f. http://asparagus.cs.uni-potsdam.de.
3¢f. http:/dit.unitn.it/~wasp.

@ Springer


http://www.satcompetition.org
http://www.csplib.org
http://claire3.free.fr
http://asparagus.cs.uni-potsdam.de
http://dit.unitn.it/~wasp

Evaluating ASP and Commercial Solvers on the CSPLib 411

Outline The outline of the paper is as follows: in Section 2 we present and discuss
the adopted experimental methodology, while in Section 3 we describe the experi-
mental framework, i.e., the selected problems, their various formulations, and how
we chose their instances. Then, in Section 4 we present and analyze the results of our
experiments. Finally, Section 5 concludes the paper.

A preliminary version of this paper appeared as Cadoli et al., Proceedings of the
seventeenth European conference on Artificial Intelligence, pp. 68-72, 2006 [4].

2 Methodology

In this section we present the methodology adopted in order to achieve the goals
mentioned in Section 1. For each problem, we define a number of different formula-
tions: a base specification, obtained by a straightforward and intuitive “translation” of
the CSPLib problem description into the target language, and several reformulated
ones, obtained by using different techniques proposed in the literature: (i) symmetry-
breaking, (if) addition of global constraints and (iif) addition of auxiliary predicates.
Moreover, in order to establish whether merging different reformulations, which
are proven to improve performance when used alone, speeds-up even more the
computation, we considered additional specifications for the same problems, ob-
tained by combining the aforementioned techniques, and exploring the existence
of synergies among them. Finally, an evaluation of the impact of numbers and
arithmetic constraints in all the solvers involved in the experimentation has been
performed on two problems.

The goals declared in Section 1 drive us to follow a purely declarative approach
during modelling: hence, all the specifications have been solved without performing
any kind of tuning of the search parameters and without specifying any procedural
aspects (like, e.g., ad hoc search procedures in opL). Thus, the experimentation relies
on the default behavior of the different solvers (i.e., grounding techniques, branching
heuristics, etc.). In fact, we remind that our purpose is not to solve a particular
problem in the most efficient way as possible, but to understand what performance
the various systems may offer to the modeller in a transparent way, i.e., without
requiring him to take into account any details about the underlying technologies, and
which is the effectiveness and the marginal impact of various high-level and strongly
standardized reformulation techniques on solvers’ performance. However, the end
of Section 4 presents some discussions about the price payed for this high level of
declarativeness.

In order to achieve such objectives, the modelling task has been performed in a
way as systematic as possible, by requiring the specifications of the various solvers to
be similar to each other. The criteria followed during the modelling task are discussed
in Section 3.2. As for the instances, in this paper we opted for problems whose input
data is made of few integer parameters (with two exceptions, which are discussed in
Section 3.1).

Due to the high number of problems and instances solved, the necessity of having a
synthetic yet meaningful measure of the various solvers performance arises. Various
approaches exist in the literature, e.g., comparing the overall solution time for a given
set of instances to each problem, or the number of correctly solved instances in a
given time limit (cf., e.g, [25]). However, due to the nature of the chosen problems
(instances depending on very few integer parameters, straightforwardly denoting
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their size), we decided to follow a different approach: for each problem we fixed
all the input parameters but one (the reasonability of such choices are discussed in
Section 3.1), and in our results we report, for each problem and solver, the largest
instance (denoted by the value given to the selected parameter) that is solvable
in a given time limit (1 h) by each reformulation."* For one single problem such
approach was intrinsically infeasible (cf., discussion on the Water buckets problem
in Section 3.1), and so we exceptionally built a set of benchmark instances for it, and
compared the overall solving time needed by each solver to manage them. Another
problem instead (Car sequencing, cf. discussion in the same section) needed some
extra care in order for its instances to be described by a single parameter.

3 The Experimental Framework
3.1 Problems Selection

In this research we consider the CSPLib problem library for our experiments.
CSPLib is a collection of 45 problems and is one of the most widely known source
of benchmarks in the CP community. Problems are classified into 7 areas: Schedul-
ing, Design, Configuration and diagnosis, Bin packing and partitioning, Frequency
assignment, Combinatorial mathematics, Games and puzzles, and Bioinformatics.

For our experiments we chose 10 problems from CSPLib, that cover all the 7
areas of the collection. Since many problems in CSPLib are described only in natural
language, without any formal characterization, this work also provides, as a side-
effect, their formal specifications in the modelling languages adopted by several
solvers.

In what follows we give a description of the chosen problems, as well as their
identification numbers in CSPLib, the applications areas they belong to, and the
parameters chosen to define their instances.

Ramsey problem (#017 Bin packing and partitioning, Combinatorial mathematics).
This problem amounts to color the edges of a complete graph with n nodes using the
minimum number of colors, in order to avoid monochromatic triangles. Instances of
the problem are denoted by the number of graph nodes, n.

Social golfer (#010 Scheduling, Bin packing and partitioning, Games & puzzles). In
a golf club there are 32 social golfers who play once a week in 8 groups of 4. The
problem amounts to find a schedule for as many as possible weeks, such that no two
golfers play in the same group more than once. Here we consider a decisional version
of the problem: given a positive integer w, the goal is to find a schedule for w weeks.
Problem instances are thus denoted by the number of weeks w.

Golomb rulers (#006 Frequency assignment, Combinatorial mathematics). Given a
positive integer m, this problem amounts to put »2 marks on a ruler, in such a way
that the m(m — 1)/2 distances among them are all different. The objective is to find

14 A5 discussed in Section 4, in order to neutralize some noise in the solvers’ behavior, the definition
of largest solvable instance has to be slightly emended.
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the length of the shortest ruler that admits the positioning of m marks. Instances are
denoted by values given to m.

Car sequencing (#001 Scheduling). A number of cars have to be produced; they
are not identical, because different options are available as variants on the basic
model. The assembly line has different stations which install the various options (air-
conditioning, sun-roof, etc.). Such stations have been designed to handle at most a
certain percentage of the cars passing along the assembly line. Furthermore, the cars
requiring a certain option must not be bunched together, otherwise the station will
not be able to cope with them. Consequently, the cars must be arranged in a sequence
so that the capacity of each station is never exceeded.

Selection of instances for this problem differs from the previous cases, since they
cannot be directly encoded by a single parameter. We considered some benchmarks
suggested in the CSPLib, namely “4/72”, “6/76” and “10/93”. However, since they
were too hard for our solvers, we proceeded as follows, in order to generate a new set
of (smaller) instances: from any original benchmark (with »n classes), we generated
a set of instances by reducing the number of classes to all possible smaller values
k € [1, n]. In particular, for each such k we generated an instance with k classes,
also suitably resizing the original number of cars and station capacities, in order to
preserve satisfiability. Thus, instances derived from the same benchmark could be
ordered according to the value for the (reduced) number of classes k, which could
then be regarded as a measure for their size.

Water buckets (#018 Design, Configuration and diagnosis, Bin packing and partition-
ing, Games & puzzles). We consider a generalization of the CSPLib specification,
which is as follows: Given an 8 pint bucket of water, and two empty buckets which
can contain 5 and 3 pints respectively, the problem requires to divide the water into
two by pouring water between buckets (that is, to end up with 4 pints in the 8 pint
bucket, and 4 pints in the 5 pint bucket) in the smallest number of transfers.

The generalization consists in making the specification parametric with respect
to the start and goal configurations, which are now inputs to the problem. We
also designed 11 instances (each one denoted by a start and a goal configuration)
from that considered in the original problem description, which have been proved
to be non-trivial by preliminary experiments. Since such instances could not be
denoted by a single parameter, solvers’ performance for this problem and the dif-
ferent specifications have been compared by considering the overall time needed to
solve them.

Maximum density still life (#032 Games & puzzles). This problem arises from the
Game of life, invented by John Horton Conway in the 1960s (cf., e.g., [10] for a
detailed description). Life is played on a squared board, considered to extend to
infinity in all directions. Each square of the board is a cell, which at any time during
the game is either alive or dead. A cell has eight neighbours. The configuration of
alive and dead cells at time ¢ leads to a new configuration at time ¢ + 1 according to
the rules of the game:

If a cell has exactly three living neighbours at time ¢, it is alive at time ¢ + 1;
If a cell has exactly two living neighbours at time ¢, it is in the same state at time
t+ 1 as it was at time t;

e Otherwise, the cell is dead at time ¢ + 1.
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A stable pattern, or still-life, is not changed by these rules. Hence, every cell that has
exactly three alive neighbours is alive, and every cell that has fewer than two or more
than three alive neighbours is dead. (An empty board is a still-life, for instance.)

Given a positive integer n, the problem amounts to find the densest possible still-
life pattern, i.e. the pattern with the largest number of alive cells, that can be fitted
into an n x n section of the board, with all the rest of the board containing dead cells.
Instances are encoded by n, the size of the board.

Word design for DNA computing on surfaces (#033 Bioinformatics). This problem
amounts to find as large a set S of strings (words) of length 8 over the alphabet
W ={A, C, G, T} with the following properties:

Each word in S has 4 symbols from {C, G};

Each pair of distinct words in S differ in at least 4 positions; and

Each pair of words x and y in S (where x and y may be identical) are such that
R(x) and C(y) differ in at least 4 positions, where:

—  R(x) is the reverse of the input string x;
— C(y) is the Watson-Crick complement of y, i.e. the word obtained by y by
replacing each A by a T and vice versa and each C by a G and vice versa.

Here we consider a decisional version of the problem: given a positive integer c, the
goal is to find, if possible, a set of words S with the above properties, and such that
|S| = c. Instances are encoded by c.

Magic squares (#019 Combinatorial mathematics, Games & puzzles). An order n
magic square is a 7 by n matrix containing the numbers 1 to n?, with each row, column
and main diagonal equal the same sum. Given a positive integer n, the problem
amounts to find a n order magic square. Instances are encoded by n, the matrix order.

Langford numbers (#024 Combinatorial mathematics, Games & puzzles). This is a
generalization of the specification given in the CSPLib (which fixes the forthcoming
value 7n to 4). Given two sets of the numbers from 1 to n, the problem amounts to
arrange the 2n numbers in the two sets into a single sequence in which the two
1’s appear one number apart, the two 2’s appear two numbers apart, the two 3’s
appear three numbers apart, ..., and the two n’s appear n numbers apart. Instances
are encoded by n.

All-interval series (#007 Frequency assignment, Combinatorial mathematics).
Given the twelve standard pitch-classes (c, c#, d, ...), represented by numbers
0,1,...,11, this problem amounts to find a series in which each pitch-class occurs exactly
once and in which the musical intervals between neighboring notes cover the full set
of intervals from the minor second (1 semitone) to the major seventh (11 semitones).
That is, for each of the intervals, there is a pair of neighboring pitch-classes in the
series, between which this interval appears.

We consider a generalization of this problem in which the set of numbers is
the range from 0 to n—1, for any given positive n. In particular, given such
n, the problem amounts to find a vector s = (sy, ..., s,) that is a permutation of
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Table 1 The set of problems considered in the experiments, together with their CSPLib identifica-
tion number and the unique parameter used to encode their instances

Id Problem name Instances defined by
017 Ramsey # of graph nodes
010 Social golfer (decisional version) Schedule length

006 Golomb rulers # of marks

001 Car sequencing # of classes

018 Water buckets Benchmark instances
032 Maximum density still life Board size

033 Word design (decisional version) # of words

019 Magic squares Matrix order

024 Langford numbers # of values

007 All-interval series # of integers

We observe that instances for two problems could not naturally be encoded by a single parameter: in
these cases, benchmarks available (or derived from those available) on CSPLib were used

{0, 1, ..., n — 1} and such that the interval vector v = (|s, — s1], |s3 — $2, -..[S% — Sn—11)
is a permutation of {1, 2, ..., n — 1}. Instances are encoded by the integer n.

Table 1 summarizes the set of problems considered in this paper, as well as the
parameters used to encode their respective instances.

Some comments on the choices made above are in order. First of all, since the
performance typically depends on the instances being positive or negative (i.e.,
satisfiable or unsatisfiable), we considered 4 optimization problems. As a matter of
fact, for proving that a solution is optimal, solvers have to solve both positive and
negative instances.

Actually, two more problems, namely Social golfer and Word design, are pre-
sented as optimization problems in the CSPLib. However, since none of our solvers
were able to achieve their optimal solutions,! in our experiments we considered their
decisional versions.

The choice of the problems had also to take into account that one of the solvers,
CMODELS, is unable to natively deal with optimization problems. In order to let the
experimentation being significant for such solver, we proceeded to solve the 4 opti-
mization problems with cMODELS by iteratively solving instances of their decisional
versions, in order to find the best value of the objective function through binary
search (this issue is discussed in detail in Section 4). Of course, the performance
obtained by cMODELS in this way may be considered as a lower bound of that which
can be obtained by extending the system in order to natively tackle optimization
problems. However, experimental results show that even in this case, this solver is
competitive with respect to (and sometimes even faster than) the others.

As for the choice of the instances, those of two problems, namely Car sequencing
and Water buckets, could not be naturally encoded by a single parameter. Hence,
they have been derived from benchmarks taken from the CSPLib.

15We observe that, as for Social golfer, the longest schedule is still unknown in the literature, being
of 9 or 10 weeks.
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Finally, some problems, namely Water buckets and Magic squares have been used
also to evaluate the impact of numbers and arithmetic constraints in problem models.
In fact, it is well known that such issues may greatly degrade solvers’ performance,
and that this behavior strongly depends on the underlying solving algorithm. In order
to understand how negatively numbers and arithmetic constraints affect the behavior
of the various solvers, we built new sets of instances, equivalent to the original
ones, that however force the underlying algorithms to deal with larger numbers. By
measuring and comparing how much their performance degrades, we are able to
evaluate the robustness of the various technologies with respect to such issues.

3.2 Models Selection

As claimed in Section 2, in order to build an extensible experimental framework,
we followed the approach of being as uniform and systematic as possible during
the modelling phase, by requiring the specifications of the various solvers to be
similar to each other. Hence, even if not always identical because of the intrinsic
differences among the languages that could not be overcome, all of the models share
the same ideas behind the search space and constraints definitions, independently of
the language. Below, we discuss the general criteria followed during the modelling
phase, and the different formulations considered for each problem. Encodings of all
problems for all solvers are available in the web-appendix of this paper.'® We refer
the reader to it for a detailed understanding of the different problems’ formulations
described in what follows.

3.2.1 General Modelling Criteria

The first obvious difference between opL and the ASP solvers concerns the search
space declaration. The former relies on the notion of function from a finite domain
to a finite codomain, while the latter ones have just relations, which must be restricted
to functions through specific constraints. Domains of relations can be implicit in DLv,
since the system infers them by contextual information. For each language, we used
the most natural declaration construct, i.e, functions for opL, and untyped relations
for ASP. Secondly, since the domain itself can play a major role in efficiency,
sometimes it has been inferred through some a posteriori consideration. This is
especially the case for domains of objective values in optimization problems. As
an example, in Golomb rulers the maximum position for marks (hence the rule
length to be minimized) is upper-bounded by 2 (m being the number of marks), but
choosing such a large number can advantage opL, which has powerful arc-consistency
algorithms for domain reduction. As a consequence, we used the upper bound 3L/2
for all solvers, L being the maximum mark value for the optimum of the specific
instance. Such practice has been carried out systematically for each minimization
problem (3 out of 4), by fixing the upper bound for the value of the objective function

16¢f, http://www.dis.uniromal.it/~tmancini/index.php?currltem=research.publications.
webappendices.csplib2x.
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to 3L/2, with L being the optimum (computed by preliminary experiments). As
for the unique maximization problem considered (Maximum density still life), as
discussed in Section 4 (cf. also the problem description given in Section 3.1), this
issue does not apply.

3.2.2 Base Specifications

The first formulation considered for each problem is the so called base specification.
This has been obtained by a straightforward translation of the CSPLib problem
description into the target language, by taking into account the general criteria
discussed above, and, arguably, is the most natural and declarative.

Of course, in general, different formulations may exist for a given problem that
could alternatively be considered as its base specifications, since they are equally
“natural” and “straighforward”. An example is given by the Water buckets problem,
where elements of the search space (i.e., plans) could either be modelled as sequences
of buckets configurations (e.g., for 3 buckets, we can explicitly maintain, for each
time-point, the amount of water in each of them), or as sequences of actions that
encode transitions from one configuration to another. To give the intuition, consider
an instance with 3 buckets having capacity, respectively, 8, 5, 3, and which initial
state being (8,0, 0) (i.e., the first bucket is full, while the other two are empty).
The following sequence of states is a (partial) plan consistent with the problem
constraints, hence a point of the search space:

((8,0,0), (3,5,0),(3,2,3),...),

meaning that at time-point O the buckets are in the initial configuration, at time-point
1, bucket 1 contains 3 units of water, bucket 2 contains 5, and so on. This plan could
equivalently be encoded by representing transitions that link each state to the next
one,i.c.:

(1—>2,2-3,..),

meaning that the configuration at time-point 1 is obtained by moving water from
bucket 1 to bucket 2, that at time-point 2 is in turn achieved by further moving water
from bucket 2 to bucket 3, and so on.

As a general rule, in all these cases, we performed preliminary experiments in
order to understand which formulation led to the best performance, and regarded
that one as the base specification.

3.2.3 Reformulation by Symmetry-breaking

It is well known in the literature (cf. references given in Section 1) that the sym-
metries exhibited by a problem can be one of the major sources of inefficiency for
many classes of solvers. Hence, the first kind of reformulation considered aims at
evaluating the impact of performing symmetry-breaking.

Given the high abstraction level of the languages, an immediately usable form of
reformulation is through the addition of new constraints (cf., e.g., [9, 15, 28]), usually
called symmetry-breaking constraints.
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Symmetry-breaking is dealt with in a systematic way, by adding to the base
specifications general, uniform, and standardized schemas for symmetry-breaking
presented in [23]. Such schemas are briefly recalled in what follows (examples
below are given in the simple case where all permutations of values are symmetries;
generalizations exist):

e Selective assignment (SA): A subset of the variables are assigned to precise
domain values. As an example, in the Social golfer problem, in order to break
the permutation symmetries among groups, we can fix the group assignment for
the first and partially for the second week.

e Selective ordering (SO): Values assigned to a subset of the variables are forced
to be ordered. As an example, in the Golomb rulers problem, in order to break
the symmetry that “reverses” the ruler, we can force the distance between the
first two marks to be less than the difference between the last two.

e Lowest-index ordering (LI): Linear orders are fixed among domain values and
variables, and assignments of variables (x1, ..., x,) are required to be such that,
for any pair of values (d, d'), if d < d’ then min{i|x; = d} < min{i|x; = d'}. An
example is given by the Ramsey problem: once orders are fixed over colors, e.g.
red < green < blue, and over edges, we can force the assignments to be such that
the least index of red colored edges is lower than the least index of green colored
ones, and analogously for green and blue edges.

e  Size-based ordering (SB): After fixing a linear order on values, assignments are
forced to be such that |{x € V|x = d}| < |{x € V|x = d'}|, for any pair of values
d < d', V being the set of variables. As an example, in the Ramsey problem we
could require the number of blue colored edges to be greater than or equal to
that of green ones, in turn forcing the latter to be greater than or equal to the
number of red colored edges. Generalizations of this schema do exist, depending
on the way the partition of the variables set into size-ordered sets is defined.

e Lexicographic ordering (LX); This schema is widely applied in case of search
spaces defined by matrices, where all permutations of rows (or columns) are
symmetries. It consists in forcing the assignments to be such that all rows (resp.
columns) are lexicographically ordered.

e Double-lex (lex?) ordering (L2): This is a generalization of the previous schema,
applicable where the matrix has both rows and columns symmetries. It consists in
forcing assignments to be such that both rows and columns are lexicographically
ordered (cf., e.g., [15]). An example is Social golfer, in which the search space can
be defined as a 2D matrix that assigns a group to every player/week combination.
Such a matrix has all rows and columns symmetries (we can swap the schedules
of any two players, and the group assignments of any two weeks).

Above schemas for symmetry-breaking can be qualitatively classified in terms of
“how much” they reduce the search space (i.e., their effectiveness), and in terms
of “how complex” is their evaluation. In particular they can be partially ordered as
follows: SA < SO < LI < LX < L2, and LI < SB, where s; < s, means that schema
sy better reduces the search space. However, s, typically requires more complex
constraints than s;. Figure 1 shows such a classification as a partial order set.
Furthermore, in many cases, more than a single schema is applicable for breaking
the symmetries of a given specification. Since previous studies [29] showed that this
technique is effective when simple formulae are added, it is interesting to know —for
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Fig. 1 Classification among L2
symmetry-breaking schemas |
as a partial ordered set. Higher

schemas are more effective, SB LX
but usually require more \ /
complex constraints LI

More effective
More complex SO

SA

each class of solvers— what is the amount of symmetry breaking that can be added to
the model, and still improving performance. In what follows, we give a partial answer
to this question.

3.2.4 Reformulation by Exploiting Global Constraints

Global constraints (GC) encapsulate, and are logically equivalent to a set of other
constraints. Despite this equivalence, global constraints come with more powerful
filtering algorithms, and a specification exhibiting them is likely to be much more
efficiently evaluable.

One of the most well-known global constraints supported by constraint solvers is
alldifferent (x1,...,xn) thatforces the labeling algorithm to assign different
values to all its input variables. Of course, such a constraint can be replaced by a set
of binary inequalities xi # xj (for all i # ), but such a substitution will result in
poorer propagation, hence in less efficiency.

Several global constraints are supported by opL, e.g., alldifferent and
distribute. The latter is a generalization of alldifferent, forcing the algo-
rithm to assign a set of values to a set of variables in such a way that any value occurs
a given number of times among the variables.

According to the problems structure, alldifferent has been applied to
Golomb rulers, Magic squares, and All-interval series, and distribute to Social
golfer, Car sequencing, Word design, and Langford problem. As for Ramsey, Water
buckets, and Maximum density still life, none of such reformulations applies.

On the other hand, ASP solvers do not offer this kind of global constraints,'” hence
no comparison can be made on this issue.

3.2.5 Reformulation by Adding Auxiliary Predicates

A guessed predicate (i.e., a predicate belonging to the search space declaration) is
called auxiliary if its extensions functionally depend on those of the other ones. The
use of auxiliary guessed predicates is very common in declarative programming, es-
pecially when the user needs to store partial results, to maintain intermediate states,
or wants to make the so-called redundant modelling (cf., e.g., [8]), by maintaining
multiple views of the search space, synchronized by channelling constraints.

17 Although they provide various aggregate and weight constructs, which may be regarded as a special
form of global constraints.
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As an example, consider the specification of Social golfer, where the search space
is a total function assigning a group to each player/week pair. We could add to
the search space an auxiliary guessed predicate meet(-, -, -) and suitable channelling
constraints that, for each pair of players p;, p» (p1 # p2), and each week w, force the
triple (p1, p2, w) to belong to meet iff players p; and p, are expected to play in the
same group on week w, according to the guessed scheduling.

It can be observed that any extension of the guessed scheduling uniquely defines
an extension for the meet predicate (this is called a functional dependence among
guessed predicates —cf., e.g., [24]). The main advantage of using such predicate is in
the simplification of some of the constraints: as an example, the meet-at-most-once
constraint can be much more compactly expressed in terms of the meet predicate.

In general, although the use of auxiliary predicates increases —from a conceptual
standpoint— the size of the search space, this often results in a simplification of
complex constraints and in a reduction of the number of their variables, and thus
may lead, as we show in Section 4, to appreciable time savings.

We consider equivalent specifications, obtained by using auxiliary predicates, for
all of the selected problems. However, the bottom-up grounding techniques and
evaluation algorithms of pLv and LPARSE (the grounder used by both smMoDpELs and
CMODELS) may significantly advantage ASP solvers over opL on such specifications,
since auxiliary predicates are usually defined in rule-heads. To this end, when
adding auxiliary predicates to opL specifications, we also added simple, general, and
high-level modelled search procedures instructing the labelling algorithm to delay
branches on auxiliary variables, while maintaining the default behavior on the others,
as explained in previous work [24].

3.2.6 Reformulation by Combining Different Techniques

In many cases, more than one single reformulation strategy improves performance
on a given problem. Hence, the question arises whether synergies exist among them,
and what techniques are likely to work well together, for each solver.

To this end, for each problem we consider some additional formulations: the
first one has been obtained, according to the aforementioned uniformity criteria,
by merging the two reformulations (among symmetry-breaking, addition of global
constraints and of auxiliary predicates) that, for each solver, resulted to be the most
efficient. Finally, in order to understand whether there exist better, undiscovered
synergies, we relaxed the uniformity hypothesis, and considered some of the other
possible combinations of reformulation strategies, with the goal to further boost
performance.

3.2.7 Example: The Golomb Rulers Problem

In order to show how we applied our methodology to modelling and reformulation,
we present the different formulations we designed for the Golomb rulers problem
(cf. Section 3.1) in the various languages. The reader is invited to look at the web-
appendix (cf. footnote 16) for all the other specifications.
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Base specifications
OPL

int+ n marks = ...;
int+ maxval = ...; // Fixed to 3L/2
(L = opt. length for n marks marks)

var int+ ruler[l..n marks] in 0..maxval; // search space decl.
minimize ruler [m] // obj . func.
subject to {
ruler[1l] = 0; // cl
forall (i in 1..,n marks-1) { ruler[i] < ruler[i+1]; }; // c2
forall(i,j,k,1 in 1..n marks
(1 <3) & (k <1) & (L <>k \/ J<>1)) { // c3
(ruler[j] - ruler[i]) <> (ruler[l] - ruler[k]);

}i
Vi

DLV

ruler (P,M) v fail (P,M) :- marks (M), positions(P).

% search space decl.
:- positions(P), not #count{ M : ruler(P,M)}=
ruler(1,0) . % cl
:- ruler(X,Y), ruler(X1,Y1l), X1>X, Y>=Y1. %

:-  #count{X1,X2 : ruler(X1l,Y1l), ruler(X2,Y2), X2>X1,

Y2=D+Y1} > 1, marks (D). $ c3
:~ ruler(P,M), n marks(P). [M:1] % obj. func.

SMODELS and CMODELS (LPARSE)

1 {ruler(P,M): marks(M)} 1 :- pos(P). % search space decl.
compute {ruler (1,0)}. % cl
:- ruler(X,Y), ruler(X1,Y1l), gt(X1,X), not gt(Yl,Y). % c2
:- ruler(X Y), ruler(X1l,Y1l), ruler(X2,Y2 % c3
ruler (X3,Y3), gt(X1,X), gt(X3,X2),
or (neq(X,X2) ,neq(X1,X3)), eq(Yl-Y,¥Y3-Y2).
minimize[ruler (n_marks,Y): marks(Y)]. % obj func.
Reformulation by symmetry-breaking: selective ordering
OPL
// ...Base specification plus:
((ruler[2] - ruler[1l]) <
(ruler [n marks] - ruler([n marks - 1])); // SO
DLV
% ...Base specification plus:
:- ruler(1l,Y), ruler(2,Y1l), ruler(M,Y¥Y3), ruler(N,Y2), % SO

Y1=D1+Y, Y3=D2+Y2, D2<D1, M=N+1, n marks(M).
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SMODELS and CMODELS (LPARSE)

o

% ...Base specification plus:
:- ruler(1,Y), ruler(2,Y1l), ruler(n marks-1,Y2), % SO
ruler (n marks,¥3), 1lt(Yl-Y,¥3-Y2).

Reformulation by exploiting global constraints: all-different

OPL
// ...Base specification, with ¢3 replaced by:
alldifferent (

all (i,j in 1..n marks: i <> J)

(ruler[j] - ruler[il)); // c3 (GC)

DLV, SMODELS, and CMODELS: not applicable.

Reformulation by adding auxiliary predicates
OPL

int+ n marks = ...;

int+ maxval = ...;

int+ numOfDifferences = (n_marks* (n_marks-1)/2);
range diffvalues 1..maxval;

var int+ ruler([l..n _marks] in 0..maxval; // search space decl.
var diffvalues distance[l..numOfDifferences];// aux. pred. decl.

minimize ruler[n marks] // obj. func.
subject to {

ruler[1l] = 0; // cl

forall (i in 1..n marks-1) { // c2

ruler[i] < ruler[i+1];

}i

forall(ml,m2 in 1..n marks: m2 > ml) { // chann. constr.
distance[((n_marksx (n marks-1)/2) -

((n_marks—m1+1)*(n_marks—ml)/z) + (m2-ml))] =
ruler [m2] - ruler[ml]

)i

forall(i,j in 1..numOfDifferences : i > j){ // c3 (Aux)
distance[i] <> distancel[j];

}i

Vi

// Delay branches on aux. predicate
search{

generate (ruler) ;

generate (distance) ;

Vi
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DLV

ruler (P,M) v fail(P,M) :- marks (M), positions(P).

% search space decl.
:- positions(P), not #count{ M : ruler(P,M)}=1.

ruler(1,0) . % cl
:- ruler(X,Y), ruler(X1,Y1l), X1>X, Y>=Y1. % c2
diff (X1,X2,D) :- ruler(X1l,Y1l), ruler(X2,Y2),
% aux. pred. decl. and chann. constr.
X2>X1, Y2=D+Y1.
:- #count{X1,X2: diff(X1,X2,D)}>1, marks (D), D>0. % c3 (Aux)
:~ ruler(P,M), n marks(P). [M:1] % obj. func.

SMODELS and CMODELS (LPARSE)

1 {ruler(P,M): marks(M)} 1 :- pos(P). % search space decl.
compute {ruler(1,0)}. % cl
:- ruler(X,Y), ruler(X1,Y1l), gt(X1,X), not gt(Yl,Y). % c2

diff (X1,X2,D) :- ruler(X1l,Y1l), ruler(X2,Y2),

% aux. pred. decl. and chann. constr.
gt (X2,X1), D=Y2-Y1.

:- 2{diff (A,B,D): positions(A;B): gt(B,A)}, marks(D).% c3 (Aux)
minimize [ruler (n marks,Y): marks(Y)]. % obj func.

A combined reformulation We give the opL specification obtained combining
symmetry-breaking (SO), adoption of global constraints (all-different), and addition
of the auxiliary predicate:

int+ n_marks = ...;

int+ maxval = ...;

int+ numOfDifferences = (n_marksx (n marks-1)/2);
range diffvalues 1..maxval;

var int+ ruler[l..n marks] in 0..maxval; // search space decl.
var diffvalues distance[l..numOfDifferences];
// aux. pred. decl.

minimize ruler[n marks] // obj. func.
subject to {
ruler[1] = 0; // c1
forall (i in 1..n marks-1) ({ // c2

ruler[i] < ruler[i+1];
}i
forall(ml,m2 in 1..n marks: m2 > ml) { // chann. constr.
distance[((n_marks*(n marks-1)/2) -
((n_marks-ml+1l) x (n_marks-ml)/2) + (m2-ml))] =
ruler [m2] - ruler[ml]
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}i

alldifferent (distance) ; // ¢3 (Aux+GC)
((ruler[2] - ruler[l]) < // SO
(ruler [n marks] - ruler([n marks - 1]));

}i
// Delay branches on aux. predicate
search{

generate (ruler) ;

generate (distance) ;

bi

4 Experimental Results

In this section we present and analyze the results of our experimentation. Experi-
ments have been performed by using the following solvers:

ILOG opLsTUDIO 3.61, that invokes ILOG SOLVER v. 5.3 as search engine,18

DLV v. 2005-02-23,
SMODELS V. 2.28, by using LPARSE 1.0.17 for grounding,
CMODELS V. 3.55, by using LPARSE 1.0.17 for grounding,

on a 2 CPU Intel Xeon 2.4 Ghz computer, with a 2.5 GB RAM and Linux v. 2.4.18-
64GB-SMP.

As discussed in Sections 2 and 3.2, for every problem, we wrote several specifica-
tions (a base plus several reformulated ones), in the different languages, having care
to be as uniform and systematic as possible during the modelling phase. We then
ran the different specifications for each solver on the same set of instances, which
selection has been performed as discussed in Section 3.1. All runs had a timeout
of 1 h.

Results are shown in Tables 2 and 3 for, respectively, optimization and decision
problems. In particular, for each problem and solver, we report the largest instance
the various systems were able to solve (in the given time-limit) for the base specifica-
tions and the various reformulations.

However, during our experiments, we experienced that, for a given specification,
sometimes solvers were unable to solve instance denoted by value k of the parameter
in the time-limit, but were able to solve the one denoted by k + 1. This “noisy” (or
“non-monotone”) behavior is very well-known in the literature. To ensure fairness,
and to avoid the effects of such a noisy behavior, in the results we intend for largest
instance the one denoted by the largest value k of the parameter that satisfies the
following three conditions: (i) It is solvable in the time-limit by the given solver with
the given specification; (ii) Neither instance k + 1 nor instance k + 2 are solvable
in the time-limit by the same solver with the same specification; (iii) Do not exist
instances kK’ and k' 4+ 1 (k' < k — 2) which are not solvable in the time-limit by the
same solver with the same specification.

18Since specifications for all of our problems are non-linear, we made no use of the linear engine
CPLEX.
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Table 2 Experimental results for optimization problems

Problem Spec OPL DLV SMODELS CMODELS
Ramsey Base 16 9 9 16
(nb. of nodes) SA 16~ 9+ 9+ 16"
LI 13 16 10 16~
SB 16~ 9+ 8 13
Aux 16 9+ 9* 16*
Aux+SB 16~ 8 - -
Aux+LI 13 16 - -
Golomb rulers Base 10 9 6 6
(nb. of marks) SO 10+ 9~ 6 6~
Aux 11 9 8 9
GC (alldiff) 11 - - -
Aux+SO 11 9~ 8 9
Aux+GC(alldiff) 11 - - -
Aux+GC(alldiff)+SO - - -
Water buckets Base 487.27 2056.85  27229.09 637.57
(total time [s]) Aux 23323 323.26 257.88 39.83
(Perf. gain wrt Base spec.) (2.09x) (6.36x) (105.59%) (16.01x)
Max density Still life Base 8 7 8 8
(board size) SO 8 7 8+ 8
SB 7 8 7
Aux 8~ 6 8~ 7
Aux+SO 8~ 7 8~ 8~
Aux+SB 8~ 7 8~ 7

Entries denote the size of the largest instances solved by opL, DLV, SMODELS, and cMODELS in 1 h,
using the base specification and their reformulations. The symbols and layout issues that denote some
entries have the following meaning: “+” (resp. “—"): although there is no variation in the size of the
largest instance solved by the same solver with respect to the base specification, computation times
are significantly lower (resp. higher); bold entries: denote the best specification for each solver, in
terms of computation time to solve the largest instance; boxed entries: denote the best results, among
all solvers, in terms of computation time to solve the largest instances.

We also remind that one solver, namely CMODELS, cannot natively deal with
optimization problems. Nonetheless, cMODELs has been run also to solve the in-
stances of the 4 optimization problems: its entries in Table 2 have been obtained
by iteratively invoking the solver several times, by adding each time new constraints
to the specifications that limit the values of the objective function evaluated on the
solutions found, by following the approach of performing a binary search of the
optimum objective value. Of course, such results (denoting the largest instances for
which the overall time needed to find their optimum solutions was below the time-
limit) represent lower bounds of the solver’s performance. Nonetheless they show
that, even in this case, CMODELS is competitive with respect to the other solvers, thus
confirming that SAT should be undoubtedly regarded as one of the most promising
and effective technologies for constraint problems to date (such evidence has also
been discussed in related work [5]). Figure 2 shows the algorithm used to solve
minimization problems (3 out of 4) with cMoDELs. As for the unique maximization
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function solveMinimizationProblem(spec, instance) : solution or "unsat" {
return findMin(spec, instance, lowerBound..upperBound);
// Value for upperBound has been chosen as described in Section 3.2.1.
// Value for lowerBound is usually 0.

}
function findMin(spec, instance, objValueRange) : solution or "unsat" {
let sol = solveDecisionProblem(spec U "objValue in objValueRange", instance);

if (sol == "unsat") return "unsat";

let obj = objective value of "sol";
let middle = objValueRange.min + floor((obj - objValueRange.min)/2);

let solLeft = findMin(spec, instance, objValueRange.min..middle-1);

if (solLeft != "unsat") return solLeft;

else {
let solRight = findMin(spec, instance, middle..obj-1);
if (solRight != "unsat") return solRight;

else return sol;

Fig. 2 Binary search algorithm used to solve minimization problems with cMODELS

problem, i.e., Maximum density still life, we observe that a dual approach could be
straightforwardly used, since maximizing the number of alive cells does not increase
the size of the search space (the total number of variables remains unchanged).

As discussed in Section 3.1, the size of the instances for few problems could not
be easily represented by a single parameter. To this end, as for Car sequencing,
we report, for each set of instances generated from CSPLib benchmarks “4/72”,
“6/76” and “10/93” (cf. the discussion about instance selection for this problems in
Section 3.1), the largest one solved, i.e., the one with the largest number of classes ,
and, as for Water buckets, the overall time needed to solve the whole set of instances
(instances that could not be solved contributed with 3,600 s to the overall time).

Finally, as for Langford numbers, it is known that positive instances are only those
with n = 4k or n = 4k — 1 (k € N). To this end, in Table 3 we separately report the
largest size of the positive and negative instances solved.

From these results, the following observations about the relative performance
of the various solvers, and the marginal impact of the different reformulation
techniques can be made.

Relative performance of the various solvers (base specifications) When considering
the base specifications only, it can be observed that there is no a single solver
winning on all problems: although opL (the only commercial system considered)
seems unbeatable on Word design, and to be able to solve larger instances of other
problems (e.g., Golomb rulers and Magic squares) with respect to the other systems,
ASP solvers prove to be competitive on several others, and in some cases they
are much more efficient. Good examples are Ramsey, Car sequencing, Langford
numbers, and All-interval series.

Among the ASP solvers, DLV seems to be more efficient than SMODELS on the
average; however, there are problems, like Still life and Langford numbers, where
SMODELS wins when compared to DLv.

Finally, the notable performance of cMODELS deserve special attention: this solver
is in fact almost always the best among the ASP ones (as it emerges also from related
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work [11]), and is in many cases better than opL (in several other cases remaining
competitive). This shows that SAT can provide a promising and effective technology
for solving constraint problems, confirming the thesis in [5], where another SAT
compiler, SPEC2SAT [6], is used to solve a number of combinatorial problems,
specified in the modelling language NP-SpEc.

Impact of symmetry-breaking From the experiments, it can be observed that
symmetry-breaking may be beneficial on all solvers, although the complexity of the
adopted symmetry-breaking constraints (cf. Fig. 1) needs to be carefully chosen. As
an example, pLv performs much better on the Ramsey problem with LI symmetry-
breaking constraints, but such performance is not maintained when the more com-
plex SB schema is adopted. A similar behavior can be observed on SMODELS and
CMODELS.

As for Social golfer, Table 3 does not show significant performance improvements
when symmetry-breaking is applied, with the ASP solvers (especially SMODELS)
being significantly slowed down when adopting the most complex schemas (LX
and L2). However, it is worth noting that, on smaller negative (non-benchmark)
instances, impressive speed-ups have been obtained for all systems, especially when
using SA. As for LX, we also observe that it can be applied in two different ways,
i.e., forcing either players’ schedulings or weekly groupings to be lexicographically
ordered."” Values reported in Table 3 are obtained by lexicographically ordering
weekly groupings: as a matter of fact, ordering players’ schedulings is even less
efficient on SMODELS, being comparable for the other solvers.

General rules for determining the right “amount” of symmetry breaking for any
given solver on different problems are currently still unknown, but it seems that
the simplest ones like SA or LI have to be preferred when using ASP solvers. On
the other hand, from the experiments it results that opL may benefit also from the
addition of more complex schemas, like LX (cf., e.g., Word design). This is likely
due to the more robust algorithms available in opL for dealing with numbers and
arithmetics (cf. also the forthcoming paragraph on this subject).

Figure 3 syntetically shows some of the lessons learned from our experiments
regarding the amount of symmetry-breaking that should be worth applying with the
various solvers. It has been obtained by considering the symmetry-breaking schemas
that systematically led to better (or at least no worse) performance. Of course,
exceptions may exist (cf., e.g, the good performance of LX on Word Design when
solved with sMoDELS). However, these can be considered as a good starting-point to
choose schemas to apply on a new problem.

Impact of global constraints Experiments confirm that opL may benefit from the
use of global constraints. As an example, the base specification of the Golomb
rulers problem encodes the constraint that forces the differences between pairs of
marks to be all different by a set of binary inequalities. By replacing them with an
alldifferent constraint, orL was able to solve the instance with 11 marks in the
time-limit, and time required to solve smaller instances significantly decreases. Also
the Social golfer specification can be restated by using global constraints, in particular

"None of the systems provide built-in constructs for expressing lexicographical orderings: hence,
they have been modelled as ordinary constraints.
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Fig. 3 Symmetry-breaking
schemas that systematically
improve (or at least do not
degrade) performance of the
various solvers. They may be
considered as the “best
candidates” for a new problem
with respect to the various
solvers

OPL

DLV

SMODELS/CMODELS

the distribute constraint. However, in this case our results show that opL does
not benefit from such a reformulation, in that it was not able to solve even the 4-
weeks instance (solved in about 11 s with the base specification). Global constraints
help orL also on other problems, e.g., All-Interval series (alldifferent) and
Car sequencing (distribute), even if, for the latter problem, the performance
improvements don’t make it able to solve larger instances. Finally, Word design
seems not to be affected by the introduction of distribute.

Impact of auxiliary predicates As already mentioned, auxiliary predicates may in
principle increase the size of the search space, but in several cases they result in
better performance, especially when their introduction leads to great simplifications
of complex constraints.

Actually, experiments show that, almost always, ASP solvers benefit from the
use of auxiliary predicates (often not really needed by opr, which allows to express
more elaborate constraints), especially when they are defined relying on the minimal
model semantics of ASP (hence, in rule heads). Good examples are Golomb rulers,
where adding the auxiliary predicate difference/2 leads to a strong improvement
of all solvers except DLV, Water buckets, Langford numbers (where positive instances
are solved much faster by all systems considered), All-interval, and the Social golfer
problem, where SMODELS is able to solve the 6-weeks instance in 6 s when the
auxiliary meet /3 predicate is used, while solving the base specification requires
41 min (a similar behavior is observed with the other solvers).

Moreover, the addition of auxiliary predicates in many cases interestingly leads
to smaller ground programs and to speed-ups of the grounding processes, because
of the smart bottom-up techniques exploited by DLV and LPARSE. In particular, for
ASP systems, such issues seem to be highly correlated: better performance of the
Aux specifications are often accompanied by reductions of the respective ground
programs (often of more than 50%), and with a speed-up of the grounding phase. It
is worth noting that the latter issue may play a major role in the overall performance,
since grounding may dominate the overall solving time (cf. also [5]). As an example,
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grounding times for instances of the Langford number problem greatly dropped
down with both DLV and LPARSE (in particular, 1 min was enough to ground the ‘36’
instance with pLv and the Aux specification, while the grounder did not terminate
in 14 h with the Base specification; as for LPARSE, it aborted while grounding the
‘99’ instance with the Base specification, but terminated in just 9 s with the Aux
one). This behavior may be observed on several other problems (e.g., Magic squares,
Social golfer, and All-interval series; for the last problem, grounding sped-up of more
than 90% with both pLv and LPARSE, with similar reductions in size of the ground
programs).

Also opL often benefits from the addition of auxiliary predicates, but only after a
simple search procedure that excludes branches on its variables has been added, cf.
Section 3.2. The only exceptions are Max density Still life and Word Design DNA,
for which no real improvements (and however no worse performance) have been
observed.

It is worth noting that only in very few cases solvers suffer from the addition of
auxiliary predicates (cf., e.g., results of the Maximum density still life problem, where,
as for ASP solvers, we also observed no reduction —DLV- or even a strong growth —
LPARSE- Of the size of produced ground programs).

Synergic reformulations Specifications obtained by combining, for each problem
and solver, the most two efficient techniques, in many cases further boost perfor-
mance, or at least do not affect it negatively. This is the case of, e.g., Golomb
rulers, Social golfer, Car sequencing, Word design (opL and SMODELS), Magic squares,
Langford numbers, and All-interval series (CMODELS), that often proved to be able
to deal with larger instances, or to be able to run significantly faster. Few exceptions
do exist, e.g., Maximum density still life, where solving times were not significantly
influenced. This gives evidence that combining “good” reformulations is in general a
promising strategy to further boost performance of all solvers.

Tables 2 and 3 also show some of the results obtained by other possible combi-
nations, without considering any uniformity criteria. It can be observed that in few
cases even better results could be achieved (cf., e.g., opL on Golomb rulers or All-
interval series and the specification with auxliary predicates, global constraints and
symmetry-breaking, or Social golfer and the specification with auxiliary predicates
and global constraints), but in several others, only worse results were obtained. A
deep understanding of the reasons of these further synergies will be an important
topic for future research.

Impact of numbers and arithmetic constraints As introduced at the end of
Section 3.1, we evaluated the impact of numbers and arithmetics on the performance
of the various solvers on two problems, Water buckets and Magic squares. In
particular, we built new instances, equivalent to the original ones, but such to force
the various solvers to deal with larger numbers, and measured the degradation of
performance obtained by the most efficient specifications. In detail, we proceeded as
follows:

e As for Water buckets, we computed the new instances by doubling both the
buckets capacities and the water contents in the start and goal states;
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e As for Magic squares, we changed the domain of values for each cell from the
interval [1, n] (n being the board size) to the set {i - k | i € [, n]} with k being
2 or3.

We then compared the time needed by the different solvers to solve all instances
(for what concerns Water buckets) and the largest instance reported in Table 3
(for what concerns Magic squares) with the most efficient specification (that with
auxiliary predicates), with the time needed to deal with the instance obtained
by performing the above modifications (to ensure fairness, no timeout has been
enforced in this case).

Results are shown in Table 4. From there, it can be observed that, as expected,
the presence of larger numbers and arithmetic constraints over them is a major
obstacle for all solvers. However, from the results it follows that globally, opL behaves
much better than the ASP solvers on these issues, presumably because of the more
powerful arc consistency techniques provided by this solver. Nonetheless, we must
also pinpoint the good overall performance of cMODELS with respect to the other
ASP solvers, which is likely to depend on the higher performance of current SAT
algorithms already discussed above.

The price for declarativeness As already stated in Section 2, in this paper we relied
on the default behavior of the different solvers, avoiding the ad-hoc specification
of any procedural aspects. In fact, we remind that the purpose of our experiments
was not to solve the various problems in the most efficient ways as possible, but
to understand what performance the different systems may offer when used in a
transparent way (i.e., without requiring the user to take into account details about
their underlying technologies), and which is the marginal impact of different high-
level and strongly standardized reformulation techniques on solvers’ behavior.

It should be clear that a price must be paid when using systems like oPL in a
fully declarative way, given that the standard default search procedure automatically
added by the system is very general purpose, and does not take into account any
structural aspect of the problem considered.

Table 4 Performance degradation due to the impact of numbers and arithmetic constraints for the
various solvers (all times are in seconds, with no timeout enforced when solving modified instances)

Instance OPL DLV SMODELS CMODELS

Water buckets (Aux)

All 23323 323.26 257.88 39.83
All (doubled) 10383.04 > 807614.87% 43205.64 5965.83
Performance degradation 44.52x > 3131.75x 167.54x 149.78x
Magic squares (Aux)
Largest solved (cf. Table 3) 0.09 14.29 111.58 0.02
Largest with k = 2 0.18 29.18 1727.81 0.11
Performance degradation 2.00x 2.04x 15.48x 5.50x
Largest with k = 3 0.17 41.14 6472.53 0.19
Performance degradation 1.89x 2.87x 58.01x 9.50x

4We forced the termination of DLV runs on 4 of the doubled instances after 200,000 s. Hence, we are
able to state only a lower bound of the performance degradation.
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Nonetheless, in what follows we show that even in this case, performance obtained
by making high-level (hence, in principle automatable) reformulation may greatly
reduce this gap.

As an example, by combining three different techniques in the Golomb rulers
problem, opL was able to solve the “12” instance in less than 1 h (the base specifica-
tion was able to deal at most with the “10” instance). This seems to be a good result,
when compared with the best ones reported, e.g., those obtained with the Koalog
toolkit,”® where a solution for instance “13” has been computed in 3.5 h (cf. also the
CSPLib problem description).

As another example, consider the Word design for DNA problem: our opL model
obtained by adding the LX symmetry-breaking schema to the base specification was
able to solve the instance having size 87 in about 554 s. According to CSPLib, the
instance having size 112 has been solved using Eclipse?! with many difficulties, by
combining greedy and optimization approaches with the help of a linear program-
ming tool and well chosen search heuristics. CSPLib also offers an opL model for
this problem, that provides a search procedure and explicitly lists all allowed strings,
thus omitting some of the constraints (both these issues of course strongly affect
declarativeness). However, this latter model was unable to solve largest instances
than ours in the same time limit when run on our machine.

On the other hand, there are problems which have been solved more efficiently
by ad-hoc built constraint programs: this is the case of, e.g., Magic squares and
Maximum density Still life. As for the former, a good formulation is available for the
Eclipse language (cf. the Eclipse web-site): the largest instance that such formulation
is able to solve in 1 h is that having size 5 (since it needs 2.5 h to deal with the “6”
instance on our machine). Our best opL model (Aux) is able to solve the “4” instance
in few hundreds of a second.

As for the latter problem instead, opL was able to solve the instance having size 8
in about 120 s by applying SB symmetry-breaking. To the best of our knowledge,
the largest instances solved by CP in reasonable time have size 9 (57 s) and
10 (> 2 h) [32], while by combining CP and Integer Programming and by performing
several optimizations on the problem model, the instance of size 11 has been solved
in 373 s [1] (instance “12” took almost 9 h).?

5 Conclusions

In this paper we reported results about an experimental investigation which aims
at comparing the relative efficiency of a commercial backtracking-based and three
academic ASP solvers when used in a purely declarative way, and the marginal
impact that different and complementary reformulation techniques have on the
different solving technologies.

20¢f, http://www.koalog.com/php/jcs_golomb.php.
2L¢f. http://eclipse.crosscoreop.com.

22We reported also results beyond the 1-h time limit to take into account the obvious hardware
differences. However, it is clear that this comparison can be nothing else than qualitative.
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In particular, we modelled 10 problems from the CSPLib into the languages used
by the different solvers, in a way as systematic as possible, and applied various high-
level reformulation techniques, also evaluating synergies among them.

Results show that there is not a single solver winning on all problems, with
ASP being comparable to opL for many of them. The good overall performance
of the SAT-based ASP solver cMODELS clearly emerges from the experiments,
thus confirming that the impressive advancements in SAT solvers should lead to
definitively consider this technology as one the most promising approaches to solve
combinatorial problems.

Furthermore, experiments clearly show that reformulating the specification al-
most always improves performance, and that high-level general reformulation
schemes (that can hence be performed automatically by the system) can be worth.
Experiments suggest several good modelling practices that may be followed when
dealing with a new problem: structural symmetry-breaking may be beneficial, but
a complexity threshold should not be exceeded for any given solver (cf. Fig. 3);
adoption of global constraints is usually worth when using opL (especially all-
different, while extra care must be used when exploiting distribute); addition of
auxiliary predicates (especially for ASP solvers) is very welcome; finally, synergic
combinations of the most promising techniques usually don’t hurt. Notwithstanding
this, an exact understanding of which reformulations lead to the best performance
for a given problem and solver unsurprisingly remains a challenge.

Finally, we also performed an investigation about the impact of numbers and
arithmetic constraints in problem specifications, and highlighted the better overall
behavior of opL with respect to ASP solvers in this context. However, also about this
issue, the efficiency of the SAT approach emerges, with the worse performance of
DLV and SMODELS with respect to CMODELS.

Acknowledgements The authors would like to thank the anonymous reviewers, in particular for
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