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Abstract

Devising a strategy to make a system mimic behaviors from another system is a problem
that naturally arises in many areas of Computer Science. In this work, we interpret this
problem in the context of intelligent agents, from the perspective of ltlf , a formalism
commonly used in AI for expressing finite-trace properties. Our model consists of two
separated dynamic domains, DA and DB , and an ltlf specification that formalizes the
notion of mimicking by mapping properties on behaviors (traces) of DA into properties
on behaviors of DB . The goal is to synthesize a strategy that step-by-step maps every
behavior of DA into a behavior of DB so that the specification is met. We consider several
forms of mapping specifications, ranging from simple ones to full ltlf , and for each, we
study synthesis algorithms and computational properties.

1. Introduction

Mimicking a behavior from a system A to a system B is a common practice in Computer
Science (CS) and Software Engineering (SE), that includes a robot that has to real-time
adapt a human behavior (Mitsunaga, Smith, Kanda, Ishiguro, & Hagita, 2008), or a si-
multaneous interpretation of a speaker (Yarmohammadi, Sridhar, Bangalore, & Sankaran,
2013; Zheng, Liu, Zheng, Ma, Liu, & Huang, 2020). As an example, consider the following.

In an assembly line, a human operator (system A) paints car components and a set of
robots (system B) simultaneously replicate the actions on replicas of the same component,
so that many components are painted at the same time in parallel. The actions available
to each robot are different from those available to the operator. For instance, the operator
can arbitrarily control the set of arms and paint sprays, while robots have only certain
pre-defined routines available. While robot actions allow for reaching all the configurations
(position and orientation) relevant to the painting task, some intermediate ones are not
reachable, so obtaining a desired final configuration may require different maneuvers. As
a result, not only the action space but also the state space of the operator is different (in
fact, larger) from that of robots. Moreover, the robots are not uniform; e.g., some may have
been replaced with newer/different models or some may be under maintenance and have
certain features disabled so that they have different actions and state space even among
themselves.
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The task of each robot is to simultaneously replicate the painting steps performed by
the operator on its components. Such steps consist of accommodating the component in
the robot’s painting area, in the same orientation as that of the operator’s, then spraying
the same color over it. However, since the state spaces and the actions of the operator and
the robots are different, the robots cannot simply copycat the operator’s behavior in a step-
by-step fashion. Rather, a mapping must be established between the operator’s behaviors
and the robots’, so as to capture when the latter correctly mimics the former. For instance,
one may require that whenever a component is in the operator’s painting area oriented in
some way, every robot has the same component in its respective area and is accommodated
in the same way, and that whenever the operator’s component is painted in some color, so
are the other ones.

This example highlights the two main challenges arising in behavior mimicking. The
first one is the need for a formal specification of the notion of mimicking which allows for
specifying when the behaviors of A can be considered as correctly mimicked by those of B,
although they can be substantially different from those of B. The second one is to find a
strategy for B which, based on the actions performed by A, performs its own actions in such
a way that the resulting behavior mimics that of A, according to the formal specification.

In this work, we look at the problem of devising a strategy for mimicking behaviors when
the mapping specification is expressed in Linear Temporal Logic on finite traces (ltlf ) (De
Giacomo & Vardi, 2013), a formalism commonly used in AI for expressing finite-trace
properties. In our framework, systems A and B are modeled by two separated dynamic
domains, DA and DB, in turn modeled as transition systems, over which there are agents
A and B that respectively act without affecting each other. The mapping specification is
then a set of ltlf formulas to be taken in conjunction, called mappings, that essentially
relate the behaviors of A to those of B. While B has full knowledge of both domains and
their states, it has no idea which action A will take next. Nevertheless, in order to perform
mimicking, B must respond to every action that A performs on DA by performing one
action on DB. As this interplay proceeds, DA and DB traverse two respective sequences of
states (traces) which we call the behaviors of A and B, respectively. The process carries on
until either A or B (depending on the variant of the problem considered) decides to stop.
The mimicking from A has been accomplished correctly, i.e., agent B wins, if the resulting
traces satisfy the ltlf mapping specification. Our goal is to synthesize a strategy for B,
i.e., a function returning an action for B given those executed so far by agent A, which
guarantees that B wins, i.e., is able to mimic, respecting the mappings, every behavior of
A. We call this the Mimicking Behavior in Separated Domains (MBSD) problem.

The mapping specifications can vary, consequently changing the nature of the mimick-
ing and the difficulty of synthesizing a strategy for B. We study three different types of
mappings. The first is the class of point-wise mappings, which establish a sort of a local
connection between the two separated domains. Point-wise mapping specifications have
the form

∧
i≤k □(ϕi → ψi) (the proper ltlf definition can be found in Section 2.2) where

each ϕi is a Boolean property over DA and each ψi is a Boolean property over DB. Point-
wise mappings indicate invariants that are to be kept throughout the interaction between
the agents. For instance, the requirement mentioned in the robot example above can be
captured, e.g., by the formula:

∧
t∈Types□(in areaAt → in areaBt ), where DA (respectively

DB) models the operator’s (robot’s) domain and in areaAt (in areaBt ) represents that a
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component of type t is in the operator’s (robot’s) painting area. In Section 4.1 we give a
detailed example of point-wise mappings from the Pac-Man world.

The second class is that of target mappings, which relate to the ability to satisfy cor-
responding reachability goals (much in the same fashion as Planning) in the two separate
domains. Target mapping specifications have the form

∧
i≤k(♢ϕi → ♢ψi), where ϕi and

ψi are Boolean properties over DA and DB, respectively. Target mappings define objec-
tives for A and B and require that if A meets its objective then B must meet its own
as well, although not necessarily at the same time. In the robot example above, the for-
mula

∧
t∈Types(♢painted

A
t → ♢paintedBt ) requires that if the operator paints a component

of type t, the same must be done, no matter when, by the robot, as well. We give a
detailed example of target mappings in Section 5.1, from the Rubik’s cube world. The
last class is that of general ltlf mappings. A general ltlf mapping specification has
the form of an arbitrary ltlf formula Φ with properties over DA and DB. This obvi-
ously increases the expressiveness of the specifications but at the expense of complexity.
Considering again the painting-robot example, one such specification could be the conjunc-
tion of the following formulas:

∧
t∈Types ♢painted

A
t ,

∧
t∈Types□(paintedAt → ♢paintedBt ),∧

t∈Types ¬(¬paintedAt U paintedBt ), which respectively, require that: the operator paints at
least one component of each type (first formula); whenever the operator paints a component
of type t, the robot also does, at the same or at a later time (second formula); the robot
never paints a component of type t (strictly) before the operator does (third formula).

Our objective is to characterize solutions for strategy synthesis for mimicking behaviors
under the types of mapping specifications described above, from both the algorithmic and
the complexity point of view. The input we consider includes both domains DA and DB, and
the mapping specification Φ. To better characterize the source of complexity, we analyze
solutions in terms of: combined complexity, where neither DA, DB nor Φ are fixed; mapping
complexity, where DA and DB are fixed but Φ varies; and domain complexity, where Φ is
fixed butDA andDB vary. This is analogous to what is done in planning when distinguishing
complexity in terms of the domain and the goal (De Giacomo & Rubin, 2018).

For our analysis, we formalize the problem as a two-player game between agent A (Player
1) and agent B (Player 2) over a game graph that combines both domains DA and DB,
with the winning objective given by the ltlf mapping specification. In fact, we vary the
class of specifications considered and analyze the corresponding resulting solution. We start
with point-wise mappings where A decides when to stop and derive a solution in the form
of a winning strategy for a safety game in PTIME wrt combined, mapping, and domain
complexity. The scenario becomes more complex for target mappings, where the agent B
decides when to stop, and where some objectives met during the agent’s interplay must
be recorded. We devise an algorithm exponential in the number of constraints and show
that the problem is in PSPACE for combined and mapping complexity, and PTIME in
domain complexity. To seal the complexity of the problem, we provide a PSPACE-hardness
proof for combined complexity, already for simple acyclic graph structures. For domains
whose transitions induce a tree-like structure, however, we show that the problem is still
in PTIME for combined, mapping and domain complexity. Finally, we show that the
problem with general ltlf mapping specifications is 2EXPTIME-complete for combined
and mapping complexity, due to the doubly-exponential blowup of the DFA construction
for ltlf formulas, and is PTIME in domain complexity.
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The rest of the paper goes as follows. In Section 2 we give preliminaries, and we formalize
our problem in Section 3. We give detailed examples and analyses of point-wise and target
mapping specifications in Sections 4 and 5, respectively. We discuss a solution for general
mapping specifications in Section 6. Finally we discuss related work in Section 7, and
conclude in Section 8.

2. Preliminaries

We briefly recall preliminary notions that will be used throughout the paper.

2.1 Boolean Formulas

Boolean (or propositional) formulas are defined, as standard, over a set of propositional
variables (or, simply, propositions) Prop, by applying the Boolean connectives ∧ (and),
∨ (or) and ¬ (not). Standard abbreviations are → (implies), true (also denoted ⊤) and
false (also denoted ⊥). A proposition p ∈ Prop occurring in a formula is called an atom,
a literal is an atom or a negated atom ¬p, and a clause is a disjunction of literals. A
Boolean formula is in Conjunctive Normal Form (CNF), if it is a conjunction of clauses.
The size of a Boolean formula φ, denoted |φ|, is the number of connectives occurring in φ.
A Quantified Boolean Formula (QBF) is a Boolean formula in which every propositional
variable is quantified (sometimes called bounded) by either the existential quantifier ∃ or
the universal quantifier ∀. A QBF formula is in Prenex Normal Form (PNF) if all of its
quantifiers occur in the prefix of the formula. Thus, a PNF formula contains a quantifier-
free part, that is preceded by blocks of quantifiers and their bounded variables. A switch
in the blocks between the existential and universal quantifiers is called alternation of the
quantifiers. True Quantified Boolean Formulas (TQBF) is the language of all QBF formulas
in PNF that evaluate to ⊤. TQBF is known to be PSPACE-complete, see (Arora & Barak,
2009) for details.

2.2 LTLf Basics

Linear Temporal Logic over finite traces (ltlf ) is an extension of propositional logic to
describe temporal properties on finite (unbounded) traces (De Giacomo & Vardi, 2013).
ltlf has the same syntax as ltl, one of the most popular logics for temporal properties on
infinite traces (Pnueli, 1977). Given a set of propositions Prop, the formulas of ltlf are
generated by the following grammar:

φ ::= p | (φ1 ∧ φ2) | (¬φ) | (◦φ) | (φ1 U φ2)

where p ∈ Prop, ◦ is the next temporal operator and U is the until temporal operator. We
use common abbreviations for eventually ♢φ ≡ ⊤U φ and always as □φ ≡ ¬♢¬φ.

A word over Prop is a sequence π = π0π1 · · · , s.t. πi ∈ 2Prop , for i ≥ 0. Intuitively, πi is
interpreted as the set of propositions that are true at instant i. In this paper we deal only
with finite, nonempty words, i.e., π = π0 · · ·πn ∈ (2Prop)+. Moreover, last(π) denotes the
last instant (index) of π.

Given a finite word π and an ltlf formula φ, we inductively define when φ is true on
π at instant i ∈ {0, . . . , last(π)}, written π, i |= φ, as follows:
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• π, i |= p iff p ∈ πi (for p ∈ Prop);

• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;

• π, i |= ¬φ iff π, i ̸|= φ;

• π, i |= ◦φ iff i < last(π) and π, i+ 1 |= φ;

• π, i |= □φ iff ∀j.i ≤ j ≤ last(π) and π, j |= φ;

• π, i |= ♢φ iff ∃j.i ≤ j ≤ last(π) and π, j |= φ;

• π, i |= φ1 U φ2 iff ∃j.i ≤ j ≤ last(π) and π, j |= φ2, and ∀k.i ≤ k < j we have that
π, k |= φ1.

We say that π ∈ (2Prop)+ satisfies an ltlf formula φ, written π |= φ, if π, 0 |= φ. Two
ltlf formulas that are satisfied by exactly the same words are called logically equivalent.
We denote the logical equivalence relation by ≡.

A Deterministic Finite Automaton (DFA) Fφ = (2Prop , Q, q0, η, acc) is a finite state
machine in which 2Prop is the alphabet of the DFA, Q is the finite set of states, q0 ∈ Q is the
initial state, η : Q× 2Prop → Q is the transition function, and acc ⊆ Q is a set of accepting
states. For every ltlf formula φ defined over Prop, we can construct a Deterministic Finite
Automaton (DFA) Fφ that accepts exactly the traces that satisfy φ (De Giacomo & Vardi,
2013).

2.3 Two-player Games

A (turn-based) two-player game models a game between two players, Player 1 (P1) and
Player 2 (P2), formalized as a pair G = (A,W ), with A the game arena and W the winning
objective. The game arena A = (U, V, u0, α, β) is essentially a bipartite-graph, where:

• U is a finite set of P1 nodes;

• V is a finite set of P2 nodes and U ∩ V = ∅;

• u0 ∈ U is the initial node;

• α ⊆ U × V is the transition relation of P1;

• β ⊆ V × U is the transition relation of P2.

Intuitively, a token initially in u0 is moved in turns from nodes in U to nodes in V and
vice-versa. P1 moves when the token is in a node u ∈ U , by choosing a destination node
v ∈ V for the token, such that (u, v) ∈ α. P2 acts analogously, when the token is in a
node v ∈ V , by choosing a node u ∈ U according to β. Thus, P1 and P2 alternate their
moves, with P1 playing first, until at some point, after P2 has moved, the game stops. As
the token visits the nodes of the arena, it defines a sequence of alternating U and V nodes
called play. In this work all plays are finite.

Formally, a (finite) play (of A) ρ = ρ0 · · · ρn ∈ (U ∪ V )+ is a finite, nonempty sequence
of nodes such that:
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• ρ0 = u0;

• (ρi, ρi+1) ∈ α, for i even;

• (ρi, ρi+1) ∈ β, for i odd;

• n is even (which implies, by α and β, that ρn ∈ U).

Let PlaysA be the set of all plays of A and let last(ρ) = n be the last position (index) of
play ρ. Moreover, ρ|U = ρ0ρ2 · · · ρn is the projection of ρ on U and ρ|V = ρ1ρ3 · · · ρn−1 is
the projection of ρ on V . The prefix of ρ ending at the i-th state is denoted as ρi = ρ0 · · · ρi.

The winning objective W ⊆ (U ∪ V )+ is a (compact) representation of a set of plays,
called winning plays. If, when the game stops, the play ρ is a winning play, i.e., ρ ∈ W ,
then P2 wins, otherwise P1 wins.

A strategy for P2 is a function σ : V + → U , which returns a P1 node u ∈ U , given
a finite sequence of P2 nodes. A strategy σ is said to be memory-less if, for every two
sequences of nodes w = w0 · · ·wn and w′ = w′

0 · · ·w′
m ∈ V +, whenever wn = wm, it

holds that σ(w) = σ(w′); in other words, the move returned by σ is a function of the last
node in the sequence. A play ρ is compatible with a P2 strategy σ if ρi+1 = σ(ρi|V ), for
i = 0, . . . , last(ρ)−1. A P2 strategy σ is winning in G = (A,W ), if every play ρ compatible
with σ is winning. Given a game G = (A,W ), solving G concerns constructing a winning
strategy σ for P2.

In this paper, we consider two classes of games wrt two specific winning objectives. The
first class is that of reachability games in which for a set g ⊆ U of P1 nodes, W = Reach(g),
where Reach(g) (reachability objective) is the set of plays containing at least one node from
g. Formally Reach(g) = {ρ ∈ PlaysA | there exists k.0 ≤ k ≤ last(ρ) : ρk ∈ g}. The second
class is that of safety games, in which again for a set g ⊆ U of P1 nodes, W = Safe(g),
where Safe(g) (safety objective) is the set of plays where all P1 nodes are from g. Formally,
Safe(g) = {ρ ∈ PlaysA | for all even k.0 ≤ k ≤ last(ρ) : ρk ∈ g}.

It is worth noting that both reachability and safety games enjoy memoryless determi-
nacy, i.e., if there is a winning strategy for P2 in G then, and only then, there is a winning
memory-less strategy for P2 in G (Grädel, Thomas, & Wilke, 2002). The proof is construc-
tive in the sense that it can be immediately turned into an algorithm that computes the
memoryless winning strategies. More specifically, computing a memoryless winning strategy
for a reachability game requires conducting a least-fixpoint computation on the game area,
while computing one for a safety game, instead, requires a greatest-fixpoint computation.
Therefore, both reachability and safety games can be solved in PTIME in the size of G. For
more details, we refer to (Grädel et al., 2002).

3. Mimicking Behaviors in Separated Domains

The problem of mimicking behaviors involves two agents, A and B, each operating in
its own domain, DA and DB respectively, and requires B to “correctly” mimic in DB,
the behavior (i.e., a trace) exhibited by A in DA. The notion of “correct mimicking”
is formalized by a mapping specification, or simply mapping, which is an ltlf formula,
specifying when a behavior of A correctly maps into one of B. The agents alternate their
moves on their respective domains, with A starting first, until one of the two decides to
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stop. Specifically, only one agent, A or B, designated as the stop agent, has the power to
stop the process and can do so only after both A and B have moved in the last turn. The
mapping constraint is evaluated only when the process has stopped.

The dynamic domains where agents operate are modeled as labeled transition systems.

Definition 1 (Dynamic Domain). A dynamic domain over a finite set of propositions Prop
is a labeled transition system in form of a tuple D = (S, s0, δ, λ), such that:

• S is the finite set of domain states;

• s0 ∈ S is the initial domain state;

• δ ⊆ S × S is the transition relation;

• λ : S 7→ 2Prop is the state-labeling function.

With a slight abuse of notation, for every state s ∈ S, we define the set of possible
successors of s as δ(s) = {s′ | (s, s′) ∈ δ}. D is deterministic in the sense that given s,
the agent operating in D can select the transition leading to the next state s′ from those
available in δ(s). Without loss of generality, we assume that D is serial, i.e., δ(s) ̸= ∅ for
every state s ∈ S. A finite trace of D is a sequence of states τ = s0 · · · sn s.t. si+1 ∈ δ(si),
for i = 0, . . . , n − 1. Infinite traces are defined analogously, except that i = 0, . . . ,∞. By
|τ | we denote the length of τ , i.e., |τ | is the number of states in τ if τ is of a finite length
and |τ | is ∞ if τ is on an infinite length. In the following, we simply use the term trace for
a finite trace, and explicitly specify when it is infinite.

We next model the problem of mimicking behaviors by two dynamic systems over dis-
joint sets of propositions, together with an ltlf formula specifying the mapping, and the
designation of the stop agent.

Definition 2. An instance of the Mimicking Behaviors in Separated Domains (MBSD)
problem is a tuple P = (DA,DB,Φ, Agstop), where:

• DA = (S, s0, δ
A, λA) is a dynamic domain over a finite set pf propositions PropA;

• DB = (T, t0, δ
B, λB) is a dynamic domain over a finite set pf propositions PropB,

with PropA ∩ PropB = ∅ and S ∩ T = ∅;

• Φ is the mapping specification, i.e., an ltlf formula over PropA ∪ PropB;

• Agstop ∈ {A,B} is the designated stop agent.

Intuitively, a solution to the problem is a strategy for agent B that allows B to step-by-
step map the observed behavior of agent A into one of its behaviors, in such a way that the
mapping specification is satisfied, according to the formalization provided next.

Formally, a strategy for agent B is a total function σ : S+ → T which returns a state
of DB, given a sequence of states of DA. Observe that this notion is fully general and is
defined on all DA’s state sequences, even non-traces. Among such strategies, we want to
characterize those that allow B to satisfy the mapping specification by executing actions
only on DB.

We say that a strategy σ is executable in P if:
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• σ(s0) = t0;

• for every trace τA = s0 · · · sn of DA, the sequence τB = σ(s0)σ(s0s1) · · ·σ(s0s1 · · · sn)
is a trace of DB (of same length as that of τA).

When σ is executable, the trace τB as above is called the trace induced by σ on τA, and
denoted as σ̃(τA).

For two traces τA = s0 · · · sn and τB = t0 · · · tn of DA and DB, respectively, we define
their joint trace label, denoted λ(τA, τB) as the word over 2Prop

A∪PropB
s.t. λ(τA, τB) =

(λA(s0)∪λB(t0)) · · · (λA(sn)∪λB(tn)). In words, λ(τA, τB) is the word obtained by joining
the labels of the states of τA and τB with equal position indices.

We can now characterize solution strategies.

Definition 3. A strategy σ is a solution to an MBSD problem instance P = (DA,DB,Φ,
Agstop), if σ is executable in P and either:

1. Agstop = A and every trace τA of DA is s.t. λ(τA, σ̃(τA)) |= Φ; or

2. Agstop = B and every infinite trace τA∞ of DA has a finite prefix τA s.t. λ(τA, σ̃(τA)) |=
Φ.

The definition requires that the strategy σ be executable in P, i.e., that σ returns an
executable move for B, whenever A performs an executable move. Then, two cases are
identified, which correspond to the possible designations of the stop agent. In case 1, the
stop agent is A. In this case, since A can stop at any time point (unknown in advance by
B), B must be able to continuously (i.e., step-by-step) mimic A’s behavior, otherwise A
could stop at a point where B fails to mimic. Case 2 is slightly different, as B can choose
when to stop. In this case, σ must prescribe a sequence of moves, in response to A’s, such
that Φ is eventually (as opposed to continuously) satisfied, at which point B can stop the
execution. Seen differently, σ must prevent A from moving indefinitely, over an infinite
horizon (without B ever being able to mimic A).

4. Mimicking Behaviors with Point-wise Mapping Specifications

In this section, we explore mimicking specifications that are of point-wise nature. This
setting requires that B, while mimicking A, constantly satisfies certain conditions, which
can be regarded as invariants. Such a requirement is formally captured by the following
specification, where φi and ψi are Boolean formulas over DA and DB, respectively:

φ =

k∧
i=1

□(φi → ψi).

Observe that when point-wise mappings are used, the only interesting case is when the
designated stop agent is A. Indeed, if agent B is the stop agent, then satisfying the target
mapping is equivalent to satisfying it in the first state only since, after that, agent B can
simply stop the game. To avoid such trivial settings, we assume that, when dealing with
point-wise mappings, the designated stop agent is always A.

We first provide an illustrative example that demonstrates the use of point-wise map-
pings, then explore algorithmic and complexity results.
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4.1 Point-wise Mapping Specifications in the Pac-man World

In the popular game Pac-man, the eponymous character moves in a maze to eat all the
candies. Four erratic ghosts, Blinky, Pinky, Inky and Clyde, wander around, threatening
Pac-man, which loses the game once touching them (we neglect the special candies with
which Pac-man can fight the ghosts). The ghosts cannot eat the candies. In the real
game, the maze is continuous but, for simplicity, we consider a grid model where cells are
identified by two coordinates. Also, we imagine a variant of the game where the ghosts can
walk through walls. Pac-man wins the stage when it has eaten all the candies. The ghosts
end the game when this happens.

We model this scenario as an MBSD problem Q = (G,P,Φ, A), with domains P(ac-man,
agent B) and G(hosts, agent A). In P, states model Pac-man’s and candies’s position, while
transitions model Pac-man’s move actions. Pac-man cannot walk through walls. A candy
disappears when Pac-man moves on it. Similarly, states of G model (all) ghosts’ position,
and transitions model ghosts’ movements through cells. Each transition corresponds to a
move of all ghosts at once. G does not model candies or walls, as they do not affect nor are
affected by ghosts.

Assuming an N ×N grid with some cells occupied by walls, domain P = (S, s0, δ
p, λp)

is as follows, where C is the set of cells (x, y) not containing a wall:

• S = C × 2C , with s = ((x, y), Candies) modeling the state where:

– Pac-man is in cell (x, y);

– cell (w, z) contains a candy iff (w, z) ∈ Candies;

Since Pac-man eats the candy in the cell it occupies, we require that (x, y) /∈ Candies,
i.e., that the cell occupied by Pac-man does not contain a candy;

• s0 = ((0, 0), Candies), for Candies = C \ {(0, 0)}, i.e., Pac-man is in (0, 0) and every
cell without Pac-man or walls contains a candy;

• δp is such that (((x, y), Candies), ((x′, y′), Candies′)) ∈ δp iff:

– (x′, y′) ∈ {(x, y), (x, y+1), (x, y−1), (x+1, y), (x−1, y)}, i.e., Pac-man can move
by one cell at most, either horizontally or vertically;

– Candies′ = Candies \ {(x′, y′)}, i.e., all candies remain where they are except
the one possibly eaten by Pac-man.

• Propp contains, for every cell (x, y) ∈ C, one proposition px,y (Pac-man is in cell
(x, y)) and one proposition cx,y (cell (x, y) contains a candy);

• λp(((x, y), Candies)) = {px,y} ∪ {cw,z | (w, z) ∈ Candies}.

Domain G = (T, t0, δ
g, λg) is defined in a similar way (we omit the formal details): we use

propositions bkx,y, pkx,y, ikx,y, cdx,y for Blinky, Pinky, Inky and Clyde’s position, respec-
tively; T is the set of interpretations where each ghost occupies exactly one cell (possibly
containing a wall; many ghosts may be in the same cell); the ghosts start at (N/2, N/2) as
indicated in t0; δ

g models a 1-cell horizontal or diagonal move for all ghosts at once; λg is
the identity.
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Pac-man’s primary goal (besides eating all candies) is to stay alive, which we formalize
with the following point-wise mapping:

Φ =
∧

(x,y)∈C

□((bkx,y ∨ pkx,y ∨ ikx,y ∨ clx,y) → ¬px,y).

Any strategy σ that is a solution to Q = (G,P,Φ, B) keeps Pac-man alive. To enforce Φ,
Pac-man needs a strategy that prevents ending up in a cell where a ghost is. Notice that, to
compute σ, one cannot proceed greedily by considering only one step at a time, but must
plan over all future evolutions, to guarantee that Pac-man does not eventually get trapped.
With such σ, no matter when the ghosts end the game, Pac-man will never lose (and, in
fact, it will win, if the ghosts stop when all candies on the maze have been eaten).

4.2 Solving MBSD with Point-wise Mapping Specifications

We show how to solve an MBSD instance P by reduction to the problem of finding a winning
strategy in a two-player game, for which algorithms are well known (Grädel et al., 2002).
Specifically, we construct a two-player game GP = (A,W ) that has a winning strategy iff P
has a solution.

Given an MBSD instance P = (DA,DB,Φ, Agstop), with DA = (S, s0, δ
A, λA) and DB =

(T, t0, δ
B, λB), we construct the game arena A = (U, V, u0, α, β), where:

• U = S × T ;

• V = S × T ;

• u0 = (s0, t0);

• α = {(s, t), (s′, t) | (s, s′) ∈ δA};

• β = {(s, t), (s, t′) | (t, t′) ∈ δB}.

Intuitively, the nodes of A represent joint state configurations of both DA and DB (ini-
tially in their respective initial states), while the transition functions account for the moves
A (modeled by P1) and B (modeled by P2) can perform, imposing, at the same time, their
strict alternation.

As for the winning objective W , the key idea is that, since in point-wise mappings
the temporal operator □ (always) distributes over conjunction, and since Agstop = A, the
conjuncts of the mapping are in fact propositional formulae to be guaranteed all along the
agent behaviors, captured by plays of A. This can be easily expressed as a safety objective
on A, as shown below.

Let Φ =
∧k

i=1□(φi → ψi) be the (point-wise) mapping specification. We have that

Φ ≡ □Φ′, where Φ′ ≡
∧k

i=1(φi → ψi) is a Boolean formula where every φi is over Prop
A only

and every ψi is over Prop
B only. Therefore, in order to solve P, we need to find a strategy

σ such that for every trace τA of DA, λ(τ
A, σ̃(τA)) |= □Φ′, that is, λA(sj)∪λB(tj) |= Φ′ for

j = 0, . . . , |τA|. Thus we can set W = Safe(g), with g = {(s, t) ∈ U | λA(s) ∪ λB(t) |= Φ′}.
Define the two-player game defined above as GP = (A,W ). As a consequence of the

above construction, we obtain the following result.
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Lemma 1. There is a solution to P if and only if there is a solution to the safety game
GP .

Proof. As an intuition, notice that once computed, a winning strategy for GP is essentially
a solution to P. This, indeed, can be obtained by projecting away the V component of all
the nodes in a play ρ, thus transforming ρ into a trace of DA.

We now show the proof in detail. We first show that if there is a solution to P then
there is a solution to GP . For that, we first show that if σ is an executable strategy for
P then σ can be reduced to a strategy σ′ for GP . To this end, consider a play ρ =
ρ0ρ1 · · · ρn, with ρi = (si, ti) and a state (sn+1, tn) such that ((sn, tn), (sn+1, tn)) ∈ α. Let
τ = s0s1s3 · · · sn−1sn+1 ∈ V n/2+1. By the definition of GP , τ is a trace of DA. Therefore,
since σ is executable, σ is defined on τ . Thus, for ρ′ = ρ ◦ (sn+1, tn), where ◦ denotes
concatenation, we can define σ′(ρ′) = (sn+1, σ(τ)). Note that this is a proper definition
since the trace σ̃(τ) induced by σ on τ is a trace in DB, hence (tn, σ(τ)) ∈ δB. Thus σ′ is
a proper strategy for GP .

Next, we need the following claim that describes the correspondence between σ and σ′.

Claim 1. A sequence ρ = ρ0 · · · ρn ∈ (U ∪ V )+ is a play of GP compatible with σ′ iff there
exist a trace τA = s0 · · · sn of DA and a trace τB of DB such that τB = σ̃(τA) = t0 · · · tn
and ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn).

For a proof of Claim 1, given a trace τA = s0 · · · sn of DA, let τ
B = σ̃(τA) = t0 · · · tn

be the trace of DB induced by σ on τA. By the definition of GP and that of σ′ provided
above, it follows that the sequence ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn) is a play of GP
compatible with σ′. On the other hand, for a play ρ = (s0, t0) · · · (sn, tn) compatible with
σ′, again by the definition of GP and σ′, we have that the sequences τA = s0 · · · sn and
τB = t0 · · · tn are traces of, respectively DA and DB, such that τB = σ̃(τA).

Back to proving Lemma 1, since σ is a solution, every trace τA in DA is such that
λ(τA, σ̃(τA)) |= Φ. For τA = s0 · · · sn, let τB = σ̃(τA) = t0 · · · tn. Because Φ = □Φ′

is a point-wise mapping, for every i, we have that (λA(si), λ
B(ti)) |= Φ′, that is, in GP ,

(si, ti) ∈ g. Now, let ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn) be a play in GP compatible with
σ′ (recall (sn, tn) ∈ U). By Claim 1, the sequences τA = s0 · · · sn and τB = t0 · · · tn are
traces of DA and DB, respectively, with τ

B = σ̃(τA). Then (λA(sn), λ
B(tn)) |= Φ′, that is

(sn, tn) ∈ g. Since ρ is arbitrary, every play in GP compatible with σ′ ends in a g node,
hence σ′ is a winning strategy for P2 in Safe(g). That completes the first direction of the
theorem.

For the other direction, assume that σ′ is a strategy for GP . Define a strategy σ′′ for P
as follows. Define first σ′′(s0) = t0. Then, for a play ρ = ρ0ρ1 · · · ρn, with ρi = (si, ti), and
a state (sn+1, tn) such that ((sn, tn), (sn+1, tn)) ∈ α, note that τ = s0s1s3 · · · sn−1 · · · sn+1 ∈
V n/2+1 is a trace of DA, and define σ′′(τ) = σ′(ρ ◦ (sn+1, tn)). By the definition of GP , it
follows that τ ′ = t0t2 · · · tnσ′′(τ) is a trace in DB, thus σ

′′ is an executable strategy in P.

To describe the correspondence between σ′ and σ′′ we make the next claim, completely
analogous to Claim 1.

Claim 2. A sequence ρ = ρ0 · · · ρn ∈ (U ∪ V )+ is a play of GP compatible with σ′ iff there
exist a trace τA = s0 · · · sn of DA and a trace τB of DB such that τB = σ̃′′(τA) = t0 · · · tn
and ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn).
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For a proof, given a trace τA = s0 · · · sn of DA, let τ
B = σ̃′′(τA) = t0 · · · tn be the trace

of DB induced by σ′′ on τA. By the definition of σ′′ provided above, it follows that the
sequence ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn) is a play of GP compatible with σ′. On the
other hand, for a play ρ = (s0, t0) · · · (sn, tn) compatible with σ′, again by the definition of
σ′′, we have that the sequences τA = s0 · · · sn and τB = t0 · · · tn are traces of, respectively
DA and DB, such that τB = σ̃′′(τA).

Now to conclude Lemma 1, assume that σ′ is a winning strategy for P2 in GP , with
winning objective W = Safe(g). For a trace τA = s0 · · · sn of DB, let τB = σ̃′′(τA) =
t0 · · · tn. By Claim 2, we have that the sequence ρ = (s0, t0)(s1, t0) · · · (sn, tn−1)(sn, tn) is a
play of GP compatible with σ′. Moreover, since σ′ is winning, for i = 1, . . . , 2n, ρi ∈ g. But
then, for all pairs (s, t) in ρ, we have that (λA(s), λB(t)) |= ϕ′, that is λ(τA, τB) satisfies □Φ.
Since τA is arbitrary, it follows that σ′′ is a solution for P, which completes the proof.

Finally, the construction of the safety game GP together with Lemma 1 gives us the
following result.

Theorem 1. Solving MBSD for point-wise mapping specifications is in PTIME for com-
bined complexity, mapping complexity and domain complexity.

Proof. Given an MBSD instance P, we construct the safety game GP as shown. Observe
that the construction of GP requires constructing the game arena A, which can be done in
time polynomial in |DA| + |DB|, and setting the set of states g, which takes at most time
O(|Φ′|) for each state in A. Finally by Lemma 1 we have that P has a solution if and only
if GP has a solution, where solving a safety game takes linear time in the size of GP (Martin,
1975).

Observe that if DA and DB are represented compactly (logarithmically) using, e.g., logi-
cal formulas or any other convenient formalism for domain specification such as the Planning
Domain Definition Language (PDDL) used in planning (Haslum, Lipovetzky, Magazzeni, &
Muise, 2019), then the domain (and hence the combined) complexity becomes EXPTIME,
and mapping complexity remains PTIME. Similar considerations hold also for the other
cases that we consider in the paper.

5. Mimicking Behaviors with Target Mapping Specifications

We now explore mimicking specifications that are of target nature. In this setting, B has to
mimic A in such a way that whenever A reaches a certain target, so does B, although not
necessarily at the same time step: B is free to reach the required target at the same time,
later, or even before A does. For this to be possible, B must have the power to stop the
game, which is what we assume here. Formally, target mapping specifications are formulas
of the following form, where φi and ψi are Boolean properties over DA and DB, respectively:

φ =
k∧

i=1

(♢φi) → (♢ψi)

As mentioned before, target mapping specifications allow a constraint to be satisfied even
if agent B reaches the target before agent A does. See Section 8 for a brief discussion about
a more restricted type of specification.
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As before, we first give an illustrative example that demonstrates the use of target
mappings, then we explore algorithmic and complexity results.

5.1 Target Mapping Specifications in Rubik’s Cube

Two agents, teacher H and learner L are provided with two Rubik’s cubes of different
sizes: H has a cube of size 4 whereas L has one cube of size 3. L wants to learn from H
the main steps to solve the cube; to this end, H shows L how to reach certain milestone
configurations on the cube of size 4 and asks L to replicate them on the cube of size 3, even
in a different order. Milestones are simply combinations of solved faces, e.g., solve red and
green, solve white and blue and yellow, or simply solve white. Obviously, L cannot blindly
replicate H’s moves, as the cubes are of different sizes and the actual sequences to solve the
faces are different; thus, L must find its way to reach the same milestones as H, possibly
in a different order. When L is tired, it can stop the learning process.

We model this scenario as an MBSD problem instance R = (H,L,Φ, B), where H and
L model, respectively, H’s and L’s dynamic domain, i.e., the two cubes. The two domains
are conceptually analogous but, modeling cubes of different sizes, they feature different
sets of states and transitions, which correspond to cube configurations and possible moves,
respectively. We model such domains parametrically w.r.t. the edge size E (i.e., 3 or 4) of
the relevant cube.

Each domain state corresponds to a color assignment to each of the (E × E) tiles
in every face. To define such assignments, fix the cube in some position such that the
faces U(p), D(own), L(eft), R(ight), F (ront), B(ack) can be naturally identified, and let
Faces = {U,D,L,R, F,B}. Every tile can be easily identified by a triple (f, x, y) ∈ Pos =
Faces× {0, . . . , E − 1}2, with f representing the face and (x, y) the position of the tile in
it. Finally, define the set Colors = {white, green, red, yellow, blue, orange} of possible tile
colors. The (parametric) dynamic domain for a Rubik’s cube with edge E is the domain
D(E) = (S, s0, δ, λ) such that:

• S ⊆ ColorsPos is the set of possible (i.e., reachable from a solved cube) configurations,
modeled as functions of type s : Pos→ Colors;

• s0 ∈ S is an arbitrary possible state;

• δ allows a transition from s to s′ iff s′ models a configuration reachable from s by a
±90◦ rotation of one of its 3× E slices;

• for every tile (f, x, y) ∈ Pos and color c ∈ Colors, Prop contains one proposition of
the form cf,x,y, indicating that tile (f, x, y) is assigned color c;

• λ(s) = {cf,x,y | s(f, x, y) = c}.

We then defineH = D(4) and L = D(3). We use superscripts to distinguish the elements
of H from those of L, i.e., PosH for positions, cHf,x,y for propositions, and so on.

As said, L’s goal is to replicate the milestones shown by H. For every face f ∈ Faces,
we define the formula CH

f =
∧

(f,x,y)∈PosH c
H
f,x,y to express that the tiles of face f have all

the same color c. For L, we correspondingly have CL
f =

∧
(f,x,y)∈PosL c

L
f,x,y.
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We report below an example of target mappings:

(♢blueHR ) → (♢blueLR)
(♢(redHU ∧ whiteHL )) → (♢(redLU ∧ whiteLL))
(♢(redHU ∧ ¬whiteHL )) → (♢(redLU ∧ ¬whiteLL)).

Observe that L has many ways to fulfill H’s requests: for instance, by reaching a configu-
ration where blueLR ∧ redLU ∧ whiteLL holds, it has fulfilled the first and the second request,
even if the configuration was reached before H showed the milestones. Obviously, however,
the last request cannot be fulfilled at the same time as the second one, as whiteLL clearly
excludes ¬whiteLL, thus an additional effort by L is required to satisfy the specification.

5.2 Solving MBSD with Target Mapping Specifications

For target mappings as well, we reduce MBSD to strategy synthesis for a two-player game.
To this end, assume an MBSD instance P = (DA,DB,Φ, B) with mapping specification
Φ =

∧k
i=1(♢φi) → (♢ψi). To solve P, we must find a strategy σ such that for every infinite

trace τA∞ = s0s1 · · · of DA and every conjunct (♢φi) → (♢ψi) of Φ, if there exists an index
ji such that λA(sji) |= φi, then there exists a finite prefix τA = s0 · · · sn of τA∞ and an
index li such that, for σ(τ) = t0 · · · tn, we have that λB(tli) |= ψi (recall φi and ψi are
Boolean formulae over PropA only and PropB only, respectively). As per Definition 3, this
is equivalent to requiring that λ(τA, σ̃(τA)) |= (♢φi) → (♢ψi) for every i.

The challenge in constructing σ is that the index li may be equal, smaller or larger than
ji. Thus σ needs to record which φi or ψi were already met during the trace, up to the
current point. Since the number of possible traces to the current state may be exponential,
keeping count of all possible options can be expensive. We first discuss a solution for a
general domain structure, then in Section 5.2.2 we explore a solution for a very specific
tree-like structure.

For general domains, there may exist many traces ending in a given state, and each such
trace contains states that satisfy, in general, different sub-formulas φi and ψi occurring in
the mappings. Thus satisfaction of sub-formulas cannot be associated to states as done
before, but must be associated to traces. Specifically, to check whether a target mapping is
satisfied, we need to remember, for every i = 1, . . . , k, whether A has satisfied φi and/or B
has satisfied ψi, along a trace. This observation suggests to introduce a form of memory to
record satisfaction of sub-formulas along traces. We do so by augmenting the game arena
constructed in Section 4. In particular, we extend each node in the arena with an array of
bits of size 2k to keep track of which sub-formulas φi and ψi were satisfied along the play
that led to the node, by some of the domain states contained in the nodes of the play.

Formally, let M = ({0, 1}2)k and let [cd] = ((c1, d1), . . . , (ck, dk)) denote the generic
element of M . Given an MBSD instance P = (DA,DB,Φ, B), where DA = (S, s0, δ

A, λA)
and DB = (T, t0, δ

B, λB), we define the game arena A = (U, V, u0, α, β) as follows:

• U = S × T ×M ;

• V = S × T ×M ;

• u0 = (s0, t0, [cd]) such that, for every i ≤ k, ci = 1 iff λA(s0) |= ϕi and di = 1 iff
λB(t0) |= ψi;
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• ((s, t, [cd]), (s′, t, [c′d])) ∈ α iff (s, s′) ∈ δA, and for i = 1, . . . , k, if λA(s′) |= ϕi then
c′i = 1, otherwise c′i = ci;

• ((s, t, [cd]), (s, t′, [cd′])) ∈ β iff (t, t′) ∈ δB, and for i = 1, . . . , k, if λB(t′) |= ψi then
d′i = 1, otherwise d′i = di.

We then define the game structure GP = (A,W ), where W = Reach(g), with g = {u ∈
U | u = (s, t, [cd]), where [cd] is s.t. ci = 0 or di = 1, for every i = 1, . . . , k}. Intuitively, g
is the set of all nodes reached by a play such that if, for every i = 1, . . . , k, ϕi is satisfied
in the play (by a state of DA in some node of the play), then so is ψi (by a state of DB

in some node of the play). Thus, if a play contains a node from g then the corresponding
traces of DA and DB, combined, satisfy all the mapping’s conjuncts.

As a consequence of this construction, we obtain the following result, the full proof of
which is in line of Lemma 1.

Lemma 2. There is a solution to P if and only if there is a winning strategy for the
reachability game GP .

Then, Lemma 2 gives us the following.

Theorem 2. MBSD with target mapping specifications can be solved in time polynomial in
|DA ×DB| × |Φ| × 4k, with Φ the mapping specification and k the number of its conjuncts.

Proof. Given an MBSD instance P with target mapping specifications, we construct a
reachability game GP as shown above, which has size |DA×DB|× 4k and construction time
polynomial in |DA × DB| × |Φ| × 4k. The result then follows from Lemma 2 and from the
fact that reachability games can be solved in linear time in the size of the game.

An immediate consequence of Theorem 2 is that, for mappings of fixed size, the domain-
complexity of the problem is in PTIME. For combined complexity, note that the memory-
keeping approach adopted in GP is of a monotonic nature, i.e., once set, the bits corre-
sponding to the satisfaction of ψi and ϕi cannot be unset. We use this insight to tighten
our result and show that the presented construction can in fact be carried out in PSPACE.

Theorem 3. MBSD for target mapping specifications is in PSPACE for combined com-
plexity and mapping complexity, and in PTIME for domain complexity.

Proof. Having shown PTIME membership for domain-complexity in Theorem 2, it remains
to show membership in PSPACE for combined-complexity. Assume that P2 wins the game
GP and let σP be a memory-less winning strategy for P2. First see that every play ρ in
σP is finite. Therefore, since σP is memory-less then every play ρ in σP does not hold
two identical V nodes. That means that wlog in every play, the [cd] index in every game
node changes after at most 2 × |DA × DB| steps (since there are two copies in GP of the
domain product for P1 and P2). Next, we use the monotonicty property in GP . Specifically,
between every two consecutive game nodes ρi = (s, t, [cd]), ρi+1 = (s′, t′, [c′d′]) for some i in
ρ, every index in [cd] can only remain as is or change from 0 to 1, therefore the bit index
changes at most 2k times throughout the play.

Thus, we reduce GP to an identical game G′
P that terminates either when reaching an

accepting state (then P2 wins), or after 2×|DA×DB|×2k moves (then P1 wins). Standard
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Min-Max algorithms (e.g. (Russell & Norvig, 2020)) that work in space size polynomial to
maximal strategy depth can be deployed to verify a winning strategy for P2 in G′

P . Then
on one hand if there is a winning strategy for G′

P then there is a winning strategy for GP
(the same strategy). On the other hand, if there is a winning strategy for GP then there is
a memory-less winning strategy for GP that terminates after at most 2 × |DA × DB| × 2k
moves, which means that there is a winning strategy for P2 in G′

P .

We continue our analysis of the case of MBSD target mapping specifications by exploring
whether memory-keeping is avoidable and a more effective solution approach can be found.
As the following result implies, this is, most likely, not the case.

Theorem 4. MBSD for target mapping specifications is PSPACE-hard in combined com-
plexity (even for DA, DB as directed acyclic graphs).

Proof Outline. We give a proof sketch, see Section 5.2.1 below for the detailed proof.
A QBF-CNF-1 formula is a QBF formula in a CNF form in which every clause con-

tains at most one universal variable. The language TQBF-CNF-1, of all true QBF-CNF-1
formulas, is also PSPACE-complete (see Proposition 1 below for completion). We show a
polynomial time reduction from TQBF-CNF-1 to MBSD.

Given a QBF-CNF-1 formula F , assume wlog that each alternation of the quantifiers
holds exactly a single variable. Construct the following MBSD instance PF . Intuitively, the
domains DA and DB are directed acyclic graphs (DAG) where DA controls the universal
variables and DB controls the existential variables, see Figure 1 for a rough sketch of the
domains graph for a QBF formula with universal variables xA1 , x

A
2 and existential variables

xB1 , x
B
2 . The initial states are s

A
1 for agent A and sB1 for agent B. By traversing the domains

in alternation, each agent can choose at every junction node depicted as sAi for DA or
sBi for DB, between either a true-path through ⊤ depicted nodes, or false-path through ⊥
depicted nodes, thus corresponds to setting assignments to propositions that are analogue
to universal (agent A) or existential (agent B) variables. For example, by visiting sA1⊤ ,

agent A satisfies a proposition called pA1⊤ that corresponds to assign the universal variable

xA1 = ⊤. The mapping Φ is set according to F where each clause corresponds to a specific
conjunct. For example a clause (xA1 ∨xB2 ) becomes a conjunct ♢(pA1⊥) → ♢(pB2⊤) of Φ, where

pA1⊥ , p
B
2⊤

are propositions in PropA and PropB respectively. An additional conjunct is added
to ensure that agent B does not stop ahead of time. Then a strategy for agent B of which
path to choose at every junction node corresponds to a strategy of which existential variable
to assign for F . As such, F evaluates to ⊤ if and only if there is a solution to the MBSD
PF .

5.2.1 Detailed proof of Theorem 4

We first provide a detailed proof of Theorem 4. Then for completness we prove that the
language TQBF-CNF-1, used in the proof, is PSPACE-complete.

Given a QBF-CNF-1 formula F with n universal variables xA1 , · · ·xAn and n existential
variables xB1 , · · ·xBn , assume wlog that each alternation of the quantifiers holds exactly a
single variable. Construct the following MBSD instance PF . Intuitively for H ∈ {A,B},
the separate DH domains are DAGs, each composed of n+ 1 major states sH1 , s

H
2 , · · · sHn+1

respectively. Let PropH = {pH1⊤ , p
H
1⊥
, · · · pHn⊤

, pHn⊥
, pH∗ }. From sHi , for 1 ≤ i ≤ n, Agent H
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can move only to sHi+1 through exactly one of the following paths: a directed true-path that
visits a vertex sHi⊤ labeled by {pHi⊤} or a directed false-path that visits a vertex sHi⊥ labeled

by {pHi⊥}. From sHn+1 there is only directed self-loop. Thus the choice of which path to take

means whether the subformula ♢(pHi⊤) is satisfied (that corresponds to setting xi = ⊤), or

♢(pHi⊥) is satisfied (that corresponds to setting xi = ⊥), but there is no path that forms a

trace that satisfies both subformulas. Finally label sAn+1 with {pA∗ } and sBn+1 with {pB∗ }.
Then ♢(pH∗ ) is true in every game played.

For the mapping specification Φ, note that every clause C at F is of the form (lxA∨CB) or
(CB), where lxA is a literal of a universal variable (universal literal) and CB is a disjunction
of literals of existential constraint (existential literals). For every such CB define CProp

B

to be a disjunction of propositions from PropB in which every negated (resp. un-negated)
literal lxB

i
is replaced with pBi⊥ (resp. pBi⊤). Next, for every clause C of F , add to Φ a

conjunct νC as follows. If C is of the form (lxA
i
∨ CB), set νC = (♢(pAi⊥) → ♢(CProp

B )) if

lxA
i
is un-negated, and νC = (♢(pAi⊤) → ♢(CProp

B )) if lxA
i
is negated (note that the negation

has switched for pA). If C is of the form (CB), set νC = (♢(pA∗ ) → ♢(CProp
B )). Since a

clause (xA ∨ CB) is logically equivalent to (¬xA → CProp
B ) and the clause (CB) is logically

equivalent to (⊤ → CProp
B ), the construction of Φ mirrors a clause C with its corresponding

conjunct νC . To complete Φ, add a final conjunct (♢(pA∗ ) → ♢(pB∗ )) called the stopping-
constraint. Note that the stopping-constraint is true only when both agents reach sHn+1.
Thus, the role of the stopping-constraint is to ensure that agent B does not stop the game
before reaching its end. Finally set Agstop = B to finish the construction of P as an MBSD
problem with target mapping spcification as required.

We give an example of the construction. Let F be the QBF input as follows.

F = ∀xA1 ∃xB1 ∀xA2 ∃xB2 ((xA1 ∨ xB1 ∨ xB2 )
∧ (¬xA2 ∨ ¬xB1 )
∧ (xB1 ∨ ¬xB2 ))

Then the MBSD PF is constructed as follows. The domains DA,DB are in Figure 1 where
sA1 , s

B
1 are the initial state for agents A,B respectively. sA3 has a proposition {pA∗ } and

sB3 has a proposition {pB∗ }. For every H ∈ {A,B} and i ∈ {1, 2} every node sHi⊤ has a

proposition pHi⊤ and every node sHi⊥ has a proposition pHi⊥ . The stop agent Agstop is set to
B. The mapping specification is as follows:

Φ =(♢(pA1⊥) → ♢(pB1⊤ ∨ pB2⊤))
∧ (♢(pA2⊤) → ♢(pB1⊥))

∧ (♢(pA∗ ) → ♢(pB1⊤ ∨ pB2⊥))
∧ (♢(pA∗ ) → ♢(pB∗ ))

Back to the proof, obviously the construction of P is time-polynomial wrt |F |. Note
that while the agents move in DA,DB, the only choices that each agent has are at every
sHi , to decide whether to move through the true-path or the false-path. Also note that both
agents always progress at the same pace. That is: agent A is in sAi iff agent B is in sBi .
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DA

sA1

sA1⊥ sA1⊤

sA2

sA2⊥ sA2⊤

sA3

DB

sB1

sB1⊥ sB1⊤

sB2

sB1⊥ sB1⊤

sB3

Figure 1: A rough sketch of the domains in the reduction construction in Theorem 4. The
initial state for agent A is sA1 and for agent B is sB1 .

Finally, note that in every path that the agents take their respective domains, exactly one
of sHi⊤ or sHi⊥ can be visited, thus at every trace formed either pHi⊤ or pHi⊥ are satisfied but

not both. That means that ♢(pHi⊤) ↔ ¬♢(pHi⊥) is always true.
Now assume that F evaluates to ⊤. Therefore there is a strategy σF for the existential

player that sets F to be ⊤. Then we construct the following strategy σP for agent B:
whenever agent A is at sAi and takes the true-path and thus satisfies pAi⊤ (resp. false-path to

satisfy pAi⊥), assign x
A
i = ⊤ (resp. xAi = ⊥) in σF . If the result is xBi = ⊤ (resp. xBi = ⊥)

then set agent B to take the true-path and thus satisfy pBi⊤ (resp. false-path to satisfy pBi⊥).

Due to the mirroring between Φ and F , it follows that when both agents reach sHn+1 (and
therefore the stopping-constraint is true), we have that every clause C in F is true and thus
so is its corresponding conjunct νC (recall that the subformula ♢(pA∗ ) is always true).

Next, assume that there is a winning strategy σP for P. Then we similarly construct a
strategy σF inductively as follows. At step 1, we are given an assignment for xA1 and move
agent A from sA1 to the vertex corresponding to that assignment. That is, we move agent
A through the true-path to sA1⊤ , if x

1
A = ⊤, and through the false-path to sA1⊥ , if x

1
A = ⊥.

Then we assign the value to xB1 that corresponds to the next move by agent B as dictated
by σP . That is, we assign x1B = ⊤ if agent B takes the true-path and moves from sB1 to
sB1⊤ , and assign x1B = ⊥ if agent B takes the false-path and moves from sB1 to sB1⊥ . Suppose

that we assigned values for the existential variables up to xBi−1. Then now both agents are
posed at states sAi and sBi respectively. Then at step i, we again move agent A to the vertex
corresponding to any assignment for xAi , and assign the value to xBi that corresponds to the
next move by agent B as dictated by σP . Following σP ensures that all the conjuncts of Φ
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are true. Note that since the stopping-constraint is satisfied, agent B reaches sBn+1, which
guarantees that σF is well defined for all variables. In addition, every clause C corresponding
to a conjunct νC must also be true. For example, if ♢(pA∗ ) → ♢(CProp

B ) is true then, since

♢(pA∗ ) is always true, so must be ♢(CProp
B ), which means that a proposition in CProp

B is
satisfied, thus a variable in CB is set true in σF , hence CB is true. That completes the
proof.

The PSPACE-hardness of TQBF-CNF-1 is not a hard exercise, for completion we bring
a full proof.

Proposition 1. TQBF-CNF-1 is PSPACE-complete.

Proof. TQBF-CNF is known to be PSPACE-complete (Garey & Johnson, 1979). Obviously
TQBF-CNF-1 is in PSPACE, we show PSPACE-hardness. Given a QBF-CNF formula F ,
we transform F to a QBF-CNF-1 formula F ′ such that F evaluates to ⊤ if and only if F ′

evaluates to ⊤. For that, we construct a formula F ′ from F as follows. We first add a
fresh existential variable zi for every universal variable xi. In addition, conjunct F with
clauses (xi ∨ ¬zi) and (¬xi ∨ zi) that their conjunction is logically equivalent to (xi ↔ zi).
Finally, in every original clause C of F we replace every literal xi with zi and every literal
¬xi with ¬zi. For the alternation order, we place the zi anywhere after xi (we can add
dummy universal variables to keep the alternation interleaving order, as standard in such
reductions). Since every original clause in F now contains only existential variables, we
have that F ′ is indeed in the QBF-CNF-1 form that we described. Moreover, note that in
F ′ every clause that holds a universal literal is of a size of 2.

Obviously, constructing F ′ from F is of polynomial time to |F |. Assume that F is true.
Then there is a strategy σF for choosing existential variables such that F is true. Then
define a strategy σF ′ that copies σF , and for every choice for zi, copy the assignment for xi.
That is set zi = ⊤ iff xi was set to ⊤. Since every xi precedes zi, this can be done. Then
such a strategy sets F ′ to be true. Next assume F ′ is true. Then there is a strategy σF ′

for choosing existential variables such that F is true. Then set a strategy for σF that just
repeats σF ′ while completely ignoring the assignment for z variables (this can be done since
every assignment for zi in σF ′ has to be the same assignment that was set for xi). Again,
it follows that such a strategy sets F to be true. Thus, TQBF-CNF-1 is PSPACE-complete
as well.

5.2.2 MBSD for Tree-like Domains

We conclude this section by discussing a very specific tree-like domain structure. We say
that a dynamic domain D = (S, s0, δ, λ) is tree-like if the transition relation δ induces a
tree structure on the states, except for some states which may admit self-loops as their only
outgoing transition (therefore such states would be leaves, if self-loops were not present).
For this class of domains, the exponential blowup on the number of traces does not occur,
as for every state s there exists only a unique trace ending in s (modulo a possible suffix
due to self-loops).

Theorem 5. MBSD for target mapping specifications and tree-like DA and DB is in PTIME
for combined complexity, domain complexity, and mapping complexity.
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Proof. Given an MBSD instance Ptree with tree-like DA and DB, consider the two-player
game structure GPtree = (A,W ) where the game arena A = (U, V, u0, α, β) is as described in
Section 4.2 and Φ =

∧k
i=1(♢φi) → (♢ψi) is the target mapping specification. It is immediate

to see that, since DA and DB are tree-like, the arena A with the edges defined by α and
β (which reflect those in DA and DB), is tree-like as well.

Now, note that for every node (s, t) ∈ U in the arena A and for each i = 1, . . . , k, we
can easily check whether the unique play ρ of A that ends in (s, t) either: (i) does not
contain a node (s′, t′) for which λA(s′) |= φi; or (ii) contains nodes (s′, t′) (s′′, t′′) (not
necessarily disjoint) for which λA(s′′) |= φi and λB(t′′) |= ψi. If that is the case, we call
(s, t) an i-accepting node. Then, we define the set of accepting states as g = {u ∈ U |
u is i-accepting, for every i = 1, . . . , k}, and the winning condition as W = Reach(g). In
this way, GPtree is a reachability game, constructed in time polynomial in the size of Ptree,
and solvable in linear time in the size of GPtree . Result then follows since Ptree has a solution
if and only if there is a solution to GPtree .

As before, the combined and domain complexities are EXPTIME, for DA and DB de-
scribed succinctly.

6. Solving MBSD with General Mapping Specifications

The final variant of mapping specifications that we study is of the most general form, where
Φ can be any arbitrary ltlf formula over PropA∪PropB. For this, we exploit the fact that
for every ltlf formula Φ, there exists a DFA FΦ that accepts exactly the traces that satisfy
Φ (De Giacomo & Vardi, 2013). Depending on which agent stops, the problem specializes
into one of the following:

• if A stops: find a strategy for B such that every trace always visits an accepting state
of FΦ;

• if B stops: find a strategy for B such that every trace eventually reaches an accepting
state of FΦ.

To solve this variant, we again reduce MBSD to a two-player game structure GP =
(A,W ), as in our previous constructions, then solve a safety game, if A stops, and a reacha-
bility game, if B stops. To follow the mapping as the game proceeds, we incorporate FΦ into
the arena. This requires a careful synchronization, as the propositional labels associated
with the states of dynamic domains affect the transitions of the automaton.

Formally, given an MBSD instance P = (DA,DB,Φ, Agstop), where DA = (S, s0, δ
A, λA)

and DB = (T, t0, δ
A, λA), we construct the DFA FΦ = (Σ, Q, q0, η, acc) as in (De Giacomo

& Vardi, 2013), where Σ = 2PropA∪PropB is the input alphabet.

Then, we define a two-player game arena A = (U, V, u0, α, β) as follows:

• U = S × T ×Q;

• V = S × T ×Q;

• u0 = (s0, t0, q
′
0), where q

′
0 = η(q0, λ(s0) ∪ λ(t0));
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• α ={(s, t, q), (s′, t, q) | (s, s′) ∈ δA};

• β ={(s, t, q), (s, t′, q′) | (t, t′) ∈ δB and

η(q, λ(s) ∪ λ(t′)) = q′}.

Intuitively, A models the synchronous product of the arena defined in Section 4, with
the DFA FΦ. As such, the DFA first needs to make a transition from its own initial state q0
to read the labelling information of both initial states s0 and t0 of DA and DB, respectively.
This is already accounted for by q′0, in the initial state u0 of the arena. At every step,
from current node u = (s, t, q), P1 first chooses the next state s′ of DA, then P2 chooses
a state t′ of DB, both according to their transition relation, and finally FΦ progresses,
according to its transition function η and by reading the labeling of s′ and t′, from q to
q′ = η(q, λA(s′) ∪ λB(t′)).

For the winning objective W , define the set of goal nodes g = {u ∈ U | u = (s, t, q) such
that q ∈ acc}. That is, g consists of the nodes in the arena where FΦ is in an accepting state.
Then, we define W = Safe(g) (to play a safety game), if Agstop = A, and W = Reach(g)
(to play a reachability game), if Agstop = B.

The following theorem states the correctness of the construction.

Theorem 6. There is a solution to P if and only if there is a solution to GP .

Proof. Let Agstop = A (the case for Agstop = B is similar), thus GP = (A, Safe(g)). By
Definition 3, P has a solution σ iff for every trace τA of DA, we have that λ(τ

A, σ̃(τA)) |= Φ.
That is, λ(τA, σ̃(τA)) is accepted by FΦ, i.e., the run on FΦ of λ(τA, σ̃(τA)) ends at an
accepting state q ∈ acc. Due to the strict one-to-one correspondence between the transitions
of GP with those of DA, DB and FΦ, we can simply transform σ to be such that σ : V + → U .
Hence, every play ρ = ρ0ρ1 · · · ρn of A compatible with σ is such that ρk ∈ g for every even
k.0 ≤ k ≤ last(ρ). By definition of safety game, this holds iff σ is a winning strategy of
GP = (A, Safe(g)).

Clearly, the constructed winning strategy σ from the reduced game GP is a solution to
P.

We conclude this section with the following theorems by which we obtain the complexity
results for the problem in its most general form.

Theorem 7. Solving MBSD for general mapping specifications can be done in 2EXPTIME
in combined complexity and mapping complexity, and in PTIME in domain complexity.

Proof. Constructing the DFA FΦ from the mapping specification Φ is in 2EXPTIME in
the number of sub-formulas of Φ (De Giacomo & Vardi, 2013). Once FΦ is constructed,
observe that the game arena A is the product of DA, DB and the DFA FΦ, which requires,
to be constructed, polynomial time in the size of |DA|+ |DB|+ |FΦ|. Moreover, both safety
and reachability games can be solved in linear time in the size of A, from which it follows
that the MBSD problem for general mappings is in 2EXPTIME in combined complexity,
PTIME in domain complexity, and 2EXPTIME in mapping complexity.

Theorem 8. Solving MBSD for general mapping specifications is 2EXPTIME-complete.
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Proof. Membership in 2EXPTIME was shown in Theorem 7, wrt combined complexity.
The hardness can be obtained by an immediate reduction from ltlf synthesis, known to be
2EXPTIME-complete (De Giacomo & Vardi, 2015). To see that, given an ltlf formula Φ,
construct an MBSD P = (DA,DB,Φ, B) instance by setting trivial DA and DB to be such
that the label of each state is simply ⊤. Then P has a solution if and only if Φ is realizable
and a solution to P is a synthesized strategy for Φ.

7. Related Work

Linear Temporal Logic on finite traces (ltlf ) (De Giacomo & Vardi, 2013) has been widely
adopted in different areas of CS and AI for specifying desired tasks that are bound to
terminate (Pesic, Schonenberg, & van der Aalst, 2007; De Giacomo & Vardi, 2015; Zhu,
Tabajara, Li, Pu, & Vardi, 2017; Camacho, Baier, Muise, & McIlraith, 2018). Here, we
adopt ltlf for a similar purpose although, instead of specifying the tasks directly, we use
ltlf for specifying the desired properties of the mimicking between two domains.

Mimicking has been recently studied in Formal Methods (Amram, Bansal, Fried, Taba-
jara, Vardi, & Weiss, 2021). There, the notion of mimicking is specified in separated GR(k)
formulas, a strict fragment of ltl. However, ltl (over infinite traces) does not appear to be
a natural choice for specifying (mimicking) behavior properties, when these concern finitely
many (though unbounded) steps. Obviously, it is well-known that ltl can encode ltlf , but
such encoding requires introducing book-keeping details that in turn lead to re-engineering
of the domains to account for them in correctly phrasing the intended properties, thus
leading to cumbersome and unintuitive specifications. This contrasts with ltlf , which is
specifically designed to deal with finite traces, and can thus be used off-the-shelf without
additional efforts. Moreover, doing synthesis in ltl requires more sophisticated algorithms,
a fact that, together with the need to suitably handle the details introduced by encoding
ltlf into ltl, may further complicate the identification of the sources of complexity. In
this respect, it is worth observing that in (Amram et al., 2021) the problem is encoded as
a single ltl formula, without distinguishing the two domains and the mimicking specifi-
cation, thus no attempt is made to provide a fine computational complexity analysis with
respect to the domains and the mimicking specification, considered separately, as we do in
this work.

A strictly related work, though more specific, is Automatic Behavior Composition (De
Giacomo, Patrizi, & Sardiña, 2013), where a set of available behaviors must be orchestrated
in order to mimic a desired, unavailable, target behavior. That work deals with a specific
mapping specification over actions, corresponding to the formal notion of simulation (Mil-
ner, 1971). MBSD provides us with a more general framework, set for finite-traces, and a
wider spectrum of mapping specifications. In addition, this work, as well as (Amram et al.,
2021), focuses on linear-time specifications, as opposed to the branching-time underlying
simulation in (De Giacomo et al., 2013).

Finally, we note that our framework is similar to studies in data integration and data
exchange (Lenzerini, 2002; Fagin, Kolaitis, Miller, & Popa, 2005; De Giacomo, Lembo, Lenz-
erini, & Rosati, 2007; Kolaitis, 2018), where there are source databases, target databases,
and mappings between them that relate the data in one with the data in the other. While
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similar concepts can certainly be found in our framework, here we do not consider data but
dynamic behaviors, an aspect which makes the technical development very different.

8. Conclusion and Discussion

We have studied the problem of mimicking behaviors in separated domains, in a finite-trace
setting where the notion of mimicking is captured by ltlf mapping specifications. The
problem consists in finding a strategy that allows an agent B to mimic the behavior of
another agent A. We have devised an approach for the general formulation, based on a
reduction to suitable two-player games, and have derived corresponding complexity results.
We have also identified two specializations of the problem, based on the form of their
mappings, which show simpler approaches and better computational properties. For these,
we have also provided illustrative examples.

The target mapping specifications, extensively discussed in Section 5, consider a con-
straint to be satisfied even if agent B reaches a certain target before agent A does. This
freedom seems natural to us since although B mimics A, B can still be much more clever
than A, thus manages to achieve some targets ahead of A. As another example it may be
that B’s domain allows it to achieve the same targets as A does but in a different order
than A. This specification however can be restricted, as to consider every constraint to be
satisfied only if B reaches the relevant target after A does. This can be done by altering
the target mapping specifications to be of the form:

φ =
k∧

i=1

♢(φi → (♢ψi))

While we choose not to elaborate, we believe that the results from Section 5 still hold
for this type of specifications as well, with only minor adjustments required.

A question that naturally arises, for which we have no conclusive answer yet, is to what
extent domain separation and possibly separated types of conditions can be exploited to
obtain complexity improvements in general, not only on the problems analyzed here. In this
respect, we take the following few points for discussion. We first note that the framework
in (Amram et al., 2021) can be adapted to an infinite-trace variant of MBSD, with target
mapping specifications of the form

Φ =

k∧
l=1

(

nl∧
i=1

□♢(φl,i) →
ml∧
j=1

□♢(ψl,j)).

The results in (Amram et al., 2021), which build heavily on domain separation, can be
tailored to obtain a polynomial-time algorithm for (explicit) separated domains in com-
bined complexity. In contrast, Theorem 4 in this paper shows that the finite variant is
PSPACE-hard already for much simpler mappings. This gap seems to suggest that domain
separation cannot prevent the book-keeping that is possibly mandatory for the finite case.
Note however that Theorem 2 of this paper can be easily extended to specifications of the
form Φ′ =

∧k
l=1(

∧nl
i=1 ♢(φl,i) →

∧ml
j=1 ♢(ψl,j)), yielding an algorithm of time polynomial in

the domain size but exponential in the number of Boolean subformulas in Φ′.
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A second point of observation is the following. While the result in Section 6 pro-
vides an upper bound for mappings expressed as general ltlf formulas, one can consider
a more relaxed form Φ =

∧
i≤k(ϕi → ψi) where each ϕi (resp. ψi) is an ltlf formulas over

PropA (resp. PropB) only. While still PSPACE-hard (see Theorem 4), it is tempting to use
some form of memory keeping as done in Theorem 2 to avoid the 2EXPTIME complexity.
The challenge, however, is that every attempt to monitor satisfaction for even a single ltlf
sub-formula, whether ϕi or ψi, seems to require an ltlf to DFA construction that already
yields the 2EXPTIME cost. Another approach could be to construct a DFA separately
for each ltlf sub-formula, then combine them along with the product of the domains and
continue as in Section 6. This however involves a game with a state space to explore that
is the (non-minimized) product of the respective DFAs, and is typically much larger than
the (minimized) DFA constructed directly from Φ (as observed in (Tabajara & Vardi, 2019;
Zhu, Tabajara, Pu, & Vardi, 2021)). Moreover, in practice, state-of-the-art tools for trans-
lating ltlf to DFAs (Bansal, Li, Tabajara, & Vardi, 2020; De Giacomo & Favorito, 2021)
tend to take maximal advantage of automata minimization. How to avoid the DFA con-
struction in such separated mappings to gain computational complexity advantage is yet to
be explored.
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