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Abstract Benders decomposition is a well-known procedure for solving a combinatorial
optimization problem by defining it in terms of a master problem and a slave problem. Its
effectiveness relies, among other factors, on the possibility of synthesizing Benders cuts that
rule out not only one, but a large class of trial values for the master problem. In turn, for the
class of problems we consider (i.e., optimization plus constraint satisfaction) the possibility
of separating the slave problem into several subproblems—i.e., problems exhibiting strong
intra-relationships and weak inter-relationships—can be exploited for improving searching
procedures efficiency. The notion of separation is typically given informally, or relying on
syntactical aspects. This paper formally addresses the notion of slave problem separability
by giving a semantic definition and exploring it from the computational point of view. Sev-
eral examples of separable problems are provided, including some proving that a semantic
notion of separability is much more helpful than a syntactic one. We show that separability
can be formally characterized as equivalence of logical formulae, and prove the undecidabil-
ity of the separability check problem. Finally, we show how there are cases where automated
tools can still be used for checking subproblem separability.

Keywords Benders decomposition - Constraint programming - Problem separation

1 Introduction and motivations

Benders decomposition (Benders 1962) is a well-known procedure for solving combina-
torial optimization problems, which relies on the idea of distinguishing primary from sec-
ondary variables, defining a master problem over primary variables and a slave problem over
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secondary variables, given a trial value for primary variables. Every unsuccessful attempt to
solve the slave problem is recorded as a Benders cut and added to the master problem, until
an optimal solution is found, or the problem is proven to be infeasible.

Here, we deal with the class of “optimization plus constraint satisfaction” (OPT 4 CS)
problems (Hooker 2000). In this context, two important factors which contribute to make the
above procedure effective are: (1) the possibility of using different technologies for solving
the master and the slave problem, e.g., ILP and CP, respectively (Hooker and Ottosson 2003;
Jain and Grossmann 2001), and (2) the possibility of synthesizing Benders cuts that rule
out not only one, but a large class of trial values for the master problem. In this paper,
we focus on the second factor, and specifically on the notion of separability of the slave
problem, which intuitively means that it can be formulated using several subproblems ex-
hibiting strong intra-relationships and weak inter-relationships. As a matter of fact, it has
been noted in Hooker and Ottosson (2003), Hooker (2000), Cambazard and Jussien (2005)
that if the slave problem is separable then it is possible to design a Benders cut (or nogood)
that excludes several instantiations of the primary variables or, in other words, a nogood
which is a partial, and not a total, assignment to primary variables. Therefore, the ability
to recognize slave problem separability is a very important factor for the efficiency of a
Benders decomposition. In fact, previous work (Hooker and Ottosson 2003; Hooker 2000;
Cambazard and Jussien 2005) assumes the slave problem is modeled by a set of easier
(sub)problems.

Let us introduce our running example, taken from Hooker and Ottosson (2003), Hooker
(2000), which refers to a machine scheduling problem.

Example 1.1 (Machine scheduling problem (Hooker and Ottosson 2003; Hooker 2000))
Machine Scheduling is the problem of finding an assignment of a set of jobs to a set of
machines in such a way that (1) constraints on release and (2) due date are satisfied, (3) ma-
chines are single-task, and a cost function is minimized. Using the modelling language of
the OPL system (Van Hentenryck 1999), one possible model is as follows:

// INPUT DESCRIPTION

{int+} Jobs=...; // The set of jobs to be scheduled

int+ horizon=...; // Max start time for jobs

int+ n_machines=...; // Number of machines

range Time[l..horizon]; // Range "Time" definition

range Machines[1l..n_machines]; // Range "Machines" definition

int+ ReleaseDate[Jobs]=...; // Each job has a release date

int+ DueDate[Jobs]=...; // Each job has a due date

int+ Cost[Jobs,Machines]=...; // Machines incur different costs per job
int+ Duration[Jobs,Machines]=...;// Machines run at different speeds per job

// SEARCH SPACE
var Machines Assignment[Jobs];
var Time StartTime[Jobs];
// OBJECTIVE FUNCTION
minimize
sum (j in Jobs) Cost[j,Assignment[j]]
// CONSTRAINTS
subject to {
forall (j in Jobs) // 1. RESPECT RELEASE DATE
StartTime[j] >= ReleaseDate[]j];
forall (j in Jobs) // 2. RESPECT DUE DATE
StartTime[j] + Duration[j,Assignment[j]] <= DueDatel[j];
forall (t in Time) // 3. MAX ONE JOB PER MACHINE AT EACH TIME POINT
forall (m in Machines)
sum (j in Jobs)
(Assignment[j] = m &
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StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])
) <= 1;
Y

The Benders decomposition suggested in Hooker and Ottosson (2003) selects Assign-
ment as primary and StartTime as secondary variables. Moreover, it defines the master
problem as an unconstrained minimization problem, and the slave problem' as a decision
problem on constraints 1, 2, and 3 (for a given optimal instantiation of Assignment and
ignoring the objective function). A given optimal instantiation Assignment which is in-
feasible for the slave problem is called a Benders cut (or nogood), and the next iteration of
the master problem includes the constraint Assignment # Assignment, until a feasible
instantiation is found, or the problem is proven to be infeasible.

This is a “raw” version of the decomposition, which ignores the fact that the slave
problem is separable with respect to the machines. As an example, if we have six jobs
and three machines, we can consider a separate (slave) subproblem for each machine. If
Assignment =[1,1,2,1,3,2] is optimal for the master problem, and no serial sched-
ule of jobs 3, 6 on the second machine exists, we can safely add the constraint

Assignment[3] <> 2 \/ Assignment[6] <> 2.

Constraints of this kind rule out a whole set of assignments (not just one; in this case
36-2 = 81) to the primary variables, and can be added for each infeasible subproblem.
This ultimately results in a more efficient decomposition.

Usually (cf., e.g., Cambazard and Jussien 2005; Hooker 2000), when dealing with
OPT + CS problems, slave problems are assumed separable and their subproblems are de-
fined manually. The issue of stating when problems actually separate has not, to the best
of our knowledge, been addressed, even though it might be helpful, as we show throughout
the paper, for automatically detecting or, possibly, synthesizing effective Benders decompo-
sitions. An informal notion of separability is typically used in the literature, but we claim
that the importance of this concept calls for precise definitions and careful analysis. In what
follows we elaborate the running example, to substantiate our claim.

Example 1.2 (Example 1.1, continued) Consider constraint 3 of Example 1.1. Since (i) it
is universally quantified with respect to machines, (ii) constraint on machine m involves no
other machines and (iii) it is the only constraint involving machines—in other words, the
syntactic form of the problem leads to conclude that the problem can be rewritten as a con-
junction of constraints, pairwise referring to different machines—then one can claim prob-
lem separability with respect to machines. The methodological problem with this syntax-
based, sufficient criterion is that it depends heavily on the specific way the problem is
formulated (cf. also forthcoming Example 3.3). To see this point, consider the following
statement, equivalent to constraint 3.

// 3’. NO TWO JOBS RUNNING ON THE SAME MACHINE AT EACH TIME POINT

forall (t in Time)
sum (i,j in Jobs: i <> j)

( Assignment[i] = Assignment[j] &
StartTime[i] <= t < (StartTime[i] + Duration[i,Assignment([i]]) &
StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment([j]])

) = 0;

n Sect. 3, such problem will be shown to belong, in general, to the complexity class NP (Fagin 1974;
Papadimitriou 1994).
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Now, previous criterion no longer applies (though the problem still separates) and a more
general, possibly semantic, one is needed in order to check for separability.

It is everyday experience that different formulations, all of them being intuitive, can be
done for a problem, as Example 1.3 shows, sometimes in the hope of obtaining models
with better performance. Thus, independence of separability checking criteria from specific
problem formulation is a very desirable property.

Example 1.3 (Example 1.1, continued) We can define a dependent array RunsOn storing for
each time point and each job the machine that runs the job (or a negative number if the job is
not running). In fact, in this way we can define the “single-task machines” constraint (3 or 3')
by means of a global alldifferent constraint, just stating that running machines are
all different at each time point. The alldifferent constraint often performs very well
(Puget 1998), especially in connection with “channelling constraints” (Walsh 2001).
range MachinesPlus[-card(Jobs)..n_machines]; // negative numbers: job not running
var MachinesPlus RunsOn[Time, Jobs];
// DEFINITION OF RunsOn:
forall (t in Time)
forall (j in Jobs) {
(StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])
=> RunsOn[t,j] = Assignment([j])
&
(StartTime[j] > t \/ t >= (StartTime[j] + Duration[j,Assignment[j]1])
=> RunsOnl[t,j] = -j); // negative numbers are all different
Yi
// 3''. AT EACH TIME POINT RUNNING MACHINES ARE ALL DIFFERENT
forall (t in Time)
alldifferent (all (j in Jobs) RunsOnl[t,3jl);

Again, constraint 3” is not universally quantified with respect to the machines, but it never-
theless separates.

In this paper, we investigate the possibility of automating the process of checking slave
problem separability in the context of Benders decompositions of OPT + CS problems. In
particular, given a problem PB and applying a given Benders decomposition schema which
leads to a constraint satisfaction slave problem (Hooker 2000), our goal is to state the condi-
tions, if any, that make the slave problem separable. To this end, we first address the notion
of slave problem separability by giving a semantic definition, and then we explore it from
the computational point of view, providing two theorems which show that (i) separability
can be formally characterized as equivalence of logical formulae and (ii) the problem of
checking separability is not decidable. Nonetheless, in an example we show how the formal
characterization we provide is useful for exploiting automated tools in checking separability,
even though their application gives no guarantee of completeness.

The exposition is structured as follows. In Sect. 2 we recall the definition of Benders
decomposition, in Sect. 3 a formal definition of separation is given, in Sect. 4 we show
semantic and computational characterizations and, finally, Sect. 5 draws some conclusions.

2 Preliminaries

Given two arrays of variables p = (py, ..., p,) (primary) and s = (sy, ..., S») (secondary)
which may take values, respectively, from sets P = Clp XX CPand S = Cix---xCy,
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in this paper we consider problems of the form:

min{ f(p)} objective function (o.f.)
S.t.
a(s) constraint 1 (cl),
PB: y(p) constraint 2 (c2), (1)
B(p,s) constraint 3 (c3),
peP primary variables domain (p.v.d.),
ses secondary variables domain (s.v.d.),

where «, y and B are suitable representations of constraints in which, respectively, only
s variables, only p variables, or both occur. In Hooker and Ottosson (2003), Cambazard
and Jussien (2005) generalizations of the above problem in which, e.g., variables from s
may occur in the objective function, are studied. According to Hooker and Ottosson (2003),
problems of the form (1) can be solved by applying a “logic-based” Benders decomposition
schema that gives raise to the following problems:

min{ f(p)} o.f.
S.t.
. 7(p) (c2),
MP*: CUT () 2)
(i=1,...,k—1) Benders cuts,
pEP p-vd.,
a(s) (cD),
SP: {1 B(p,s) (c3), 3)

ses s.v.d.

Master Problem (MP*) is the problem of finding an assignment to p € P that minimizes
the objective function f(p) while satisfying (i) y (p), and (ii) the Benders cuts CUT ,i (p)
(i=1,...,k — 1) generated at the previous k — 1 iterations. When k = 1, MP' contains
no cut, and the decomposition is just a bipartition of the constraints of PB into (i) those
over variables involved in the objective function, put into MP', and (ii) the remaining ones,
belonging to SP.

Slave Problem (SP) is the feasibility problem of checking whether there exists an assign-
ment § that, along with a given assignment p obtained as solution of MP¥, satisfies the
constraints «(s) and B(p, s). If such s exists then (p,s) is a solution to PB, otherwise,
problem MP**! is generated by adding to MP* a Benders cut CUT ,(p).

Referring to Example 1.1, p is Assignment, § is StartTime, a(s) is constraint
“l. RESPECT RELEASE DATE”, B(p,s) is the conjunction of constraints “2. RE-
SPECT DUE DATE” and “3. MAX ONE JOB PER MACHINE AT EACH TIME
POINT”, and y (p) is a tautology.

One obvious desirable quality of Benders cuts is soundness, i.e., the guarantee that the
above algorithm finds an optimal solution to PB for each instance. As an example, the con-
straint

CUT i (p) = (p # ). @

where p* is the solution to MP*¥, is sound. The problem with (4) is that an unacceptably large
number of cuts may be added to the master problem, and this may reflect in inefficiency (cf.
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Example 1.1). In the next sections we look for conditions which may be helpful for having
a significantly lower number of cuts.

3 Separation into subproblems

Before formalizing the notion of separability introduced in Sect. 1, we need to clarify the
role played by the selection of relevant input data. Referring to Example 1.1, every choice
of the machine on the solution of the master problem induces a selection of the release
and due dates, costs, and durations. As an example, if Assignment = [1,1,2,1,3,2]
and machine 2 is selected, then we only need the third and the sixth rows of input arrays
ReleaseDate and DueDate. Analogously, we need only some entries of the Cost and
Duration arrays.

In general, given a representation R of the instance, e.g., as a relational database over the
schema R, and an integer g representing the number of subproblems, we assume that there
is a function o : R X [1, g] = R that selects the input data relevant for the i-th subproblem
(1<i<gq).

Analogously, we need a way to select the variables relevant to the i-th subproblem. As
an example, for the given Assignment and machine 2, we want to assign a StartTime
just to jobs 3 and 6. In general, we assume that there is a function oy that partitions the
variables into g subsets, one for each subproblem. For the sake of simplicity, we assume
that all the variables may take a value from the same set.

From now on, we represent feasibility problems like (3) with the following notation

Y(R)=3IF:D—C st ¢(R,F), (5)

where R is a representation of the instance over the schema R, F is the required assignment
to the variables, D and C are the variables and their assignments, respectively, and ¢ (R, F)
is a representation of the constraints. We prefer the above notation over the notation as in
(3) because it highlights the input, which is crucial for our purposes. Moreover it is worth
reminding that, if C is finite and ¢ is a formula in first-order logic, then formulae of the kind
(5) can represent every problem in the complexity class NP (Fagin 1974; Papadimitriou
1994). Finally, we note that there is a direct correspondence between the above notation and
state-of-the-art modelling languages such as OPL. As an example, an array of variables like
StartTime in Example 1.1 corresponds to the existentially quantified function F in (5).

Definition 3.1 (Subproblems) Given a problem i of the form (5), an integer ¢ > 1 and
two functions o; : R x [1,q] — R and oy : [1,q] — 2P such that {Dy,...,D,} (Vi €
l..q, D; =oy(i)) is a partition of D, the following g problems are defined as the sub-
problems of Y with respect to o; and oy :

Yi(R)=3R;, F;:D; —> C st R,=o0/(R,i))ANP(R;, F;)) (=1,...,9).
Definition 3.1 can be used to obtain the subproblems in a syntactical way, by means of a
symbolic manipulation of the model of the problem. To see intuitively how the subproblems

are obtained, we resort again to the running example.

Example 3.1 (Example 1.1, continued) Given an instance of the problem with ¢ machines,
and a value for Assignment, we consider the (sub)problem defined as the conjunction
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of constraints 1, 2, and 3, and no objective function. As mentioned before, o; takes a ma-
chine i and the input, e.g., arrays ReleaseDate, DueDate, Cost, and Duration, and
gives new arrays ReleaseDate_i, DueDate_i, Cost_i, and Duration_i. o; can
be represented by means of simple constraints, the following being an example for 1 = 1:

// INPUT:

{int+} Jobs=...; int+ horizon=...; int+ n_machines=...;

range Machines [1..n_machines];

int+ ReleaseDate[Jobs]=...; int+ DueDate[Jobs]=...;

int+ Cost[Jobs,Machines]=...; int+ Duration[Jobs, Machines]=...;
// JOBS ASSIGNMENT:

Open Machines Assignment[Jobs];

// CONSTANTS DEFINITION:

int+ maxTime = max(j in Jobs) (DueDate[j]);

int+ maxCost = max(j in Jobs, m in Machines) (Cost[j,m]);

int+ maxDuration = max(j in Jobs, m in Machines) (Duration([j,m]) ;
// OUTPUT:

{int+} Jobs_1={j | j in Jobs: Assignment[j]=1};

var Machines n_machines_1 in 1..1; // n_machines_1 =
var int+ horizon_1 in horizon..horizon; // horizon_1
var int+ ReleaseDate_1[Jobs_1] in 0..horizon;

var int+ DueDate_1[Jobs_1] in 0..maxTime;

1
= horizon

var int+ Cost_1[Jobs_1,[1..1]] in 0..maxCost;
var int+ Duration_1[Jobs_1,[1..1]] in 0..maxDuration;
// CONSTRAINTS:
solve{
forall(j in Jobs_1){

ReleaseDate_1[j] = ReleaseDatel[j];

DueDate_1[j] = DueDate[j];

Cost_1[3j,1] = Costl[j,11;

Duration_1[j,1] = Duration[j,1];

Y

Note that, coherently with Definition 3.1 where arrays R; are existentially quantified, all
items of the form xxx_1, e.g. DueDate_1 and horizon_1, are variables that must be
assigned, Jobs_1 being a syntactical exception, due to implementation reasons, that can
be yet conceptually regarded as a variable.

The other function oy takes a machine i and the secondary variables, i.e., array Start-
Time, and gives a new array of variables StartTime_1i. The representation of oy is also
simple, and is omitted for brevity.

Each subproblem can be simply represented by defining all constraints on the new sym-
bols, e.g., by writing DueDate_1 instead of DueDate for the first subproblem. It is worth
noting that this can be done for all versions of the machine scheduling problem, i.e., for
Examples 1.1, 1.2, and 1.3.

Given an instance R of a problem of the form (5), we denote as SOL(¥ (R)) the set of
solutions to ¥/ (R), i.e., of the set of functions which satisfy the constraints. The following
definition tells us how to integrate the solutions of the subproblems.

Definition 3.2 (Composition of solutions) Given a problem ¥ (R) and its ¢ subproblems
Y¥; (R) as in Definition 3.1, we define the composition (%) of the solutions SOL(y; (R)) of
the subproblems as follows:

X7, SOL(Y;(R)) ={F:D— Cs.t.Vi=1,...,q F|p, € SOL(¥;:(R))},

where F|p, denotes the selection of the assignments of F to the variables in D;.
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Now we need a way to relate a problem to its subproblems, which is semantic, i.e., based
on the respective solutions. The following definition tells us that a problem is separated by
(o7, oy) if its solutions can be obtained just by composing the solutions of its subproblems.

Definition 3.3 (Separation) Given a problem of the form (5) and its ¢ subproblems v; (R)
as in Definition 3.1, v is (0, oy)-separated into the q problems i, ..., ¥, iff

VReR X, SOL({;(R)) =SOL(Y(R)).

Referring again to the slave problem in the three versions of Examples 1.1, 1.2 and 1.3, it
is possible to see that it is (o, oy )-separated into g subproblems according to Definition 3.3,
where ¢ is the number of machines.

Of course, problems may not separate, as shown by the next example.

Example 3.2 We add to the constraints of Example 1.1 a further constraint which avoids
more than two machines running at the same time, useful, e.g., to reduce noise or energy
consumption.
forall (t in Time) // 4. MAX TWO JOBS RUNNING AT EACH TIME POINT
sum (j in Jobs) (

StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]]
) <= 2;

The latter constraint is added to the slave problem, and the master problem is unchanged.
With functions o, and oy as defined in Example 3.1, it is possible to see that the current ver-
sion of the slave problem is not (o7, oy )-separated. We do that by (1) exhibiting an instance,
(2) solving separately the subproblems obtained applying Definition 3.1, (3) composing their
solutions according to Definition 3.2, and (4) showing that a solution which does not satisty
the original problem arises.

The instance is as follows:

Jobs = {1,2,3,4,5,6}; n_machines = 3; horizon = 15;

ReleaseDate[Jobs] = [1,10,2,4,9,8];
DueDate[Jobs] = [4,18,10,14,14,18];
Cost [Jobs,Machines] =[ // ml m2 m3

r2,3,61, //31
L7, 8, 111, //32
re, 5,71, //33
[ 10, 12, 121, //3j4
r7, 7,61, //35
[ 12, 5, 6 1, //j6

1:

Duration[Jobs,Machines] =[ // ml m2 m3
[ 3,2 ,471, //31
[6, 4,51, //32
r7, 7,61, //33
[5, 8,71, //34
[ 3,5, 41, //35
[ 5, 6,51, //j6

1:

We assume that solving the master problem led to the assignment Assignment =
[1,1,2,1,3,2].Now, applying o; as in Example 3.1 to select the relevant data for jobs
assigned to, e.g., machine 2, we obtain the following data set:
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n_jobs_2 = 2; n_machines_2 = 1; horizon_2 = 15;
ReleaseDate_2[Jobs_2] = [2,8];
DueDate_2[Jobs_2] = [10,18];
Cost_2[Jobs_2,[2..2]1]1 = [ // m2
[ 51, //33
[ 51 //36
1;
Duration_2[Jobs_2,[2..2]] = [ // m2
[ 71, //33
[ 61 //j6

1:

which represents the input to the second subproblem. The input to the other subproblems
can be obtained in the same way.
A solution to the three subproblems is as follows:

// Machine 1, jobs 1, 2, 4

StartTime_1 = [1,10,47];
// Machine 2, jobs 3, 6
StartTime_2 = [2,9];

// Machine 3, job 5
StartTime_3 = [9];

which does not satisfy the fourth constraint. As an example, in time points 10, 11 and 12, all
three machines are running.

One may argue whether the semantic criterion for checking problem separation as de-
fined by Definition 3.3 is really necessary or not, and in particular whether simpler criteria
based on syntactic aspects are equally effective. As an example, we could build the primal
constraint graph (Dechter 2003, Sect. 2.1.3) of the subproblems—as defined previously—
of Example 1.1, i.e., a graph with a node for each variable and an edge between any pair
of variables syntactically occurring in the same constraint. A weaker notion of separability
could be based on the fact that the graph we obtain is not connected and has exactly one
(maximal connected) component for each machine. Anyway, as shown by the next example,
the presence of redundant constraints shows that this is not the case.

Example 3.3 (Example 1.1, continued) Let the following constraint be added to the machine
scheduling problem specification:

/* 5. If machines are less than jobs, then at least two jobs start

at different time points. (card() returns the cardinality of a set)*/

n_machines < card(Jobs) =>
sum(i,j in Jobs:i<>j) (StartTime[i]<>StartTime[j])>=2;

Note that constraint 3 logically implies constraint 5, hence any solution satisfying 1-3 also
satisfies 5. Note also that constraint 5 involves all the secondary variables, hence its primal
constraint graph is a complete graph with card (Jobs) nodes, one for any StartTime
component, representing the fact that all the secondary variables are somehow mutually
constrained. As a consequence, a syntactic definition based on the constraint graph would
fail to recognize separability, while Definition 3.3 does not.

We now show the generality and applicability of Definitions 3.1, 3.2 and 3.3 by ex-
hibiting a problem specification whose resulting slave problem separates. The specification
refers to the 2DHP-Protein Folding problem, and, to the best of our knowledge, its Benders
decomposition has not been considered in the literature.
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Fig. 1 Configurations of string HPHPPH (solid and empty circles correspond, respectively, to H and
P amino-acids). (i) A 2DHP-PF-feasible configuration; (ii) A solution to the master problem, not
2DHP-PF-feasible; (iii) A solution to the master problem, 2DHP-PF optimal

Example 3.4 (2DHP-protein folding (Lau and Dill 1989)) 2DHP-protein folding (2DHP-
PF) is a simplified version of an important problem in computational biology, which consists
in finding the minimal energy spatial conformation of a (simplified) protein—i.e., a sequence
of hydrophobic, H, and polar (or hydrophilic), P, amino-acids.

The goal is to arrange the protein on a bi-dimensional (2D) discrete grid, centering the
first amino-acid, avoiding overlapping and maximizing the number of “contacts”, defined as
pairs of non-sequential, adjacent amino-acids H.

2DHP-PF can be modeled by representing the input protein as a string of characters
in {H, P} and the output as a sequence of folding moves (namely North, East, South, West),
maximizing the number of contacts. Figure 1(i) shows a 1-contact (pair (3, 6)) conformation
of sequence HPHPPH, obtained by applying moves: North, East, East, North, West.

The following code fragment shows an OPL model for the 2DHP-PF problem with input
sequence HPHPPH:
int+ n = 6; // INPUT: Length of the string

enum Aminoacid {H,P};
range Pos [l..n]; range PosButLast [1..n-1];

Aminoacid seqg[Pos] = [H,P,H,P,P,H]; // INPUT: The amino-acids string
enum Dir {N,E,S,W}; range Coord [-(n-1)..n-1];

// OUTPUT:

var Dir Moves[PosButLast]; // The folding moves sequence

// The amino-acids position (absolute coordinates):
var Coord X[Pos]; var Coord Y[Pos];
// OBJECTIVE FUNCTION:
maximize
sum(pl,p2 in Pos: p2 > pl+l & seq[pl] = seqg[p2] = H)
(abs (X[pl]-X[p2])+abs(Y[pl]-Y[p2])=1)
// CONSTRAINTS:
subject to {

X[1] = 0; Y[1l] = 0; // l.pPosition of first amino-acid
forall (t in PosButlLast) { // 2.Channelling constraints for positions
Moves[t] = N => (X[t+l] = X[t] & Y[t+1] = Y[t] + 1);
Moves[t] = S => (X[t+1l] = X[t] & Y[t+1] = Y[t] - 1);
Moves[t] = E => (X[t+1] = X[t] + 1 & Y[t+1l] = Y[t]);
Moves[t] = W => (X[t+1] = X[t] - 1 & Y[t+1l] = Y[t]);

Yi

// 3.Avoid overlapping

forall (pl, p2 in Pos: pl <> p2) (X[pll<>X[p2]\/Y[pll<>Y[p2]);
Y
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Referring to the general form of problems (1) and its corresponding decomposition schema
(2-3), we observe that:

o the objective function is defined only over arrays X[ ] and Y [ ]. Therefore, they are con-
sidered as primary variables while Moves [] are treated as secondary ones;

e «(s) is identically true in 2DHP-PF, as no constraint involving only secondary variables
exists;

e y(p) corresponds to the conjunction of 2DHP-PF constraints 1 and 3, as they are defined
only on primary variables;

e B(p,s) corresponds to the 2DHP-PF channelling constraint 2, which involves both pri-
mary and secondary variables.

Consequently, the master problem (MP) consists in placing the amino-acids in a maximal-
contacts configuration, centering the first one (constraint 1) and avoiding overlapping (con-
straint 3), while the slave problem (SP) amounts to check whether a MP solution is a “legal”
chain, i.e., if subsequent amino-acids are placed according to some legal move (constraint 2).
Figure 1(ii) shows a 2-contacts, MP-optimal solution which does not satisfy such check. In
Fig. 1(iii) a feasible and optimal solution to the 2DHP-PF instance is shown.

In order to show how Definition 3.1 applies to the obtained SP, we must first define an
integer g and two functions o; and oy :

e g=n-1;

e let o, be the function which, given an integer i € [1...¢q] and two arrays of constants,
X and Y, returns a triple 07 (X, Y, i) =< X',Y’,n’ >, where X’ =<X[1],X[i+1] >
and Y’ =< Y[i],Y[i+1] > are two bi-dimensional arrays and n’=2 is an integer
value representing the length of X* and Y’

e let oy be the function which, given an integer i € [1...q], returns the (singleton) set of
variables oy (i) = {Moves [i]}.

With such choice and for each i € [1,...,¢g], a (constraint satisfaction) subproblem 1/;,
including only constraint 2, is defined over the single variable in oy (7). Its input instances
are obtained by applying function o;(X,Y,i) to SP input arrays X and Y. v; consists in
finding, if any, a move such that the (i)-th and (i 4 1)-th (with respect to their order in
seq) amino-acids are assigned consistent positions. For example, considering the positions
assignment given in Fig. 1ii, where X=[0,0,1,1,2,2] and Y=[0,-2,0,-1,1,01,if
we select, e.g., i = 3, the subproblem 3 over variables {Moves[3]} is defined over the
input instance <X = [1,1],Y=[0,-11,2 >. It can be seen that Moves[3]=S is a
valid solution.

For any SP input instance, we can define ¢ subproblems, as described above, and easily
compose their respective solutions, using Definition 3.2, into an SP variables assignment.
To do this, it is sufficient to assign, foreach i € [1, ..., g], SP variable Moves [1i] the value
of an i-th subproblem (v;) solution. Note that, indeed, if a solution to v; exists then it is
unique.

Recalling the semantics of SP and its subproblems, we can see that, for any SP instance,
the SP solutions set coincides with the set of assignments obtained by composing the SP
subproblems solutions. In fact, it is sufficient to interpret the i-th component of any SP
solution, namely Moves [1] (i €[1,..., q]), as a solution to the i-th subproblem and, vice
versa, considering each i-th subproblem solution as the i-th component of an SP solution.
Such observation leads us to conclude that Definition 3.3 applies, i.e., that 2DHP-PF is
(o7, oy )-separated.

Finally, we point out that although the provided model might not appear the most com-
pact one, the introduction of auxiliary variables, such as Moves, is quite common in CSP
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modeling, as it eases the writing task for a human modeler and, in some cases, yields per-
formance improvement (Cadoli et al. 2006; Smith et al. 2000). Specifically, in this case,
we showed a formulation where one may take advantage of Benders decomposition with
separable subproblem.

4 Characterization of separation

Definition 3.3 gives a semantic notion of separation of a problem into subproblems. A prac-
tical difficulty is that it is not obvious how to use it for proving separation, since we would
have to consider all possible instances, solve the problem and the candidate subproblems,
and check that their solutions coincide.

The following theorem shows that in principle it is not necessary to do that, and reduces
the problem of checking separation to the problem of equivalence of two logical formulae.

Theorem 4.1 Given a problem y(R), an integer q, two functions oy, oy, and q problems
Y1, ..., ¥y as in Definition 3.1, ¥ is (o7, oy)-separated into Vr, ..., V, iff the following
formula is a tautology

q
v=/\v ©!
i=1

Proof (Only if part) First of all, we note that (6) is a tautology if and only if the following
containment relations hold:

q
VR SOL(Y(R)) € SOL(/\ tﬂi(R)>, (N

i=1

q
YR SOL(Y(R)) 2 SOL(/\ wi(R)>. ®)

i=1

We now prove them separately, starting from the former. By hypothesis, the following g
problems (o;,0v )-separate :

Vi(R)=3R,, F,:oy(D,i) > C st. Ri=o/(R,i)ASRLF) (i=1,....9). )
Now, given an instance R € R, if F is a solution to ¥ (R) then any restriction F|p, to
D; =oy(D,i) is a solution to ¥;(R) foreachi =1, ..., g. In fact, separation implies that
(cf. Definitions 3.2 and 3.3):

SOL(Y(R)) ={F :D— CstVi=1,...,q F|p, € SOL(¥;;(R))}.

Hence, for each instance R, if F solves ¥ (R) then it solves the ¢ problems v;(R) or,
equivalently, F is a solution to the problem

q
J\vi(R)
i=1

and then relation (7) holds.
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We now turn to the inverse containment (8). To this end, consider a solution G : D — C
to the problem /\j’:1 Y¥; (R) for a generic instance R. By definition, G solves all of the v; (R)
problems and, recalling the form (9) of v, it follows that G|y, (p, ;) solves v; (R). In other
words, G is such that:

Vi=1,...,q Gloyp,i) € SOL({;(R)).

The separability hypothesis implies that G € SOL(y (R)), hence relation (8) holds.

(If part) Assuming (6) is a tautology, F : D — C is a solution to ¥ (R), for any R,
if and only if F solves the problem A’_, ¥:(R) or, equivalently, the g problems v;(R)
(i=1,...,q). Consequently, any solution F' to ¥(R) is such that Vi =1,...,q Flp, €
SOL(y; (R)) and vice versa. Hence, for any R,

SOL(/(R)) ={F:D — Cst.Vi=1,...,q F|p, € SOL(:(R))}. O

Theorem 4.1 calls for an equivalence check among logical formulae. This task is non
decidable even for first-order formulae (Borger et al. 1997), and actually this lower bound
applies also to this case, as shown by the next theorem. However, before proving formally
such result we need to introduce a new class of problems, by means of a specialization of
Definition 3.3.

Definition 4.1 (Strongly non-separated problem) Given a problem of the form (5) and its
q subproblems v, (R) as in Definition 3.1, v is strongly not (o, oy)-separated into the q
problems ry, ..., ¥, iff

VReR !, SOL(Y;(R)) # SOL(Y(R)). (10)

Note that a strongly non-separated problem is not just a problem which is not separated
by (o7, 0v): for the latter it suffices one instance of input data R € R such that equality
between sets of solutions N?zl SOL(y; (R)) and SOL(y(R)) does not hold. On the other
hand, for strongly non-separated problems equality between sets of solutions does not hold
for all instances of input data.

It is easy to see that strongly non-separated problems do exist.

Example 4.1 Consider the problem P obtained by:

e same search space as in Example 1.1;

e constraint 3 of Example 1.1;

e aconstraint (similar to constraint 4 of Example 3.2), stating that there is no more than one
machine running at the same time;

e aconstraint stating that there are exactly two machines.

Note that no constraint involves either start or due date and, as a consequence, job start times
can be assigned arbitrarily.

Let (o7, oy) be like in Example 3.1. (o7, oy) do not describe a separation of P, because
for each instance R and each solution S of P, we can always obtain a solution of the sub-
problems in which machines run in parallel. In other words, relation (10) holds.

As anticipated above, the notion of strongly non-separated problems is introduced with

the aim of proving the next theorem. To this end, showing that at least one strongly non-
separated problem exists is fundamental and it is exactly the purpose of Example 4.1.
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Theorem 4.2 Given a problem ¥ (R), an integer q, two functions oy, oy, and q problems
Y1, ..., ¥y as in Definition 3.1, it is not decidable to check whether r is (o}, ov)-separated
or not.

Proof Consider a problem v (R) of the form:
dF:D—C st nR,F)AER)— 7(R,F)) (11)

where £(R) is a first-order formula in which only input data symbols occur, and that repre-
sents a “filter” on input data. Assume that the problem

Y1 (R)y=3F:D— C st n(R,F) (12)
is (o, oy )-separated, and that the problem
Yo (R)=3F: D — C st #a(R,F),

is strongly not (oy, oy)-separated.

As an example of 1 (R) just take the third constraint from Example 1.1. As an example
of Y, (R) problem, just take the problem described in Example 4.1.

Of course the problem

JF:D—-C st nR,F)Ann(R,F)

is not (o, oy)-separated, being the conjunction of two constraints, the former being
(o7, oy)-separated and the latter being strongly not (o, oy)-separated.

Now note the role played by formula £(R) in problem (11). If £(R) is identically false,
then problem (11) coincides with problem (12), and it is (o;, oy )-separated. If £(R) is not
identically false, then let R be an instance of input data such that £(R) is satisfiable. Ac-
cording to Definition 4.1, R proves that problem (11) is not (o}, oy)-separated. Summing
up, problem (11) is (o, oy)-separated if and only if first-order formula &£ (R) is identically
false, which is not decidable (Borger et al. 1997). O

The undecidability of the problem of checking separation puts severe restrictions on the
possibility of mechanizing the process of finding, or at least validating, Benders decompo-
sitions. Nevertheless, in what follows we show that current Automated Theorem Provers
(ATP) technology can be effectively used for checking the separation property, that is, ul-
timately, for showing that the obtained Benders cuts rule out several (instead of one) trial
values from the Master problem’s search space.

In particular, in the following example we show a feasibility problem whose separation,
according to Theorem 4.1, can be checked by a first-order ATP.

Example 4.2 (All colors monochromatic 2-cycle existence (M2CE)) Given a directed col-
ored graph, M2CE consists in deciding whether, for each color, a length-two cycle of mono-
chromatic nodes exists. This problem can be separated considering colors (and the induced
monochromatic subgraphs) separately.

In what follows we show:

1. a representation of M2CE in the format of formula (5), as well as functions o; and oy
characterizing a decomposition into subproblems via Definition 3.1;
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2. that (o7, oy)-separation of M2CE through Theorem 4.1 can be automatically proven.

As for step 1, assuming that the input instance is represented through predicate symbols
edge/2 (edge(X, Y): there is an edge between nodes X and Y) and col/2 (col(X, C): node
X has color C), M2CE can be formally described as a first-order formula as follows:

VYCIXY X #Y Acol(X,C)Acol(Y,C) Nedge(X,Y) Aedge(Y, X). (13)

The second order representation in the format of (5) can be obtained by introducing a
new, existentially quantified, predicate gc/1 (gc(C): C is a “good color”, i.e., a color for
which a length-two cycle exists) as follows

dge (VC ge(C))
A(ge(C) < 3AXY X #Y Acol(X,C)Acol(Y,C) Nedge(X,Y) Nedge(Y, X)). (14)

gc is a function with the colors as domain and the Booleans as range. As for the integer ¢
and the functions o; and oy (cf. Definition 3.1), they are as follows:

e g is the number of colors;

e oy selects, for each color i € 1..¢, the nodes colored with i and their edges from predicate
symbols edge and col;

e oy selects, for each color i € 1..g, color i from predicate symbol gc.

As for step 2, we assume that there are exactly two colors, and prove (o;, oy)-separation
of M2CE. The proof is obtained by proving that the formula

2
ﬁ(tﬁ E/\%) (15)
i=1

is unsatisfiable, i.e., that its negation is a tautology, where v is formula (13), and ¢; (1 <
i <2) are obtained from v, o;, and oy according to Definition 3.1.

For doing this, we feed OTTER? (Quaife 1992; Wos 1996), a well-known resolution-
based first-order ATP, with the following file:

%%% types and disjointness

all X Y (edge(X,Y) -> node(X) & node(Y)).

all X C (col(X,C) -> node(X) & color(C)).

all X (node (X) -> - color(X)).

%%% col is a function

all X C1 C2 (col(X,Cl) & col(X,C2) -> Cl = C2).

%%% there are 2 colors: cl and c2

2col <-> (cl != c2 & (all X C (col(X,C) <-> C =cl | C =c2))).

%%% sigma_I

all X (col_1(X) <-> col(X,cl))

all X (col_2(X) <-> col(X,c2))

all X Y (edge_1(X,Y) <-> edge(
e(

X,Y) & col(X,cl) & col(Y,cl))
all X Y (edge_2(X,Y) <-> edge(X,Y) & col(X,c2) & col(Y,c2))
%%% Psi
e2c <->
(all C (exists X Y (X != Y & col(X,C) & col(Y,C) & edge(X,Y) & edge(Y,X)))).

%%% Psi_1
e2c_1 <->

2http://www— unix.mcs.anl.gov/AR/otter
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(all C
%$%% C does not occur, but we quantify it according to the rules
%%% for building Psi_1
(exists X Y (X != Y & col_1(X) & col_1(Y) & edge_1(X,Y) & edge_1(Y,X)))
).
%%% Psi_2
e2c_2 <->
(all C
%%% idem
(exists X Y (X != Y & col_2(X) & col_2(Y) & edge_2(X,Y) & edge_2(Y,X)))

).

separable <-> (2col -> ((e2c_1 & e2c_2) <-> e2c)).
%$%% we require a refutation

- separable.

OTTER is able to prove unsatisfiability of the above formula (in full automatic mode) in less
than one second.

5 Conclusions

In this paper we have analyzed the notion of separation of problems. This is a con-
cept interesting per se, and finds an immediate application in the context of Benders
decompositions. In fact, it is well-known (Hooker and Ottosson 2003; Hooker 2000;
Cambazard and Jussien 2005) that when the slave problem is formulated using several sub-
problems exhibiting strong intra-relationships and weak inter-relationships such decompo-
sitions are effective.

In the literature, informal notions of separation of subproblems are typically used, but in
this paper we have shown that it is not easy at all to come up with a clear syntactical defini-
tion of separability. Examples of Sects. 1 and 3 show that formulations of a problem which
look similar from the syntactical point of view may or may not be separable. A precise,
semantic definition of separation has been provided in Sect. 3, which has been characterized
both from the logical and from the computational points of view in Sect. 4.

In particular, we have shown that separation can be reduced to checking equivalence
of second-order logic formulae (Theorem 4.1), and that the problem of checking whether
a given selection of input data corresponds to a separation or not is not decidable (Theo-
rem 4.2).

Moreover, we have shown that there are special cases where Theorem 4.1 calls for first-
order, instead of second-order, equivalence and an automated proof of separation can be
obtained by means of an Automated Theorem Prover (Example 4.2). Of course, the unde-
cidability result is valid also in such cases, the prover giving no guarantee of termination.
However, in those cases where it terminates, the answer can be exploited to state whether
separation holds.

As for the current work, since the notion of separation into subproblems seems to be
related to the concept of database integration, especially in the context of different informa-
tion sources, cf. e.g., Lenzerini (2002), we plan to extend our definitions in the traditional
database context.
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