
Discovering Declarative Process Model Behavior
from Event Logs via Model Learning

Simone Agostinelli∗, Giacomo Bergami†, Alessio Fiorenza∗, Fabrizio M. Maggi†, Andrea Marrella∗, Fabio Patrizi∗
∗Sapienza Universitá di Roma, Rome, Italy

Email: {agostinelli,marrella,patrizi}@diag.uniroma1.it, fiorenza.1661504@studenti.uniroma1.it
†Free University of Bozen-Bolzano, Bozen, Italy
Email: gibergami@unibz.it, maggi@inf.unibz.it

Abstract—Declarative business process (BP) models define the
behavior of BPs as a set of temporal constraints, which can
be summarized as a deterministic finite state automaton (DFA).
Declarative BP discovery aims at inferring such constraints
from event logs. To this aim, it requires as additional input
the set of candidate constraints to be verified with respect
to the event log. Intuitively, this restricts the discovery task
to a conformance checking activity between a predefined set
of constraint templates and an event log, preventing to learn
any observed behavior that is not captured by those templates.
In this paper, we investigate how to leverage Model Learning
(ML) for the automated discovery of the DFA underlying the
behavior of a declarative BP model, without using any further
a-priori information in addition to the event log. To assess the
quality of the discovered DFA, we introduce a novel definition
of the standard process mining quality metrics, i.e., precision,
generalization and simplicity, tailored to DFAs. Finally, a pre-
liminary evaluation performed with real-life logs shows that ML
enables to generate extremely simpler DFAs than state-of-the-art
BP declarative discovery techniques, keeping similar values of
precision and generalization.

Index Terms—Model Learning, Declarative Process Models, Fi-
nite State Automata, Process Mining Quality Metrics

I. INTRODUCTION

Traditional business process (BP) modeling notations, including
the standard Business Process Model and Notation (BPMN),
rely on a procedural paradigm wherein the BP model captures
all allowed activity flows. In the past decade, several research
works have exposed the limitations of this paradigm in the
context of unpredictable, variable BPs working in turbulent
environments [1]. As an alternative, in [2], the authors intro-
duced a declarative BP modeling language called Declare,
which allows the business analyst to focus on the formalization
of few relevant temporal constraints, which must hold true
during the execution of the BP, avoiding the burden to model
many BP control-flow details that are fated to change through
time. A strength of Declare is that its semantics can be
characterized with Linear Temporal Logic over finite traces
(LTLf ) [3]. Consequently, a collection of Declare constraints
can be summarized as a deterministic finite state automaton
(DFA) [4], which can be employed to perform formal reasoning
over the original Declare constraints. Using Declare, the BPs are
kept under-specified so that few constraints allow for multiple

execution paths. In this way, the BP representation is more
robust to changeable behaviors remaining compact.

In the field of Process Mining, many procedural BP discovery
techniques exist that enable to generate a procedural BP model
(e.g., a Petri net, a BPMN model, etc.) taking as input only
the event log that records the past executions of the BP itself
[5]. On the other hand, declarative BP discovery techniques
require as further input the set of candidate constraints to be
verified with respect to the event log. Intuitively, this restricts
the discovery task to a conformance checking activity between
a predefined set of constraint templates and an event log, thus
preventing to learn any observed behavior that is not captured
by those templates. While such an approach is suitable to
verify that the behavior of a BP complies with certain (known)
regulations, it becomes cumbersome when this knowledge is
only partially known or even missing.

In this paper, we aim at mitigating this issue by investigating
how to leverage a well-known Model Learning (ML) algorithm,
called MDL [6], for the automated discovery of the DFA
underlying the behavior of a declarative BP model, without
using any further a-priori information except the event log.
ML is a group of algorithms conceived for constructing state
machine models of software and hardware components relying
on observed input-output data of their runs [7]. Nonetheless,
over the years, much progress has been made in the design
of novel algorithms to make ML applicable in many different
fields, such as telecommunication, network protocols, and
control software. In this paper, for the first time (if compared
with the previous literature solutions on this matter), we show
how ML can successfully be employed for the discovery of
the DFA underlying the behavior of a declarative BP model in
an unsupervised way.

To assess the quality of the discovered DFAs, we introduce a
novel definition of the standard process mining quality metrics,
namely precision, generalization and simplicity, tailored to
DFAs. In particular, we adapt the definition of these metrics
existing in the literature for Petri nets to automata [8] [9]. This
allows us to measure precision, generalization and simplicity
of DFAs also and, transitively, of any (declarative) BP model
whose semantics can be expressed using DFAs. We use these

Pre-print copy of the manuscript published by IEEE (available at ieeexplore.ieee.org) 
identified by doi: 10.1109/ICPM53251.2021.9576870



metrics to perform an evaluation with 5 real-life event logs
to compare the “DFAs’ construction performance” of MDL
against the Declare Miner [10], which is nowadays recognized
among the best BP declarative discovery techniques available
in the literature [5]. Note that, starting from a collection of
Declare constraints, the Declare Miner employs the algorithm
in [11] to generate a DFA that aims at formally representing
their collective behavior. The results show that Declare Miner
and MDL are both able to construct DFAs having similar
values of generalization and precision. However, MDL does
not require any other input than the event log, and generates
DFAs that are extremely simpler (in terms of the amount of
nodes/arcs discovered) than the ones discovered by the Declare
Miner, thus being potentially more efficient and effective when
used in the context of verification tasks.

The rest of the paper is organized as follows. In Section II, we
provide the relevant background on Declare and declarative
BP discovery in process mining. In Section III, we present
an overview of the ML algorithms available in the literature,
motivating why we choose MDL for the enactment of the
DFA generation task and introducing its main features. In
Section IV, we define our working assumptions and present the
definitions of the standard process mining quality metrics for
DFAs. Then, we benchmark Declare Miner and MDL against
real-life datasets and discuss their performance to generate
DFAs with respect to the previously defined quality metrics
(Section V). Last, we draw our final conclusions and propose
future work (Section VI).

II. BACKGROUND

A. Declarative Process Modeling with Declare

In contrast with procedural techniques, which are suitable to
represent the entire behavior of BPs in stable environments
where BPs are repetitive and can be controlled, declarative
BP modeling languages enable to focus on the formalization
of few relevant and stable constraints over time that the BP
should satisfy, thus avoiding the burden to model the details
of the BP control flow that are bound to change over time. For
this reason, declarative process mining techniques have been
widely applied in the context of healthcare BPs [12]–[14], since
they are characterized by a high degree of variability.

In [2], the authors introduce a declarative BP modeling language
called Declare. Technically, a Declare model M = (A,πM)
consists of a set of activities A involved in a BP and a
collection of constraints πM defined over such activities.
Declare constraints are instantiations of templates, i.e., patterns
that define parameterized classes of properties. Such templates
are grouped into four families: (i) existence templates, used
to constrain the number of times an activity must/can be
executed; (ii) choice templates, requiring the execution of some
activities selecting them among a set of available alternatives;
(iii) relation templates, expecting the execution of some activity
when some other activity has been executed; (iv) negation

templates, forbidding the execution of some activity when
some other activity has been executed. The reader can refer to
[15] for a full description of the language.

One of the key advantages of Declare is that its semantics can
be characterized in different logic-based approaches, including
Linear Temporal Logic over finite traces (LTLf ) [3]. Thus,
any Declare constraint ci ∈ πM can be represented as an
LTLf formula ϕci . With ϕ, we indicate the LTLf formula
resulting from the conjunction of the single formulas ϕci (with
i varying from 1 to the amount of Declare constraints in πM).
ϕ reflects the behavior allowed by the entire declarative BP
described by πM. Notably, it is well known in the literature that
every LTLf formula ϕ can be associated with a deterministic
finite state automaton (DFA) that accepts exactly all the traces
satisfying ϕ [4]. Consequently, the behavior of a declarative BP
modeled with Declare can be represented as a DFA, making
it formally verifiable and executable. For this reason, most of
the declarative process mining approaches proposed in recent
years are based on DFAs [16].

B. Declarative Process Discovery

In the area of process discovery, Lamma et al. [17] and Chesani
et al. [18] describe the use of inductive logic programming
techniques to extract models expressed as a SCIFF first-order
logic theory [19]. Bellodi et al. [20] extend this technique
by weighting the constraints with probabilistic estimation
in a second step. Specifically, the learned constraints are
translated into logical Markov formulas that allow probabilistic
classification of traces. Both techniques in [17] and [20] rely on
the availability of positive and negative execution traces.

Maggi et al. [10] proposed a two-step approach for discovering
patterns of declarative processes expressed using Declare from
positive execution traces only. The first phase is based on
identifying frequent sets of related activities using an apriori
algorithm. In the second phase, candidate constraints are
verified by reproducing the log on specific automata, each
accepting only those traces that conform to a constraint. The
candidate constraints that are satisfied by a percentage of traces
above a user-defined threshold are discovered. Other variants of
the same approach are presented in [21], [22] and [23].

In [24], the authors introduce MINERful, a two-step algorithm
for the discovery of Declare constraints. The first step of the
approach is the building of a knowledge base, with information
about temporal statistics about the (co-)occurrence of tasks
within the log. Then, the validity of candidate constraints
is computed by querying that knowledge base. Di Ciccio et
al. [25], [26] design an extension of MINERful to discover
target-branched Declare constraints, i.e., constraints in which
the target parameter is replaced by a disjunction of actual
tasks.

Another approach for the discovery of Declare models is
described by Schönig et al. in [27]. Their technique is based
on the translation of Declare templates into SQL queries on a



relational database instance, where the event log has previously
been stored. The query answer assigns the free variables with
those tasks that lead to the satisfaction of the constraint in the
event log. Recently, an approach for discovering declarative
BP models in the form of DCR-Graphs [28] has been proposed
in [29].

All the above approaches are based on the construction of
a set of candidate constraints that is then pruned using
conformance checking. The candidate constraints to be checked
are constructed using specific constraint templates that need to
be specified in input. Differently from these approaches, in the
technique presented in this paper, we construct from scratch the
DFA representing the behavior of a declarative process model
as observed in an event log, without any preliminary knowledge
about the constraint templates to be discovered.

III. MODEL LEARNING

Model Learning (ML) refers to a group of test-based and
counterexample-driven algorithms conceived for learning the
models of black-box hardware (HW) and software (SW)
systems. Examples of learned models are DFAs, state charts
and Mealy machines, among others [7]. In ML, two classes of
algorithms exist, namely active and passive algorithms.

Active learning (also called on-line learning) is based on the
so-called MAT framework developed by Dana Angluin [30] in
1987, where the construction of a model involves a “learner”
and a “teacher”. The learner, who only knows the input/output
alphabet of the system under learning (SUL), asks the teacher
whether a specific trace belongs to the SUL (Membership
Query). The teacher can answer “Yes” or “No”. Based on the
observed response, the learner tries to iteratively construct a
model whose behavior aims at matching the model of the SUL.
Once a hypothesized model is ready, then the learner asks the
teacher whether the model is correct or not via an Equivalence
Query. In the case of a correct model, the learning process
ends. Otherwise, the teacher returns a counterexample that can
be used by the learner to build new potentially valid traces to
be verified through the Membership Query. By applying this
procedure repeatedly, a model is approximated that represents
the complete behavior of a SUL [31]. The basic active learning
algorithm from the literature is called L∗, where a DFA is
used to describe the behavior of the SUL [30]. A number
of polynomial time algorithms utilizing a MAT model that
generate DFAs have been designed and developed over time
to enhance the performance of L∗, e.g., [31], [32].

There is also an extensive body of work on passive learning
(also called off-line learning), where models are constructed
from runs (i.e., available prerecorded traces) of the SW/HW
systems. In passive learning, there is no interaction between
the learner and SUL. The passive learning algorithms learn
the models of the SUL from the available set of positive and
negative traces (training data) stored in a log file [6], [33], [34].
Positive traces are those that belong to the target language, and

negative traces do not belong to the target language. Some well-
known passive learning algorithms include RPNI, (RPNI-)MDL,
(RPNI-)EDSM, DeLeTe2, and OSTIA 4MM [31].

The main advantage of active learning algorithms relies in the
generation of models capturing the full behavior of a SW/HW
system, and not just of the specific runs that have occurred
during an actual operation. Nonetheless, such algorithms are not
particularly suitable for being applied to tackle the generation
task of a DFA describing the behavior of a declarative BPM
model, which is intrinsically an off-line activity and relies on
the availability of a pre-recorded event log. For this reason, we
decided to focus our attention on passive learning algorithms,
and in particular on (RPNI-)MDL [6].

RPNI is a heuristic for DFA inference that merges states in an
automaton representation of observations until a local minimum
is reached [35]. Specifically, it performs a breadth-first search
by trying to merge a newly encountered state with states already
explored. However, whereas the basic RPNI approach merges
the very first pair of nodes that resemble a valid merge, the
MDL variant computes an additional score and only commits to
a merge if the resulting hypothesis will yield a better score. This
passive approach to state-merging works better in scenarios
where only positive training data is available. Hence, in contrast
to the majority of passive learning algorithms that require as
input a set of negative training data, MDL only expects positive
traces, thus representing the best candidate to be employed for
the DFA generation task [36] from event logs.

IV. QUALITY METRICS FOR DFAS

To evaluate the quality of the DFAs discovered via ML and
compare them with the ones produced by state-of-the-art tools
for declarative process discovery, we redefine here the standard
quality metrics defined for procedural process discovery [37],
namely precision, generalization and simplicity, within the
context of DFAs. The quality metrics are based on the concept
of alignment of a trace and a declarative process model. As
already mentioned in Section II, any declarative process model
M can be expressed as a DFA GM = (V,E) over an alphabet
Σ, where V is a set of vertices and E is a set of directed and
labeled edges connecting those vertices. A trace is a temporally
ordered sequence of activities in Σ. A trace is a log trace if it
represents a BP execution stored in an event log. The set of
model traces associated to a model M corresponds, instead, to
the (possibly infinitely enumerable) set L[GM] of the traces
that are accepted by the corresponding automaton GM (i.e.,
generated from GM by unfolding).

We can quantify the deviation of a trace from a DFA repre-
senting the behavior of a declarative BP model via alignments
[38]–[42]. An alignment γ(σ,σ′) is a transformation between
a log trace σ and a model trace σ′; such a transformation
is a sequence of editing operations corresponding to one of
the following situations: (a) an activity correspondence, (b) a
deletion of an activity from σ, (c) an insertion of an activity in



σ. Given two traces σ and σ′ of length l, the number of all the
possible alignments is exponential over the trace length, i.e.,
≈
√
l⋅(1+

√
2)2l+1 [43]. However, we are not interested in all the

possible alignments, but only in the alignments γO minimizing
the quantity of deviation expressed via a cost function K. We
first define a cost function K quantifying the severity of a
single deviation within the alignment: the simplest “correct”
cost function K⋆ returns 0 if the activities match and, otherwise,
returns an unitary cost (e.g., 1). The total cost of an alignment
γ, K(γ), is defined as the sum of the costs of the individual
editing operations in the alignment. Given two traces σ and
σ′, we are interested in the alignments γO(σ,σ′) minimizing
K(γO(σ,σ′)) for σ and σ′. Last, given two traces σ and σ′,
we obtain the maximal possible alignment cost γMAX(σ,σ′)
by deleting all the activities from σ and by inserting all the
activities from σ′.

Based on the foregoing, we can now define the following set of
metrics that can be used to evaluate the quality of a DFA GM
underlying the behavior of a declarative BP model M:

● Fitness1: it quantifies the extent to which the discovered
model can accurately reproduce the traces recorded in the
log. A model has a perfect fitness if all traces in the log
can be replayed from the beginning to the end on it.

● Precision: it assesses the coverage of the log traces by
an inferred model. More precise models exhibit fewer
under-fitting problems.

● Generalization: it estimates how an inferred model from
a given log will reproduce future behaviors not seen in
the log. More general models exhibit fewer over-fitting
problems.

● Simplicity: it determines the size of a model, i.e., the
number of elements required to represent it. Given two
models describing the same language, the simplest model
is the one having the smallest size.

We define fitness over trace alignments, thus enabling the
identification of deviations within a log trace from a model
trace. The desired fitness function should return 1 if the log
trace can be replayed on the model from the beginning to the
end with no conformance costs, and returns 0 for the lowest
possible fitness level. Fitness is then defined as follows:

Definition 1 (Fitness). Given a log ` and a modelM, the fitness
of a log trace σL ∈ ` andM is defined as:

FT (σL,M) = 1 − K(γO(σL, σM))
K(γMAX(σL, σM)) ,

where σM is a solution to the optimal alignment problem
A(σL,M). The fitness of a log ` and a modelM is defined by
finding a function φ associating to each log trace σL a model
trace φ(σL) such that the overall cost is minimized; we then

1Note that we use the notion of fitness taken as is from [44].

divide the result by card (`) for comparing alignment costs over
differently sized logs:

FL(`,M) = 1 − 1

card (`) ∑σL∈`

K(γO(σL, φ(σL)))
K(γMAX(σL, φ(σL)))

Given that the optimal alignment cost γO between two traces
can be computed via the Levenshtein distance [45] and by
assuming to represent each model M as a set of traces
always containing the best alignment for each trace of `,
and given that we can express the pairwise distance between
each trace of such a set as a matrix [46], we can easily
compute FL(`,M) by reducing it to an assignment problem,
by summing all the minimal alignment costs and computing
the average. Similar considerations can be also carried out for
the incoming metrics.

A modelM is correctly inferred from a log ` if FL(`,M) = 1,
and incorrect otherwise; therefore, we can consider fitness as a
distance function between logs and models. When such model
is correct, we want to assess the precision of the inferred model:
in this situation, we will have that the model traces L[GM]
associated to a modelM will always be a subset of all the log
traces. As L[GM] is potentially an infinitely enumerable set
of traces due to loops within the automata, we are interested
in providing such a comparison only among traces of the same
length k as follows:

Definition 2 (Precision@k). Given a modelM representing
the behavior of the log ` having a perfect fitness, FL(`,M) = 1,
we define the precision over the traces of length k as:

Pk(`, M) = 
(L[GM]∣

k
)

card (`∣
k
)

The perfect fitness guarantees that the set of the model traces of
length k is always a subset of the set of log traces of the same
length, thus certifying that such definition matches with the one
usually intended in machine learning2.

The notion of generalization is based on the one presented
in [8]. This concept, however, needed to be adapted to the
context of DFAs. The idea behind it is to simulate the missing
behavior of a process model in a log by removing some of
the traces of the original log and by testing the capability of
the discovery algorithm to rediscover the same model also
without the hidden behavior. The generalization power of a
model inference algorithm I with respect to a log ` can be
assessed as a cross-validation test by firstly subdividing the
log ` into h sublogs `1, . . . , `h. Then, a new automaton GMi

is inferred from each sublog `i via the algorithm of choice I;
finally, we can assess the distance between the original log

2More formally, such a condition guarantees that L[GM]∣
k
⊆ `∣

k
always

holds, that can be rewritten as L[GM]∣
k
∩ `∣

k
= L[GM]∣

k
. Therefore, this

definition is completely equivalent to card (`∣
k
∩L[GM]∣

k
)/card (`∣

k
).

card 



from each inferred automaton via the previously defined fitness
function, thus obtaining the following definition:

Definition 3 (Generalization). Given a model inference algo-
rithm I , a log `, and a log subdivision `1, . . . , `h into h sub-logs
such that their union corresponds to `, the generalization of such
algorithm is defined as follows:

G{`1,...,`h}(I) =
1

h

h

∑
i=1
FL(`, I(`i)) s.t. ` = ⋃

1≤i≤h
`i

Generalization values near to 1 imply that the associated
inference algorithms over a given dataset generate models
admitting all the traces seen in the training data.

Last, simplicity for a DFA representing the behavior of a
declarative model M is defined as follows:

Definition 4 (Simplicity). Given a modelM and its associated
(minimized) automaton GM = (V,E), the simplicity of the for-
mer via the latter is defined as S(M) = (card (V ) , card (E)),
where card (V ) (and card (E)) is the number of nodes (and
edges) required to encodeM as a minimal automaton.

V. EXPERIMENTS

To compare the effectiveness of Declare Miner and MDL
in generating DFAs from event logs, we have developed
an interactive tool3 as a standard Python application that
implements some well-known ML algorithms discussed in
Section III, including L∗, RPNI, MDL and EDSM. The tool
can be run interactively using a command-line interface, and
allows the user to load existing event logs formatted with the
XES (eXtensible Event Stream) standard. After choosing the
ML learning algorithm to run, the tool generates as output
the DFA observed from an input event log, together with the
computation of the values for precision, generalization and
simplicity, as defined in Section IV. In addition, the tool is
able to digest a DFA represented in DOT (graph description
language) format. This enables to quantify the values of the
quality metrics related to DFAs previously discovered by other
tools, such as the Declare Miner. We performed the experiments
with a machine consisting of an Intel Core i5 Quad-Core CPU
2GHz and 16GB RAM.

To guarantee the reproducibility of our experiments, we
employed 5 real-life logs:

● a log of a loan application process (LOAN) [47];

● a log of a road traffic fines management process (ROAD)
log [48];

● a log that keeps track of incoming patients with sepsis in
a hospital (SEPSIS) [49];

● a log of a reimbursement process for international decla-
rations (REIMB) [50];

3https://github.com/bpm-diag/DECMOL

TABLE I: Descriptive statistics of real-life logs.

Log Total Distinct Total Event Trace length
Name traces traces (%) events classes min avg max
LOAN 13,087 33.4 262,200 36 3 20 175
ROAD 150,370 0.2 561,470 11 2 4 20
SEPSIS 1,050 80.6 15,214 16 3 14 185
REIMB 6,449 11.7 72,151 34 3 11 27

TRAVEL 7,065 20.9 86,581 51 3 12 90

TABLE II: Precision@k of the DFAs generated with Declare
Miner and MDL

(a) Declare Miner

Log (`) k = 2 k = 3 k = 4

LOAN 0.304 0.042 0.005
ROAD 0.624 0.150 0.026
SEPSIS 0.467 0.110 0.018
REIMB 0.376 0.039 0.007

TRAVEL 0.977 0.114 0.023

(b) MDL

Log (`) k = 2 k = 3 k = 4

LOAN 0.579 0.237 0.085
ROAD 0.583 0.135 0.022
SEPSIS 0.701 0.234 0.052
REIMB 0.305 0.039 0.004

TRAVEL 0.238 0.023 0.002

● a log that keeps track of travel permits (TRAVEL) [51];

Table I reports the characteristics of the five logs used. These
logs are widely heterogeneous ranging from simple to very
complex, with a log size ranging from 1050 traces (for the
SEPSIS log) to 150,370 traces (for the ROAD log). A similar
variety can be observed in the percentage of distinct traces,
ranging from 0,2% to 80,6%, and the number of event classes
(i.e., activities executed within the BP), ranging from 11 to
51. Finally, the trace length also varies from very short traces
(containing only two events), to very long traces (containing
185 events).

To perform a fair comparison between Declare Miner and
MDL, we acted as follows:

● for the discovery of the declarative BP models with
the Declare Miner, we made use of RuM4 [52], a
desktop application that provides a comprehensive set
of declarative process mining tools in a single unified
package, including an implementation of the Declare
Miner. Specifically, to perform the process discovery task,
we instructed RuM to exploit all the constraint patterns
implemented in the tool and we set the minimum constraint
support to 100% for including in the model all those
constraints satisfied by all the log traces. Then, we set the
activity support filter to 0 to include constraint satisfaction
for infrequent activities. Finally, we exploited a dedicated
functionality provided by the Declare Miner to translate
the discovered Declare model M into a minimized DFA
GM.

● for the discovery of DFAs with MDL, we disabled the
preprocessing step provided by the algorithm to remove
the duplicate log traces.

The results of the experiments are shown in Tables II, III and
IV, respectively. We notice that all the generated DFAs have
a perfect fitness value with respect to the event logs used for

4https://rulemining.org/

https://github.com/bpm-diag/DECMOL
https://rulemining.org/


TABLE III: Generalization of the DFAs generated with Declare
Miner and MDL

(a) Declare Miner

Log (`) G(I)

LOAN 1
ROAD 1
SEPSIS 0.997
REIMB —

TRAVEL —

(b) MDL

Log (`) G(I)

LOAN 0.997
ROAD 0.883
SEPSIS 0.959
REIMB 0.761

TRAVEL 0.905

TABLE IV: Simplicity of the DFAs generated with Declare
Miner and MDL

(a) Declare Miner

Log (`) S(M)

LOAN (1026,13087)
ROAD (513,2817)
SEPSIS (2048,22528)
REIMB (512,9472)

TRAVEL (1024,19456)

(b) MDL

Log (`) S(M)

LOAN (48,130)
ROAD (8,41)
SEPSIS (5,21)
REIMB (8,59)

TRAVEL (5,120)

their generation. As an example, in Figure 1, we show the DFA
discovered by using MDL over the ROAD event log.

In Table II, we show the results obtained by assessing
Precision@k for k ∈ {2,3,4}. We notice that for k = 2
both algorithms exhibit reasonable precision values close to
0.5, which can be considered as a good trade off value for
precision. The only exception is the TRAVEL log, where the
DFA generated by the Declare Miner has a precision close to
1 for k=2.

Then, we evaluated Generalization by splitting each log into
sub-logs of around 50 traces each. Table III shows the
obtained results. Given the significantly large size of the DFAs
discovered by the Declare Miner (see also the next discussion
about simplicity), we were able to compute all the values of the
generalization only for the DFAs discovered with MDL, while
the computation of the score for the Declare Miner exceeded
the 5 hours timeout for the REIMB and TRAVEL datasets. In
summary, all the results show that both Declare Miner and
MDL generate DFAs that tend to have generalization values
very close to 1. This can be explained by the fact that the
DFAs underlying declarative models are not prescriptive like
procedural BP models, thus enabling many possible behaviors
not explicitly visible in the event logs.

Finally, in Table IV, we show the computation of Simplicity.
Analyzing the results in the table, it is evident that the DFAs
discovered by MDL are much simpler than the ones generated
by the Declare Miner. This can be explained by the fact that
the DFAs generated by the Declare Miner are computed as the
product of the DFAs representing the single Declare constraints
defined at the outset. As a consequence, the Declare Miner

produces “spaghetti” DFAs that are not only impossible to be
analyzed manually, but also very complex to be verified using
formal techniques, given their size.

VI. CONCLUDING REMARKS

In this paper, we have investigated how to leverage ML for
the automated discovery of DFAs representing the behavior
of declarative BP models from event logs, without using any
further a-priori information, such as the knowledge about the
constraint templates to discover. Specifically, we have adopted
a passive learning algorithm to conduct our experiments, called
MDL. To assess the quality of the generated DFAs, we have
introduced a novel definition of the standard process mining
quality metrics, i.e., precision, generalization and simplicity,
tailored to DFAs. Finally, we have performed a preliminary
evaluation with real-life logs, showing that ML enables to
generate much simpler DFAs than the Declare Miner, keeping
similar values of precision and generalization.

In summary, the major strength of employing ML algorithms
to discover DFAs relies in its unsupervised fashion, which
enables to push the boundaries of the literature on declara-
tive process discovery techniques far from their traditional
supervised assumptions. In addition, the generation of simple
DFAs representing the BP models of interest can improve
the performance for the application of formal reasoning and
verification techniques over them. Last but not least, starting
from a discovered DFA, it is possible to check whether all the
traces accepted by a DFA satisfy a given LTLf formula and,
therefore, to understand if any LTLf formula is inferred by an
event log.

The main issue with passive learning is that the quality of the
learned DFA depends upon the quality of the recorded log.
More recorded traces means the availability of more behavioral
information to build an accurate BP model. In a nutshell,
if the available datasets consist of few log traces, the risk
exists that the generated DFAs are too precise, i.e., unable to
capture any unobserved yet potentially reasonable behavior.
This limitation can be mitigated by employing active learning
algorithms, which are better capable to abstract the behavior
of specific runs that have occurred during an actual operation
to a more general behavior. However, such algorithms require
a continuous interaction between two entities, the learner and
the teacher, and need the definition of a new type of discovery
algorithms that can work interactively.

As future work, first, we aim at investigating the boundaries
of Declare Miner and MDL by testing them against more
real-life logs and synthetic event logs of increasing complexity.
Moreover, we also plan to investigate if ML algorithms are
suitable for the generation of concise DFAs representing the
behavior of procedural BP models, in particular, in cases where
procedural discovery approaches introduce too many model
constructs [5]. In fact, by nature, an event log is neither
declarative nor procedural although the process generating



Fig. 1: The DFA discovered from the ROAD event log through MDL

it might have been conceived as such. Therefore, even if, in
this paper, we have focused on the discovery of DFAs as
representative of declarative BP models, it can be claimed that
a DFA is potentially representative of a procedural model as
well.

Finally, we aim at testing further passive learning algorithms,
such as RPNI and EDSM, employing also negative traces to
verify their impact on the improvement of the quality of the
generated DFAs. Negative traces can contribute to filter out all
those behaviors that should not be allowed by a DFA. Negative
traces can be synthesized starting from rules that a process
designer knows should never be satisfied in the process under
analysis.

Acknowledgements: The work of S. Agostinelli and A. Mar-
rella has been supported by the H2020 project DataCloud
(Grant number 101016835) and the Sapienza grant BPbots.
The work of G. Bergami has been supported by the project
IDEE (FESR1133) funded by the Eur. Reg. Dev. Fund
(ERDF) Investment for Growth and Jobs Prog. 2014-2020.
The work of F. Patrizi has been supported by the project “Data-
awaRe Automatic Process Execution” (DRAPE), by the ERC
Advanced Grant WhiteMech (No. 834228) and by the EU
ICT-48 2020 project TAILOR (No. 952215).

REFERENCES

[1] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich,
and S. Zugal, “Declarative versus Imperative Process Modeling Lan-
guages: The Issue of Understandability,” in 10th International Working
Conference on Business Process Modeling, Development and Support
(BPMDS 2009). Springer, 2009, pp. 353–366.

[2] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “Declare: Full
support for loosely-structured processes,” in 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007).
IEEE, 2007, pp. 287–287.

[3] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science. IEEE Computer Society, 1977,
pp. 46–57.

[4] G. De Giacomo and M. Y. Vardi, “Synthesis for LTL and LDL on Finite
Traces,” in 24th Int. Conf. on AI (IJCAI’15), 2015.

[5] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated Discovery of Process
Models from Event Logs: Review and Benchmark,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, no. 4, pp. 686–705, 2019.

[6] W. Daelemans, “Colin de la Higuera: Grammatical inference: learning
automata and grammars - Cambridge University Press,” Mach. Transl.,
vol. 24, no. 3-4, pp. 291–293, 2010.

[7] F. Vaandrager, “Model Learning,” Communications of the ACM, vol. 60,
no. 2, pp. 86–95, 2017.

[8] A. F. Syring, N. Tax, and W. M. P. van der Aalst, “Evaluating con-
formance measures in process mining using conformance propositions,”
in Transactions on Petri Nets and Other Models of Concurrency XIV.
Springer, 2019, pp. 192–221.

[9] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa,
and D. Reißner, “Abstract-and-Compare: A Family of Scalable Precision
Measures for Automated Process Discovery,” in 16th International
Conference on Business Process Management (BPM 2018). Springer,
2018, pp. 158–175.

[10] F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala, “Parallel
algorithms for the automated discovery of declarative process models,”
Information Systems, vol. 74, pp. 136–152, 2018.

[11] M. Westergaard, “Better Algorithms for Analyzing and Enacting Declar-
ative Workflow Languages Using LTL,” in 9th International Conference
on Business Process Management (BPM 2011), 2011, pp. 83–98.

[12] M. A. Grando, W. M. P. van der Aalst, and R. S. Mans, “Reusing a
declarative specification to check the conformance of different CIGs,” in
BPM Workshops, 2012, pp. 188–199.

[13] M. A. Grando, M. H. Schonenberg, and W. M. P. van der Aalst,
“Semantic-based conformance checking of computer interpretable medical
guidelines,” in BIOSTEC, vol. 273, 2013, pp. 285–300.

[14] M. Rovani, F. M. Maggi, M. de Leoni, and W. M. P. van der Aalst,
“Declarative process mining in healthcare,” Expert Syst. Appl., vol. 42,
no. 23, pp. 9236–9251, 2015.

[15] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Science-
Research and Development, vol. 23, no. 2, pp. 99–113, 2009.

[16] F. M. Maggi, Declarative Process Mining. In: Encyclopedia of Big Data
Technologies. Springer International Publishing, 2019, pp. 625–632.



[17] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari, “Inducing
Declarative Logic-Based Models from Labeled Traces,” in 5th Inter-
national Conference on Business Process Management (BPM 2007).
Springer, 2007, pp. 344–359.

[18] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari,
“Exploiting inductive logic programming techniques for declarative
process mining,” in Transactions on Petri Nets and Other Models of
Concurrency II. Springer, 2009, pp. 278–295.

[19] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni,
“Verifiable agent interaction in abductive logic programming: the SCIFF
framework,” ACM Transactions on Computational Logic (TOCL), vol. 9,
no. 4, pp. 1–43, 2008.

[20] E. Bellodi, F. Riguzzi, and E. Lamma, “Probabilistic declarative process
mining,” in International Conference on Knowledge Science, Engineering
and Management. Springer, 2010, pp. 292–303.

[21] M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Discovering cross-
organizational business rules from the cloud,” in 2014 IEEE Symposium
on Computational Intelligence and Data Mining (CIDM). IEEE, 2014,
pp. 389–396.

[22] F. M. Maggi, “Discovering metric temporal business constraints from
event logs,” in International Conference on Business Informatics Research.
Springer, 2014, pp. 261–275.

[23] T. Kala, F. M. Maggi, C. Di Ciccio, and C. Di Francescomarino, “Apriori
and sequence analysis for discovering declarative process models,” in
2016 IEEE 20th International Enterprise Distributed Object Computing
Conference (EDOC). IEEE, 2016, pp. 1–9.

[24] C. Di Ciccio and M. Mecella, “On the discovery of declarative
control flows for artful processes,” ACM Transactions on Management
Information Systems (TMIS), vol. 5, no. 4, pp. 1–37, 2015.

[25] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovering target-branched
declare constraints,” in International Conference on Business Process
Management. Springer, 2014, pp. 34–50.

[26] ——, “Efficient discovery of target-branched declare constraints,” Infor-
mation Systems, vol. 56, pp. 258–283, 2016.

[27] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and J. Mendling,
“Efficient and customisable declarative process mining with SQL,” in
International Conference on Advanced Information Systems Engineering.
Springer, 2016, pp. 290–305.

[28] T. Hildebrandt, R. Mukkamala, and T. Slaats, “Nested dynamic condition
response graphs,” in 4th IPM International Conference on Fundamentals
of Software Engineering (FSEN 2011). Springer, 2011, pp. 343–350.

[29] V. Nekrasaite, A. T. Parli, C. O. Back, and T. Slaats, “Discovering
Responsibilities with Dynamic Condition Response Graphs,” in 31st
International Conference on Advanced Information Systems Engineering
(CAiSE 2019). Springer, 2019, pp. 595–610.

[30] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, no. 2, pp. 87–106, 1987.

[31] S. Ali, H. Sun, and Y. Zhao, “Model Learning: A Survey on Foundation,
Tools and Applications,” arXiv 1901.01910, 2018.

[32] J. L. Balcázar, J. Dı́az, R. Gavalda, and O. Watanabe, “Algorithms for
learning finite automata from queries: A unified view,” in Advances in
Algorithms, Languages, and Complexity. Springer, 1997, pp. 53–72.

[33] A. W. Biermann and R. Krishnaswamy, “Constructing programs from
example computations,” IEEE Transactions on Software Engineering,
no. 3, pp. 141–153, 1976.

[34] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in 30th International Conference on
Software Engineering (ICSE’08), 2008, pp. 501–510.

[35] J. Oncina and P. Garcia, “Inferring regular languages in polynomial
updated time,” in Pattern recognition and image analysis: selected papers
from the IVth Spanish Symposium. World Scientific, 1992, pp. 49–61.

[36] Z. Xu, C. Wen, S. Qin, and M. He, “Extracting automata from neural
networks using active learning,” PeerJ Computer Science, vol. 7, 2021.

[37] W. M. P. van der Aalst, Process Mining: Data Science in Action. Springer,
2016.

[38] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “An alignment-
based framework to check the conformance of declarative process models
and to preprocess event-log data,” Information Systems, vol. 47, pp. 258–
277, Jan. 2014.

[39] G. De Giacomo, F. M. Maggi, A. Marrella, and S. Sardiña, “Computing
Trace Alignment against Declarative Process Models through Planning,”
in Twenty-Sixth International Conference on Automated Planning and
Scheduling (ICAPS 2016), 2016, pp. 367–375.

[40] M. de Leoni and A. Marrella, “Aligning real process executions and
prescriptive process models through automated planning,” Expert Syst.
Appl., vol. 82, pp. 162–183, 2017.

[41] G. De Giacomo, F. M. Maggi, A. Marrella, and F. Patrizi, “On the
disruptive effectiveness of automated planning for LTLf -based trace
alignment,” in Thirty-First AAAI Conference on Artificial Intelligence
(AAAI’17), 2017, pp. 3555–3561.

[42] M. de Leoni, G. Lanciano, and A. Marrella, “Aligning Partially-Ordered
Process-Execution Traces and Models Using Automated Planning,” in
Twenty-Eighth International Conference on Automated Planning and
Scheduling (ICAPS 2018), 2018, pp. 321–329.

[43] M. S. Waterman, Introduction to computational biology - maps, sequences,
and genomes: interdisciplinary statistics. CRC Press, 1995.

[44] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “Aligning Event
Logs and Declarative Process Models for Conformance Checking,” in
10th International Conference on Business Process Management (BPM
2012). Springer, pp. 82–97.

[45] G. Bergami, F. M. Maggi, M. Montali, and R. Peñaloza, “A Tool for
Computing Probabilistic Trace Alignments,” in CAiSE Forum 2021.
Springer, 2021, pp. 118–126.

[46] T. Sagi and A. Gal, “Non-binary evaluation measures for big data
integration,” VLDB J., vol. 27, no. 1, pp. 105–126, 2018.

[47] B. van Dongen, “BPI Challenge 2012,” Apr 2012. [Online]. Available:
https://data.4tu.nl/articles/dataset/BPI Challenge 2012/12689204/1

[48] M. de Leoni and F. Mannhardt, “Road Traffic Fine Management Process,”
Feb 2015. [Online]. Available: https://data.4tu.nl/articles/dataset/Road
Traffic Fine Management Process/12683249/1

[49] F. Mannhardt, “Sepsis Cases - Event Log,” Dec 2016. [Online].
Available: https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/
12707639/1

[50] B. van Dongen, “International Declarations Log. BPI Challenge
2020,” Mar 2020. [Online]. Available: http://icpmconference.org/2020/
wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes .gz

[51] ——, “Travel Permits Log. BPI Challenge 2020,” Mar 2020. [Online].
Available: http://icpmconference.org/2020/wp-content/uploads/sites/4/
2020/03/PermitLog.xes .gz

[52] A. Alman, C. Di Ciccio, D. Haas, F. M. Maggi, and A. Nolte, “Rule
mining with rum,” in 2nd International Conference on Process Mining,
ICPM 2020, Padua, Italy, October 4-9, 2020, 2020, pp. 121–128.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/PermitLog.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/PermitLog.xes_.gz

	Introduction
	Background
	Declarative Process Modeling with Declare
	Declarative Process Discovery

	Model Learning
	Quality metrics for DFAs
	Experiments
	Concluding Remarks
	References



