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Abstract. State-of-the-art approaches for managing Big Data pipelines
assume their anatomy is known by design and expressed through ad-
hoc Domain-Specific Languages (DSLs), with insufficient knowledge of
the dark data involved in the pipeline execution. Dark data is data that
organizations acquire during regular business activities but is not used
to derive insights or for decision-making. The recent literature on Big
Data processing agrees that a new breed of Big Data pipeline discov-
ery (BDPD) solutions can mitigate this issue by solely analyzing the
event log that keeps track of pipeline executions over time. Relying on
well-established process mining techniques, BDPD can reveal fact-based
insights into how data pipelines transpire and access dark data. However,
to date, a standard format to specify the concept of Big Data pipeline
execution in an event log does not exist, making it challenging to ap-
ply process mining to achieve the BDPD task. To address this issue, in
this paper we formalize a universally applicable reference data model to
conceptualize the core properties and attributes of a data pipeline exe-
cution. We provide an implementation of the model as an extension to
the XES interchange standard for event logs, demonstrate its practical
applicability in a use case involving a data pipeline for managing digital
marketing campaigns, and evaluate its effectiveness in uncovering dark
data manipulated during several pipeline executions.

Keywords: Big Data Pipeline Discovery (BDPD) · Big Data Pipeline ·
Reference Data Model · Process Mining · Event Log · Dark Data · XES

1 Introduction

In the current era of Big Data and Internet-of-Things (IoT), we are witnessing
the transformation of traditional working domains into new challenging cyber-
physical environments (e.g., smart manufacturing) characterized by the availabil-
ity of a large variety of sensors that monitor the evolution of several real-world
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objects of interest and produce a considerable amount of data. Nonetheless,
many data are stored for compliance purposes only but not turned into value,
thus becoming dark data. Gartner defines dark data as the information assets
organizations collect, process and store during regular business activities, but
generally fail to use for other purposes (e.g., analytics, business relationships
and direct monetizing).5 Examples range from server log files, which can give
clues related to the workers’ habits while executing their tasks, to geolocation
data that could reveal traffic patterns. Nowadays, storing and securing dark data
usually entails more expenses and risks than the potential return profit [10,30].

The recent literature on Big Data processing agrees that discovering and in-
terpreting the Big Data pipelines that run within the organization workflow is
essential to valorise dark data for insights and decision-making [8,25]. Big data
pipelines are composite steps for processing data with non-trivial properties, re-
ferred to as the Vs of Big Data (e.g., volume, velocity, etc.) [22]. They: (i) ingest
raw data from disparate sources; (ii) process such data in the computing con-
tinuum, which offers on-demand resource provisioning through a fluid ecosystem
integrating Cloud, Fog, and Edge technologies; and (iii) move it toward the data
consumers, which undertake further transformations, visualizations, etc.

State-of-the-art approaches for managing Big Data pipelines work assuming
their anatomy is known by design and expressed using one of the many available
domain-specific languages (DSLs) [19].

To tackle this issue, in the context of the recently funded EU H2020 Data-
Cloud project6, one of the main targets is to realize a new breed of Big Data
pipeline discovery (BDPD) solutions to infer the structure and behavior of a data
pipeline by solely analyzing the event log that keeps track of its past executions.
Relying on the similarity among the concepts of “data pipeline” and “business
process”, one of the project’s vision is to leverage and customize well-established
process mining techniques to reveal fact-based insights into how data pipelines
transpire and access dark data [4]. However, traditional event logs used for pro-
cess mining are limited in scope [2]. They include attributes tailored to recording
sequence-flow details of process execution (e.g., timestamp and completion of ac-
tivities, etc.), thus neglecting any data- and technological-related aspects needed
to perform BDPD. In addition, to date, a standard format to specify the con-
cept of Big Data pipeline execution in an event log does not exist, making it
challenging to apply process mining techniques to achieve the BDPD task. This
leads to the following research questions:

– RQ1: Which attributes are required in an event log to keep track of data
pipeline executions and properly perform BDPD?

– RQ2: Which process mining techniques can be exploited to uncover and
valorize dark data manipulated during data pipeline executions?

– RQ3: Does process mining provide an effective way to perform BDPD and
uncover dark data in real-world data pipeline executions?

5 https://www.gartner.com/en/information-technology/glossary/dark-data
6 https://cordis.europa.eu/project/id/101016835
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In answering these questions, in this paper, we: (i) formalize a universally
applicable reference data model to conceptualize the core properties of a data
pipeline execution; (ii) implement the model as an extension to the XES7 inter-
change standard for event logs; (iii) demonstrate its practical applicability in a
use case involving a real-world data pipeline for managing digital marketing cam-
paigns; and (iv) evaluate the effectiveness of (some) process mining techniques
in uncovering relevant dark data manipulated during pipeline executions.

The rest of the paper is organized as follows. Section 2 describes our research
methodology, based on design science principles. Section 3 presents the relevant
background on event logs and data pipelines, together with a concrete use case.
The reference data model, its underlying design concepts, and an accompany-
ing interchange format, are presented in Section 4. Section 5 demonstrates the
practical applicability of the reference model in the use case. Section 6 evaluates
the effectiveness of applying process mining over the reference model to perform
BPDB and uncover dark data. Finally, Section 7 draws conclusions, discusses
the limitations of this work, and traces future work.

2 Research Methodology

Our research methodology is inspired to the Design Science approach described
by Johannesson and Perjons in [12]. The methodology is applied in five distinct
sequential phases: problem formulation and objectives, requirements definition,
design and development, demonstration and evaluation.
Problem Formulation and Objectives. In this phase, which is addressed
in Section 1, we first specify the research problem to be tackled, i.e., realiz-
ing a BDPD solution to identify and take advantage of the dark data accessed
during a data pipeline execution. In Section 3, we justify its significance in the
Big Data processing field trough a motivating use case. Then, we elaborate on
three research questions, i.e., RQ1, RQ2 and RQ3, to guide our research toward
defining an artefact to solve the problem. A reference data model to specify a
data pipeline and its core properties, and its implementation as an extension to
the XES standard for event logs, represent such an artefact, which opens the
possibility of applying process mining techniques to perform BDPD.
Requirements Definition. The second phase consists of eliciting the require-
ments for the outlined artefact. In Section 3, after providing the required back-
ground concepts on data pipelines and event logs, we discuss the main findings
of our previous work [19]. In [19], we analyzed the literature on Big Data pipeline
modeling to extract three requirements that guided us to formalize a novel DSL
(called DC-DSL) toward a standardized representation of the structure of a data
pipeline. However, while pipeline modeling through DSLs represents, by nature,
a “subjective” and static view of reality, BDPD is “instance-driven”, i.e., it targets
extracting concrete pipeline execution data from event logs. In this direction, we
rely on the main concepts defined in DC-DSL and its requirements to build the
7 https://xes-standard.org/
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skeleton of our reference data model, and we augment it through the key process
mining notions of “event” and “trace”.
Design. Based on the analysis of the background and the requirements, in the
third phase we make design decisions explicit, discussing the reference data model
and describing its main features in Section 4. Moreover, we present in detail an
implementation of the model as an extension to the XES interchange standard
for event logs, which enables us to answer RQ1.
Demonstration. In the fourth phase, to answer RQ2, we demonstrate the prac-
tical applicability of the reference model in the use case. Specifically, we show
in Section 5 how the targeted use of process mining techniques can support un-
covering and understanding the dark data accessed during many executions of
a real-world data pipeline for managing digital marketing campaigns.
Evaluation. Finally, to answer RQ3, in Section 6 we perform a preliminary
evaluation involving 10 expert users from research institutions and companies
engaged in Big Data pipeline management activities. The aim is to assess the
effectiveness of applying process mining techniques over the reference model to
untangle the relevant dark data manipulated by the use case data pipeline.

3 Background

3.1 Process Mining and Event Logs

Process mining [1] is a family of data analysis techniques that enable decision-
makers to discover flowchart models from event data [5], compare expected and
actual behaviours [7], and enhance models. It focuses on the real execution of pro-
cesses, as reflected by the footprint of reality logged by the information systems
(ISs) of an organization. The starting point is an event log, which is analysed to
extract insights and recurrent patterns about how processes are executed. Event
logs consist of traces that each correspond to one process instance. Each trace
contains a sequence of events that occurred during the execution of the process
instance. Events are related to a particular step in a process with an activity
label, a timestamp, and a trace identifier.

To enable the exchange of event logs between different ISs, the process mining
community has developed an interchange standard that defines the structure and
general contents of event logs. Since 2016, the official IEEE standard for storing,
exchanging and analysing event logs is XES (eXtensible Event Stream) [3]. In
XES, event logs are organized in a three-level hierarchy of log, trace, and event
objects, with a minimal set of explicitly defined attributes on each of the levels.
The standard is designed to allow for additional attributes to extend its scope.
Some relevant extensions to XES were proposed to support communications [13],
privacy-preserving data transmission [24], and uncertain data management [21].

3.2 Big Data Pipelines

The concept of Big Data pipeline can be traced back to 2012 [23], where data
pipelines are described as a “mechanism to decompose complex analyses of large
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data sets into a series of simpler tasks”. Over the years, many definitions of a
data pipeline were provided. Among the most relevant, in [20], the authors refer
to a data pipeline as the “path through which Big Data is transmitted, stored,
processed and analyzed ”. In [18], a data pipeline is defined as “a complex chain
of interconnected activities from data generation through data reception, where
the output of one activity becomes the input of the next one”.

While the literature lacks a rigorous specification of the concept of data
pipeline, some common features that are related to it can be identified:

– A data pipeline consists of chains of processing elements that manipulate
and interact with data sets;

– The outcome of a processing element of a data pipeline will be the input of
the next element in the pipeline;

– Each processing element of a data pipeline interacts with data sets considered
as “big”, i.e., with at least one of the Vs dimensions that is verified to hold.

Looking at the above characteristics, it is evident that many similarities exist
between the concepts of “data pipeline” and “business process”. With the main
difference that any step of a data pipeline is thought to manipulate some data.
Conversely, processes include activities that do not necessarily interact with any
kind of data [1]. Nonetheless, since BDPD resembles the discovery of processes,
as both require an event log to enact the discovery task, it is worth employing
process mining techniques to support the development of novel BDPD solutions.
To achieve this objective, a reference model that formalizes the main properties of
a data pipeline and an extension of the XES standard for event logs is required to
capture the data and technological aspects related to a data pipeline execution.

3.3 Big Data Pipeline Specification trough DSLs

The literature on Big Data processing has proposed several ad-hoc DSLs for
specifying the structure of a data pipeline in graphical format or as an XML
file [19]. DSLs are specification languages targeted to describe a specific appli-
cation domain. This is in contrast to a general-purpose language (GPL), which
is broadly applicable across domains. Compared to GPLs, DSLs cannot cover
all aspects of a given problem due to their limited scope. Still, they fill this gap
with improved expressiveness, offering better domain-specificity and significantly
improving collaboration between domain experts and developers [17].

In our previous work [19], we analyzed the literature on Big Data processing
to categorize the existing DSLs for modeling data pipelines based on their ex-
pressiveness. We found that the majority of DSLs: (i) propose similar constructs
having different semantics to specify a data pipeline; and (ii) are often charac-
terized by an ambiguous semantics, which can hardly be formalized and does
not enable the application of any reasoning technique. Driven by this analysis,
in [19] we derived three requirements to build a novel DSL that integrates and
formalizes the main concepts underlying the structure of a data pipeline:
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1. The DSL must include a pipeline definition mechanism with a clear sepa-
ration between design and run-time aspects and not limited to a specific
technology stack, application domain or ad-hoc processing models;

2. The DSL must include a run-time support that considers pipelines as sepa-
rate units, rather than a single unit, for individual pipeline steps;

3. The DSL must include an enactment approach with run-time driven execu-
tion and support for race-condition-free parallel branches.

The above requirements were realized through DC-DSL (DC stands for Data-
Cloud), which enables different stakeholders to create Big Data pipelines exploit-
ing containerization and orchestration technologies. These are required concepts
to allow data pipeline execution on the resources available in the Computing
Continuum. Since DC-DSL is event log agnostic, in Section 4, we show how we
used it to build the skeleton of our reference data model, which - in contrast -
will be aware of the key process mining concepts “event” and “trace”. In addition,
the reference model keeps track of many execution parameters used to monitor
a data pipeline execution. They are typically recorded by ISs in different data
sources and neglected by DC-DSL, thus becoming dark data.

3.4 Use Case

Fig. 1. DFG of the use case pipeline.

Let us consider the real-world case of a
Big Data pipeline targeting higher mo-
bile business revenues in smart market-
ing campaigns. This use case is offered by
one of the small-medium enterprises in-
volved in the H2020 DataCloud project.
To discover the structure of the use case
pipeline, we relied on the interview-driven
methodology defined in our previous work
[6], which allowed us to specify vari-
ous simulation scenarios to frame the
boundaries of all possible pipeline exe-
cutions. Then, we generated a simulated
event log in the traditional XES format
using the Simio8 tool, obtaining 10,000
execution traces (the log is available
for testing at: https://dx.doi.org/10.
5281/zenodo.7387553) compliant with
the simulation scenarios. In Fig. 1, it is
shown the Directly-Follow Graph (DFG)
representing the pipeline structure, dis-
covered by feeding a process discovery tool
(we used Disco by Fluxicon9) with the
8 https://www.simio.com/
9 https://fluxicon.com/disco/

https://dx.doi.org/10.5281/zenodo.7387553
https://dx.doi.org/10.5281/zenodo.7387553
https://www.simio.com/
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simulated event log. The pipeline is triggered when the system receives a request
to model a new marketing campaign or to report on how an already existing one
is performing. In both cases, the first two steps of the pipeline are querying the
required data and applying specific transformations to it. If the request is for
a report, there is a need to merge the queried data. On the other hand, for a
model request, an algorithm to compute it is launched, and the results are stored
in dedicated databases. Finally, the pipeline ends with either the report or the
model being generated. By applying traditional process mining techniques, only
sequence-flow details of the pipelines and related metrics can be obtained. This
information can be used to grasp insights on the workflow running behind the
data pipeline (e.g., how steps are sequenced, branching probabilities, potential
bottlenecks, and other issues in the process flow). While useful, they do not al-
low us to infer further details from different perspectives, e.g., the flow of data
accessed and manipulated during pipeline execution, the technologies used to
process the Big Data in each pipeline step, etc. In a nutshell, there are relevant
execution data that could be easily captured by any logging system during pipeline
execution, but are lost during the analysis, thus becoming dark data. The first
step to enable process mining techniques accessing and elaborating such data is
to capture them in the event log, as shown in the next sections.

4 Reference Model and XES Extension for Event Logs

In this section, we present our reference data model to capture data pipeline
executions by analyzing its UML class diagram, which is shown in Fig. 2, and
explaining how it relates to the concept of event log. Then, Section 4.2 examines
how to extend the XES standard to capture the properties defined in the model.

4.1 Reference Data Model

We start by looking at the class Big Data Pipeline , which has an ID, a Name,
and a Communication Medium (e.g., a message queue) on which data flows.
Each Big Data Pipeline needs to have at least one Step by definition, and a
Step belongs to only one pipeline. As can be seen from its attributes, a Step has
an ID, a Name, and operates on a Continuum Layer (e.g., edge, fog or cloud)
and has a Type depending on the computed data transformation (e.g., it can be
a data consumer, a data producer, or both). Finally, a Step needs to have at least
a Data Source . A Data Source has an ID, a Name, a Type. The latter specifies
if it is used as input, output, or both, and can be characterized by how it relates
to the Vs of Big Data, e.g., by looking at its Volume. We specialized Data Source
by highlighting Data Streams which are data sources with a certain Velocity,
and we acknowledge that this class can be further specialized to include all the
different Vs that can be appropriated to the context in which the model will
be used. Finally, a Data Source needs to be used by at least one Step. A Step
is made up by at least one Step Phase , which is the core component of the
reference model. A Step Phase belongs to only one Step and has an ID, a Name,
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Fig. 2. The UML class diagram for the reference data model.

an Outcome (either success or failure), and a Timestamp. We highlight four
potential step phases that are commonly used to describe the life cycle of the
steps of a data pipeline, Assigned, Deployed, Started and Completed. Still, we
acknowledge that this could vary depending on the context. A Step Phase taps at
least from one Technology , which has an ID, a Name, and an Operating System
(OS). We consider of interest only Technologies used by at least one Step Phase.
Detailed technological information can be expressed using the GPU , CPU ,
RAM , Storage and Network classes, which contain an ID and a series of
self-explanatory attributes related to the specific class. We consider of interest
only CPUs, GPUs, RAMs, Storages, and Networks that are related to at least
one Technology. Optionally, a Step Phase can be associated with Environment
Variables. They consist of simple pairs of Key and Value attributes, which can
be used to describe the Step Phase domain-specific properties. An Environment
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Fig. 3. Extension of XES derived from the proposed reference model. The nested at-
tributes at the level of each Container attribute (e.g., Data Source or Big Data Pipeline)
are omitted to avoid overwhelming the diagram.

Variable is of interest only if it is associated with at least one Step Phase. Finally,
we model an Execution Trace with its ID. Each Execution Trace needs to
contain at least one Step Phase, and each Step Phase is contained only in one
Execution Trace. We point out that Data Source and Environment Variable are
derived directly from DC-DSL, while Technology, and each class in relationship
with it, has been customized by interpreting the requirements details defined for
DC-DSL. It is worth noticing that while we based our reference model on some
of the core concepts of DC-DSL, its structure has been iteratively evaluated with
the domain experts of the business cases involved in the DataCloud project.

The main connection between the proposed UML class diagram and the
concept of event log is the tight relation between pipeline steps and business
process activities. Indeed, traditional business processes, whose executions are
responsible for generating event data, consist of activities, while data pipelines
contain a sequence of steps. Thus, a pipeline’s step can be seen as an activity that
performs some data transformation. We exploited this notion in the reference
model by associating each Step with the information about its data sources and
the computing layer (i.e., Cloud, Edge, or Fog) on which the transformation is
applied. Even if steps are the core elements of a data pipeline, we decided to
further split a single step into different phases. In this way, when it comes to run-
time, information about when a step enters one of the phases of its lifecycle can
be exploited for analysis purposes. Hence, an event log following the proposed
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Table 1. Attributes at the Event and Trace levels in the XES extension.

Attribute Level Key Type
Trace ID Trace ID
Event Step Phase ID string
Event Step Phase Name string
Event Outcame boolean
Event Timestamp Date
Event Step Container
Event Environment Variable Container
Trace Big Data Pipeline Container
Event Data Source Container
Event Technology Container
Event CPU Container
Event GPU Container
Event RAM Container
Event Storage Container
Event Network Container

model will have multiple entries for the same pipeline step, one for each of its
phases.

4.2 Extending XES

Fig. 3 describes an extension of the XES standard able to represent Big Data
pipelines as formalized in the reference data model. As reported in the latest XES
Standard Definition, the concepts of log, trace, and event contain no information,
but they only define the structure of event data. Thus, information in an event
log should be stored in attributes. All attributes in XES have a string-based key.
Logs, traces, and events each contain an arbitrary number of attributes. There
are six types of elementary attributes, each defined by the type of data value they
represent, and two complex types: List and Container. These attributes hold
any number (may be empty) of child attributes. The value of a List/Container
attribute is derived from the values of its child attributes. Only in the case of
the List, child attributes are ordered and their keys need not be unique.

For this reason, except for Execution Trace and Step Phase classes that match
with the concept of Trace and Event in XES, we translated any other class
included in the UML diagram of the reference model in a Container attribute.
At the same time, we exploited the List attribute to represent relations between
classes. The child attributes of any reference model class have been represented
with one of the elementary attribute types.

In Table 1 we show the definition of the main attributes in the XES exten-
sion, at the Event and Trace levels. In Table 2, it is shown how we translated
relationships between classes through lists at the levels of one of the container of
the classes participating in the relationship. The lists highlighted with (*) should
contain at least one item. Finally, we translated each attribute of the UML classes
into Attributes at the level of each respective Container. For the sake of space,
we do not show here all the details of the XES extension, whose specification
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Table 2. List attributes in the XES extension to represent relations between classes.

Attribute Level Key Type
Event Environment Variables list[Environment Variable]
Event Technologies list[Technology](*)
Technology CPUs list[CPU](*)
Technology GPUs list[GPU](*)
Technology RAMs list[RAM](*)
Technology Storages list[Storage](*)
Technology Networks list[Network](*)
Event Step Step
Step Big Data Pipeline Big Data Pipeline
Step Data Sources list[Data Sources](*)

(obtained through the above considerations) is straightforward. Nonetheless, it
is worth noticing that its definition represents our answer to RQ1.

5 Demonstration

To tackle RQ2, in this section we discuss how process mining techniques can be
applied over our XES extension to: (i) get more detailed process-centric infor-
mation on the use case pipeline of Section 3.4; (ii) obtain data-centric insights
about its execution and untangle dark data accessed by the pipeline to generate
new potential business value.

First, the XES extension works when an IS is recording events at the step
phase level. This enables us to extract more insights into the executed steps of
the big data pipeline using traditional process discovery techniques. Indeed, by
applying one of the process discovery techniques available in [5] over the XES
extension, we can: (i) get the duration of individual step phases and more accu-
rate measures of the overall duration of steps; (ii) get more detailed information
about which step phases are causing bottlenecks or other performance issues;
(iii) have an idea of how the execution of pipeline steps is distributed on the
computing continuum; and (iv) understand how different step phases interleave.

For example, by analyzing the DFG in Fig. 1, we notice that sometimes after
the Transformation step there might be the need of installing supplementary
resources. The usage of the XES extension would allow traditional process min-
ing tools like Disco to get more detailed information about this issue, such as
understanding: (i) in which phase of the Transformation step these additional
resources are needed; (ii) how it relates to the outcome of the current step phase;
(iii) in which continuum layer the associated computations are taking place, and
(iv) if the remote (hardware) resources are needed to consume or produce data
within the pipeline execution. Even more important, with a complete knowledge
of the resources employed in each step phase it may support a fast understand-
ing of the technological threshold that was exceeded during the Transformation
step, which led to the need of installing supplementary resources.

Second, when both the DC-DSL representation of a data pipeline and its
past executions recorded into an event log are available, we can apply tradi-
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tional conformance checking techniques [7] to detect discrepancies (e.g., steps
missing in some pipeline execution or performed in a wrong order, etc.) between
the expected pipeline behavior and its observed executions. In addition, trace
alignment [14] can further support experts to associate a severity to such dis-
crepancies suggesting a repair strategy to fix them. For example, in the presence
of an event log represented through our XES extension, we can catch the exact
moment in the range of a step life-cycle where a deviation occurs. By looking at
the data pipeline model of Fig. 2, there could be execution traces in which the
"Query" step starts before the "Transformation" step but is completed after it,
generating a misalignment.

Third, to obtain further insights from the event log other than the traditional
sequence-flow based information and give value to the dark data involved in
many pipeline executions, we can leverage some recent process mining solutions
that exploit database (DB) theory to carry on analysis on the process behavior
recorded over a relational DB. A couple of approaches specifying DB schemas
fully compatible with the XES standard have been proposed to store log data
[9,29], and they can be easily extended to accommodate the additions provided
by our XES extension. Overall, our idea is to build patterns of SQL queries to
discover relations between the steps of a data pipeline that would be not made
explicit by relying on traditional process discovery techniques. In this direction,
we present some interesting query performed on a DB whose schema perfectly
matches the UML class diagram of the reference model in Fig. 2.

For example, to discover potential dark data sources, we could search for all
the data sources that appear in the log as the output of some steps but are never
used as input, as it is expressed in the following query (Query 1):

1 SELECT ds.name as DataSourceName
2 FROM DataSource ds
3 WHERE NOT EXISTS(
4 SELECT * FROM stepUsesDataSource suds
5 WHERE suds.dataSourceName = ds.name
6 AND (ds.type = ’Input ’ OR ds.type = ’Both’))

Similarly, we may be interested in knowing the amount of dark data that the
pipeline is producing on the cloud. Since dark data are known to be a potential
risk for organizations, having them on the cloud can increase the probability
of attackers that exploit them. To get an idea of this measure, we can run the
following query (Query 2):

1 SELECT ds.name as DataSourceName , ds.volume as DataSourceVolume
2 FROM Step s, DataSource ds, StepUsesDataSource suds
3 WHERE s.continuumLayer = ’Cloud’ AND s.name = suds.stepName AND
4 ds.name = suds.dataSourceName
5 AND NOT EXISTS(
6 SELECT * FROM StepUsesDataSource sudsrc
7 WHERE sudsrc.dataSourceName = ds.name
8 AND (ds.type = ’Input ’ OR ds.type = ’Both’))

Moreover, if we perform one of the queries available in the literature [26,27]
implementing process discovery over an event log stored as a relational DB, we
can translate the DFG of Fig. 1 in a DB view DFG(StepPhaseID1, StepPha-
seID2), in which each record describes pairs of subsequent step phases in the
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DFG. Coming back to our use case pipeline, we can rely on such a view to un-
derstand if the need to install supplementary resources is associated with the
outcome of the phases of the step Transformation. To this aim, we can run the
following query (Query 3), which is searching for the outcome of all the step
phases belonging to the step Transformation followed by a step phase belonging
to the step InstallSupplementaryResources:

1 SELECT sp1.name as StepPhaseName , sp1.outcome as StepPhaseOutcome
2 FROM Step s1, Step s2 , StepPhase sp1 , StepPhase sp2 ,
3 StepPhaseBelongsToStep spbts , DFG d
4 WHERE (d.stepPhaseID1 = sp1.ID
5 AND sp1.ID = spbts.StepPhaseID
6 AND spbts.StepID = s1.ID
7 AND s1.name = ’Transform ’)
8 AND (d.stepPhaseID2 = sp2.ID
9 AND sp2.ID = spbts.StepPhaseID

10 AND spbts.StepID = s2.ID
11 AND s2.name = ’InstallSupplementaryResources ’)

In a similar fashion we can obtain the resource threshold that is triggering
this issue, by looking at the technologies used by step phases belonging to the
step Transformation and followed by a step phase belonging to the step Install-
SupplementaryResources, as expressed in the following query (Query 4):

1 SELECT t.ID as TechnologyID , t.name as TechnologyName
2 FROM Technology t, StepPhaseUsesTechnology sputc ,
3 Step s1, Step s2, StepPhase sp1 , StepPhase sp2 ,
4 StepPhaseBelongsToStep spbts , DFG d
5 WHERE (d.stepPhaseID1 = sp1.ID
6 AND sp1.ID = spbts.StepPhaseID
7 AND spbts.StepID = s1.ID
8 AND s1.name = ’Transform ’)
9 AND (d.stepPhaseID2 = sp2.ID

10 AND sp2.ID = spbts.StepPhaseID
11 AND spbts.StepID = s2.ID
12 AND s2.name = ’InstallSupplementaryResources ’)
13 AND sp1.ID = sputc.StepPhaseID
14 AND t.ID = sputc.TechnologyID

Once we have the IDs and names of those technologies, we can fetch more de-
tails about GPU, CPU, RAM, Storage or Network by performing simple queries,
which are omitted here for the sake of brevity.

Finally, in many cases, dark data derives from domain-dependent values that
are stored in the log but can not be exploited by general-purpose process discov-
ery techniques. To address this issue, we can structure generalized queries that
can be instantiated on a domain basis to infer insights on those values which
would have not been used in a traditional setting. An example of such a query
(Query 5) is the one in which we fetch all the steps containing at least a step
phase with a specific pair of key and value between its environment variables:

1 SELECT ev.key as Key , ev.value as Value , s.name as StepName
2 FROM Step s, StepPhase sp , EnvironmentVariable ev,
3 StepPhaseBelongsToStep spbts ,
4 StepPhaseContainsEnvironmentVariable spcev
5 WHERE spbts.StepID = s.ID AND spbts.StepPhaseID = sp.ID
6 AND sp.ID = spcev.StepPhaseID AND spcev.EnvironmentVariableID =

ev.ID
7 AND ev.key = ’domain -specific -key’
8 AND ev.value = ’domain -specific -value ’
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6 Preliminary Evaluation

To address RQ3, we performed a test involving 10 Big Data pipeline manage-
ment user experts. We aimed to understand if the use of targeted process mining
techniques enabled us to perform BDPD effectively over an event log expressed
through our XES extension. Specifically, starting from the event log employed
in the real-world use case of Section 3.4, suitably augmented to accommodate
the new concepts introduced in the XES extension, we presented to the users
the results of the application of process mining techniques over the event log, as
discussed in Section 5 (thus, related to process discovery, conformance checking
and querying mechanisms). For each suggested application of process mining,
we administered the users a questionnaire asking to rate: (i) the perceived effec-
tiveness of the adopted solution in performing BDPD and uncovering dark data,
and (ii) the complexity of extracting dark data from pipeline executions without
the support of process mining. Questions are rated with a 4-point average scale
structured as follows: 1 (“None”), 2 (“Low”), 3 (“Moderate”), 4 (“High”). Each
user was allowed to add textual feedback to explain a score better. The average
score for any question is reported in Table 3.

Table 3. Questionnaire results.

Process Mining
solution

Effectiveness in performing BDPD
and uncovering dark data (1-4)

Complexity of extracting
dark data without BDPD (1-4)

Process Discovery 3.4 3.4
Conformance Checking 3.8 3.2

Query 1 3 3
Query 2 3 3.6
Query 3 3.8 3.6
Query 4 3.6 3.6
Query 5 3.6 3.6

The majority of the users (70%) were selected from the business case partners
of the H2020 DataCloud project, which focus their business on managing big data
pipelines targeting reduced live streaming production costs of sports events,
trustworthy eHealth patient data management, and analytics in Industry 4.0
manufacturing. The remaining 30% of users are academics engaged in research
activities related to data pipeline definition, deployment, and adaptation.

The questionnaire results clearly outline that: (i) process mining solutions
represent an effective means to perform BDPD towards data pipeline analysis
and dark data extraction, and (ii) it is extremely complex to obtain the same
findings shown in Section 5 by employing traditional Big Data processing solu-
tions. These conclusions are enforced by the fact that all the scores range from 3
to 4. It is worth noticing that, in their textual feedback, many users pointed out
that similar results to process discovery and querying mechanisms could be ob-
tained through an extensive analysis of the system logs recorded during pipeline
executions by the IS of a company, which are often scattered among different
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data sources. The users also recognized this is a time-consuming and error-prone
activity requiring manual and trial-and-error testing over the logs. On the other
hand, the users confirmed that the same results obtained by applying Confor-
mance Checking in Section 5 can not be straightforwardly emulated using
traditional Big Data processing techniques, unless ad-hoc programming scripts
are developed.

7 Concluding Remarks

In the era of Big Data, the application of process-oriented solutions to deal with
issues requiring data awareness is increasing [11,15,16]. In this context, the anal-
ysis of Big Data pipelines and the realization of novel techniques for efficiently
managing their life-cycle is considered as a relevant research challenge in the
field of Big Data processing. In this context, a BDPD solution that provides a
precise knowledge of the characteristics of the processing steps performed dur-
ing a pipeline execution (e.g., CPU usage, resource consumption, size of the
involved data, etc.) can be used for better scheduling the available cloud re-
sources, enabling smart load-balancing and memory management decisions be-
fore the execution of a data pipeline. The discovery activity is also crucial to
interpret bottlenecks, inefficiencies and risks hidden behind the complexity of
data pipelines, which prevent or delay their proper enactment.

To realize this vision, in this paper we have formalized a universally applicable
reference data model to conceptualize the core concepts and properties of a Big
Data pipeline execution. We provided an implementation of the model as an
extension to the XES interchange standard for event logs and demonstrated its
practical applicability in a concrete use case data pipeline.

Our reference model can contribute to the Big Data pipeline field by providing
a common application-independent conceptual framework for capturing data
pipeline executions. Moreover, by achieving the objectives of this research, we
envision a relevant impact also for process mining future developments. Indeed,
differently from the existing process mining techniques, we aim at discovering
models of data pipelines that not only include the traditional sequence-flow
constructs, but that embed information about the performance of the observed
pipelines and the data manipulated by any step of the pipelines. This result
would allow us to push forward the research on the discovery of data-aware and
object-aware business processes, which is currently at an early stage [28].

As an immediate future work, we aim to validate the model’s practical appli-
cability and the effectiveness of process mining to perform BDPD and uncover
dark data against the strong selection of complementary business cases involved
in the H2020 DataCloud project. This will enable us to mitigate the rather pre-
liminary evaluation presented in this paper, which limits the generalizability of
our findings on the effectiveness of process mining (cf. RQ3) only to the data
pipeline analyzed in the use case.
Acknowledgments This work is supported by the H2020 project DataCloud
(Grant number 101016835), and the Sapienza project DISPIPE.
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