
Ontology-based Data Management

Maurizio Lenzerini
Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Part III

3rd International Winter School on Big Data
Bari, Italy, February 13-17, 2017

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (1/70)

The course

Part I
Ontology-based data management: The framework
Queries in OBDM
The nature of query answering in OBDM

Part II
Ontology languages
Modeling the domain through the ontology
Modeling the mapping with the data sources

Part III
Algorithms for query answering
Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (2/70)

Outline

1 Algorithms for query answering

2 Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (3/70)

DL-LiteA,id

DL-LiteA,id is the most expressive logic in the DL-Lite family

Expressions in DL-LiteA,id:

B −→ A | ∃Q | δ(U) E −→ ρ(U) C −→ B | ¬B
Q −→ P | P− V −→ U | ¬U R −→ Q | ¬Q
T −→ >D | T1 | · · · | Tn

Assertions in DL-LiteA,id:

B v C (concept inclusion) E v T (value-domain inclusion)
Q v R (role inclusion) U v V (attribute inclusion)
(id B π1, ..., πn) (identification assertions) (funct Q) (role functionality)
(funct U) (attribute functionality)

In identification and functional assertions, roles and attributes cannot
specialized, and each πi denotes a path (with at least one path with length 1),
which is an expression built according to the following syntax rule:

π −→ S | B? | π1 ◦ π2

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (4/70)

Semantics of DL-LiteA,id

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child PI ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ PI}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI → e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2) ∈ PI

DL-LiteA,id (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (5/70)

Capturing basic ontology constructs in DL-LiteA,id

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note 1: DL-LiteA,id cannot capture completeness of a hierarchy. This would
require disjunction (i.e., OR).

Note 2: DL-LiteA,id can be extended to capture also min cardinality constraints
(A v ≤ n Q), max cardinality constraints (A v ≥ n Q) [Artale et al, JAIR
2009], n-ary relations, and denial assertions (not considered here for simplicity).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (6/70)

Example of DL-LiteA,id ontology

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:integer

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)

(funct isHeadOf−)
...

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (7/70)

Satisfiability and query answering in DL-LiteA,id

Possible approaches to satisfiability checking and query answering:

the chase (used in database theory for reasoning about data dependencies
[Maier 1983], and in data exchange for computing universal solutions
[Fagin et al 2003], see [Greco et al 2012])

resolution-based methods

...

None of the existing approaches directly works for our purpose.

; So, we designed our own algorithm, called PerfectRef , implemented in our
OBDM tool, Mastro

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (8/70)

Satisfiability and query answering in DL-LiteA,id

Remark

We call

positive inclusions (PIs) or positive axioms assertions of the form

B1 v B2, Q1 v Q2

negative axioms the other assertions, i.e.,

negative inclusions (NIs) assertions of the form

B1 v ¬B2, Q1 v ¬Q2

identification assertions, i.e., assertions of the form

(id B π1, ..., πn), (funct Q), (funct U)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (9/70)

Satisfiability and query answering in DL-LiteA,id

Theorem

Let O = OPI ∪ ONI ∪ Oid be a TBox s.t.

OPI is a set of PIs,
ONI is a set of NIs,
Oid is a set of identification assertions.

Then

There is a boolean query qv such that 〈O,S,M〉 is satisfiable if and only if
〈OPI,S,M〉 6|= qv.

For each S such that 〈O,S,M〉 is satisfiable, and for each UCQ q, we
have that

cert(q, 〈O,S,M)〉) = cert(q, 〈OPI,S,M)〉).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (10/70)

Query answering in DL-LiteA,id: Query rewriting

To the aim of answering queries, from now on we assume that O contains only
PIs. Also, we denote by A the ABox M(S).

There is a model can(〈O,A〉) of 〈O,A〉 such that, for each model M ′ of
〈O,A〉, there is a homomorphism from can(〈O,A〉) to M ′, i.e., a function
h from the domain of can(〈O,A〉) to the domain of M ′ such that
acan(〈O,A〉) ∈ Ccan(〈O,A〉) implies h(a)M

′ ∈ CM ′
, and

a(can(〈O,A〉), bcan(〈O,A〉)) ∈ Rcan(〈O,A〉) implies (h(a)M
′
, h(b)M

′
) ∈ RM ′

.

In principle, can(〈O,A〉) can be constructed by means of a procedure,
called chase, that starting from A, “apply” the various PIs, by adding the
facts sanctioned by the PIs. In general, can(〈O,A〉) is infinite.

Thus, instead of trying to build can(〈O,A〉), we adopt a top-down
approach: by using O, we rewrite a CQ q into a UCQ q′ in such a way that
evaluating q′ over A is equivalent to evaluate q over can(〈O,A〉) (keeping
only answers consituted by constants).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-LiteA,id.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (11/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssocProfessor v Professor
as a logic rule: ∀z AssocProfessor(z)→ Professor(z)

Basic rewriting step:

when the atom unifies with the head of the rule (with mgu σ).

substitute the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input query
above the following query (σ = {z/x})

q(x) ← AssocProfessor(x)

We say that the PI AssocProfessor v Professor applies to the atom
Professor(x).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (12/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

Consider now the query
q(x) ← teaches(x, y)

Professor v ∃teaches
as a logic rule: ∀z Professor(z)→ ∃y teaches(z, y)

We add to the reformulation the query (σ = {z1/x, z2/y})

q(x) ← Professor(x)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (13/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

Analogously, for the query

q(x) ← teaches(x, databases)

Professor v ∃teaches
as a logic rule: ∀z Professor(z)→ ∃yteaches(z, y)

teaches(x, databases) does not unify with teaches(z, y), since the existentially
quantified variable z2 in the head of the rule does not unify with the constant
databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (14/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

Conversely, for the following query with join variables

q(x) ← teaches(x, y),Course(y)

Professor v ∃teaches
as a logic rule: ∀z Professor(z)→ ∃y teaches(z, y)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− v Course
as a logic rule: ∀z1∀z2 teaches(z1, z2)→ Course(z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (σ = {z2/y})

q(x) ← teaches(x, y), teaches(z1, y)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (15/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor v ∃teaches
as a logic rule: ∀z Professor(z)→ ∃yteaches(z, y)

does not apply to teaches(x, y) nor teaches(z, y), since y is a join variable.
However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z, y). This rewriting step is called reduce, and produces
the following query

q(x) ← teaches(x, y)

We can now apply the PI above (σ{z1/x, z2/y}), and add to the reformulation
the query

q(x) ← Professor(x)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (16/70)

Answering by rewriting in DL-LiteA,id: The algorithm

1 Rewrite the CQ q into a UCQs: apply to q in all possible ways the PIs in
the TBox O.

2 Treat CQs as sets, so as to block infinite loops

3 This corresponds to exploiting ISAs, role typings, and mandatory
participations to obtain new queries that could contribute to the answer.

4 Unifying atoms can make applicable rules that could not be applied
otherwise.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (17/70)

Query answering in DL-LiteA,id: Query rewriting (cont’d)

Algorithm PerfectRef (q,OP)
Input: conjunctive query q, set of DL-LiteA,id PIs OP
Output: union of conjunctive queries PR
PR := {q};
repeat
PR′ := PR;
for each q ∈ PR′ do
(a) for each g in q do

for each PI I in OP do
if I is applicable to g
then PR := PR ∪ { q[g/(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (18/70)

Answering by rewriting in DL-LiteA,id: The algorithm

Theorem (Calvanese et al, JAR 2007)

The query resulting from the above process is a UCQ, and is the perfect
rewriting rq,O, i.e., evaluating rq,O over M(S) computes the certain answers to
q wrt 〈O,S,M〉.

Note that the same algorithm can be used to check satisfiability of 〈O,S,M〉,
where answers to query qv correspond to violations of negative inclusions.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (19/70)

Query answering in DL-LiteA,id: Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(z, y)
q(x)← teaches(x, z)
q(x)← Professor(x)

M(S): teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,O over M(S) in this case produces
the set {John, Mary}.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (20/70)

Complexity

n : query size

m : number of predicate symbols in O or query q

The number of distinct conjunctive queries generated by the algorithm is less
than or equal to (m× (n+ 1)2)n, which corresponds to the maximum number
of executions of the repeat-until cycle of the algorithm.

Query answering for CQs and UCQs is:

PTime in the size of TBox.

AC0 in the size of the M(S).

Exponential in the size of the query.

Can we go beyond DL-LiteA,id and remain in AC0?

By adding essentially any other DL construct (without limitations) we lose
these computational properties.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (21/70)

Beyond DL-LiteA,id: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA,id −
√

in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

DL-LiteA,id is the most expressive DL of the DL-Lite family

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (22/70)

Complexity matters

A portion of an ontology for the Italian Public Debt:

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (23/70)

Sources of complexity

For realistic ontologies, systems based on PerfectRef works for queries with at
most 7-8 atoms.

Two sources of complexity wrt query:

conjunctive query evaluation is NP-complete – complexity comes from the
need of matching the query and the data
; unavoidable!

the rewritten query has exponential size wrt the original query – complexity
comes from the need of “expanding” the query w.r.t. the ontology
; avoidable?

Example

TBox T : A

B C

D E F G H I

q(x)← A(x), P (x, y), A(y), P (y, z), A(z)

UCQ rewriting of q w.r.t. T contains 729 CQs
i.e., it is a UNION of 729 SPJ SQL queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (24/70)

Sources of complexity

For realistic ontologies, systems based on PerfectRef works for queries with at
most 7-8 atoms.

Two sources of complexity wrt query:

conjunctive query evaluation is NP-complete – complexity comes from the
need of matching the query and the data
; unavoidable!

the rewritten query has exponential size wrt the original query – complexity
comes from the need of “expanding” the query w.r.t. the ontology
; avoidable?

Example

TBox T : A

B C

D E F G H I

q(x)← A(x), P (x, y), A(y), P (y, z), A(z)

UCQ rewriting of q w.r.t. T contains 729 CQs
i.e., it is a UNION of 729 SPJ SQL queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (24/70)

Avoiding exponential blow-up: first attempt

Idea: avoid rewriting whatsoever!

Unfortunately, this idea does not work:

Theorem (Calvanese et al, JAR 2007)

Given M(S), there is no finite database B such that for every query q,
cert(q, 〈O,S,M〉) = qB

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (25/70)

Avoiding exponential blow-up: second attempt

Idea: try to apply the chase only partially, so as to obtain a finite database
(possibly with variables) such that only “small rewritings” of conjunctive
queries are needed [Kontchakov et al, KR 2010]

Two problems:

it works only without role inclusions

(partial) materialization not always appropriate in OBDM

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (26/70)

Avoiding exponential blow-up: third attempt

Requiem [Pérez-Urbina et al, 2009] is a query rewriting algorithm based on
resolution for ELHIO that rewrites in UCQ for DL-LiteA,id, and limits the
number of “reduce” steps wrt PerfectRef . Still the size of the rewritten query
is exponential in the worst case.

Presto [Rosati, KR 2010] is the current rewriting algorithm used in Mastro,
based on the following ideas for improving the performance of PerfectRef :

centering the rewriting around the query variables rather than the query
atoms – this allows for

collapsing sequences of rewriting steps into single steps and
dramatically pruning the solution space of the algorithm

going beyond the disjunctive normal form (UCQ) of the rewritten query –
nonrecursive datalog queries (UCQ with an additional unfolding step)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (27/70)

Avoiding exponential blow-up: third attempt

Presto replaces the “atom-rewrite” and “reduce” rules of PerfectRef with a rule
(based on MGS) that eliminates existential join variables, where elimination of
an existential join variable means that the variable turns into a non-join
existential variable (through unification steps)

This makes the rewriting produced by Presto exponential with respect to the
number of eliminable existential join variables in the query (notice: in practice,
often the majority of existential join variables in a CQ are not eliminable)

; dramatic reduction of the size of the query generated. Presto can handle
queries with about 30 atoms.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (28/70)

Avoiding exponential blow-up: other attempts

[Calvanese et al, KR 2012] shows how to exploit knowledge about inclusion
dependencies on M(S) in order to produce more compact rewritings (See
Ontop, an OBDM tool developed at the Free University of Bolzano)

Prexto [Rosati, ESWC 2012] applies this idea to Presto.

In the worst case, Prexto still rewrites into a union of conjunctive queries of
exponential size wrt the original query. Is it avoidable?

Theorem (Kikot et al, DL 2011)

Cheking whether ~t ∈ cert(q, 〈O,M,S〉) is NP-complete in combined
complexity, even if O is in DL-LiteR, and M(S) is constituted by just one
atomic assertion A(c).

Since answering a FOL query over a database A(c) can be done in linear time,
it follows that no algorithm can construct a FOL rewriting in polynomial time,
unless P = NP.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (29/70)

Avoiding exponential blow-up: other attempts

Polynomial FOL rewritings exist in the case of DL-Litecore (DL-LiteR
without role inclusions) [Kikot et al, DL 2011].

Polynomial rewritings exist if we allow rewriting to be expressed in
nonrecursive Datalog queries using additional symbols [Gottlob and
Schwentick, DL 2011].

Many recent papers carry out deep investigations on the problem from
various points of view [Kikot et al, AAAI 2011], [Gottlob et al, ICDE 2011],
[Kikot et al, KR 2012], [Kikot et al, LICS 2014], [Bienvenu et al DL 2015],
[Bienvenu et al DL 2016] etc.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (30/70)

Exploiting (virtual) ABox dependencies

As in databases, we can exploit dependencies on the data and on the ABox to
optimize query processing.

ABox dependencies express conditions on the data in the (virtual) ABox.

Syntax: C1 vA C2 R1 vA R2

Meaning: constrain the assertions present in the ABox

A ` A1 vA A2 iff A1(d) ∈ A implies A2(d) ∈ A
A ` A vA ∃P iff A(d) ∈ A implies P (d, d′) ∈ A for some d′

A ` P1 vA P2 iff P1(d, d′) ∈ A implies P2(d, d′) ∈ A
· · ·

Note: ABox dependencies are fundamentally different from TBox assertions.
They constrain the syntactic structure of the ontology (the ABox itself), and
not the models.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (31/70)

Exploiting ABox/data dependencies in OBDM

In an OBDM system, ABox/data dependencies have an impact that spans all
system components:

Dependencies on the sources S induce via the mapping M dependencies
on the virtual ABox M(S).

The mapping itself in general induces additional dependencies on M(S)
(that do not directly depend on S).

Dependencies on M(S) interact with the TBox T , and such interaction
can be exploited for optimization.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (32/70)

Eliminating redundant TBox assertions

TBox optimization is based on a characterization of assertions in a TBox T
that are redundant wrt a set Σ of ABox dependencies.

Example (Direct redundancy)

Let T be:

∃hasFather

Person

Human Let Σ be:

∃hasFather

Person

Human

Note: Σ enforces e.g., that

hasFather(luisa, franz) ∈ A implies Human(luisa) ∈ A.

Then Person v Human is redundant in T .

The overall characterization of redundant TBox assertions is more involved.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (33/70)

Eliminating redundant TBox assertions

TBox optimization is based on a characterization of assertions in a TBox T
that are redundant wrt a set Σ of ABox dependencies.

Example (Direct redundancy)

Let T be:

∃hasFather

Person

Human Let Σ be:

∃hasFather

Person

Human

Note: Σ enforces e.g., that

hasFather(luisa, franz) ∈ A implies Human(luisa) ∈ A.

Then Person v Human is redundant in T .

The overall characterization of redundant TBox assertions is more involved.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (33/70)

Computing an optimized TBox

Given a TBox T and a set Σ of ABox dependencies:

1 Compute the deductive closure Tcl of T (at most quadratic in size of T).

2 Compute the deductive closure Σcl of Σ (at most quadratic in size of Σ).

3 Eliminate from Tcl all TBox assertions redundant wrt Σcl, obtaining Topt.

Notes:

Topt can be computed in polynomial time in the size of T and Σ.

Topt might be much smaller than T .

Theorem

For every (virtual) ABox A satisfying Σ and for every UCQ q, we have that

cert(q, 〈T ,A〉) = cert(q, 〈Topt,A〉).

Hence, Topt can be used instead of T independently of the adopted query
rewriting method (provided the ABox satisfies Σ).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (34/70)

Computing an optimized TBox

Given a TBox T and a set Σ of ABox dependencies:

1 Compute the deductive closure Tcl of T (at most quadratic in size of T).

2 Compute the deductive closure Σcl of Σ (at most quadratic in size of Σ).

3 Eliminate from Tcl all TBox assertions redundant wrt Σcl, obtaining Topt.

Notes:

Topt can be computed in polynomial time in the size of T and Σ.

Topt might be much smaller than T .

Theorem

For every (virtual) ABox A satisfying Σ and for every UCQ q, we have that

cert(q, 〈T ,A〉) = cert(q, 〈Topt,A〉).

Hence, Topt can be used instead of T independently of the adopted query
rewriting method (provided the ABox satisfies Σ).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (34/70)

Computing an optimized TBox

Given a TBox T and a set Σ of ABox dependencies:

1 Compute the deductive closure Tcl of T (at most quadratic in size of T).

2 Compute the deductive closure Σcl of Σ (at most quadratic in size of Σ).

3 Eliminate from Tcl all TBox assertions redundant wrt Σcl, obtaining Topt.

Notes:

Topt can be computed in polynomial time in the size of T and Σ.

Topt might be much smaller than T .

Theorem

For every (virtual) ABox A satisfying Σ and for every UCQ q, we have that

cert(q, 〈T ,A〉) = cert(q, 〈Topt,A〉).

Hence, Topt can be used instead of T independently of the adopted query
rewriting method (provided the ABox satisfies Σ).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (34/70)

Deriving ABox dependencies

Derived from dependencies on the data in S:

Example

Suppose we have two tables in S:

ResT[SSN: String, . . .] stores data about researchers

ManT[SSN: String, . . .] stores data about managers

Consider the following mapping M:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))
m2: SELECT SSN FROM ManT ; Manager(pers(SSN))

If S satisfies the inclusion dependency ManT[SSN] ⊆ ResT[SSN],
then M(S) satisfies the dependency Manager vM(S) Researcher.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (35/70)

Deriving ABox dependencies

Derived from dependencies on the data in S:

Example

Suppose we have two tables in S:

ResT[SSN: String, . . .] stores data about researchers

ManT[SSN: String, . . .] stores data about managers

Consider the following mapping M:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))
m2: SELECT SSN FROM ManT ; Manager(pers(SSN))

If S satisfies the inclusion dependency ManT[SSN] ⊆ ResT[SSN],
then M(S) satisfies the dependency Manager vM(S) Researcher.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (35/70)

Deriving ABox dependencies (cont’d)

Induced by the form of the data in S and the mapping M:

Example

Suppose that in S we have one table: ResT[SSN: String, Level : Boolean, . . .]

Stores data about researchers (including managers).

For managers the value of Level is true, otherwise it is false.

Consider the following mapping M:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))

m2: SELECT SSN FROM ResT

WHERE Level=’true’

; Manager(pers(SSN))

We have that M(S) satisfies the dependency Manager vM(S) Researcher.
This holds since the lhs query of m2 is contained in the lhs query of m1 (in the
traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is
very common in OBDM systems.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (36/70)

Deriving ABox dependencies (cont’d)

Induced by the form of the data in S and the mapping M:

Example

Suppose that in S we have one table: ResT[SSN: String, Level : Boolean, . . .]

Stores data about researchers (including managers).

For managers the value of Level is true, otherwise it is false.

Consider the following mapping M:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))

m2: SELECT SSN FROM ResT

WHERE Level=’true’

; Manager(pers(SSN))

We have that M(S) satisfies the dependency Manager vM(S) Researcher.
This holds since the lhs query of m2 is contained in the lhs query of m1 (in the
traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is
very common in OBDM systems.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (36/70)

Deriving ABox dependencies (cont’d)

Induced by the form of the data in S and the mapping M:

Example

Suppose that in S we have one table: ResT[SSN: String, Level : Boolean, . . .]

Stores data about researchers (including managers).

For managers the value of Level is true, otherwise it is false.

Consider the following mapping M:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))

m2: SELECT SSN FROM ResT

WHERE Level=’true’

; Manager(pers(SSN))

We have that M(S) satisfies the dependency Manager vM(S) Researcher.
This holds since the lhs query of m2 is contained in the lhs query of m1 (in the
traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is
very common in OBDM systems.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (36/70)

Deriving ABox dependencies (cont’d)

We can use the mapping to enforce dependencies “corresponding” to the TBox
assertions:

Example

Suppose that in S we have one table: ResT[SSN: String,Type: Char, . . .]

Stores data about researchers of all types.

The value of Type encodes the type or researcher: ’m’ for managers, ’p’ for
principal investigators, ’c’ for coordinators, and ’r’ for other researchers.

We can define a mapping M that induces suitable dependencies:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))

m2: SELECT SSN FROM ResT

WHERE Type=’p’

; PrincInv(pers(SSN))

m3: SELECT SSN FROM ResT

WHERE Type=’c’

; Coordinator(pers(SSN))

m4: SELECT SSN FROM ResT

WHERE Type=’m’ OR Type=’p’ OR Type=’c’

; Manager(pers(SSN))

We have that M(S) satisfies e.g., the dependency PrincInv vM(S) Manager.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (37/70)

Deriving ABox dependencies (cont’d)

We can use the mapping to enforce dependencies “corresponding” to the TBox
assertions:

Example

Suppose that in S we have one table: ResT[SSN: String,Type: Char, . . .]

Stores data about researchers of all types.

The value of Type encodes the type or researcher: ’m’ for managers, ’p’ for
principal investigators, ’c’ for coordinators, and ’r’ for other researchers.

We can define a mapping M that induces suitable dependencies:
m1: SELECT SSN FROM ResT ; Researcher(pers(SSN))

m2: SELECT SSN FROM ResT

WHERE Type=’p’

; PrincInv(pers(SSN))

m3: SELECT SSN FROM ResT

WHERE Type=’c’

; Coordinator(pers(SSN))

m4: SELECT SSN FROM ResT

WHERE Type=’m’ OR Type=’p’ OR Type=’c’

; Manager(pers(SSN))

We have that M(S) satisfies e.g., the dependency PrincInv vM(S) Manager.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (37/70)

Outline

1 Algorithms for query answering

2 Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (38/70)

SPARQL queries over OWL 2 QL ontologies

The DL-Lite family includes DL-LiteR, that is the basis of OWL 2 QL, a profile of
OWL 2. Does the DL-LiteA,id technique provide a solution to the problem of
answering SPARQL queries posed to OWL 2 QL ontologies?

The answer is no, for the following main reasons:

OWL 2 QL has some features on relations that DL-LiteA,id does not have
(i.e., reflexive, irreflexive relations)

In OWL 2 QL one can assert inequality between individuals, while DL-LiteA,id
does not have inequality; SPARQL queries posed to OWL 2 QL ontologies can
also use the inequality predicate, contrary to pure CQs

In OWL 2 QL an ontology entity can belong to different categories (e.g., an
individual and a class), while DL-LiteA,id is a pure FOL language
(metamodeling)

Variables appearing in both predicate and argument positions
(metaquerying) are allowed in SPARQL queries, contrary to pure CQs (or,
the Direct Semantics Entailment Regime of SPARQL)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (39/70)

Metamodeling and metaquerying

Up to now, we have assumed that the TBox and the ABox were first-order, with
a strict separation between individuals and classes/relations.

Metamodeling: specifying

metaclasses (classes whose instances can be themselves classes), and
metaproperties (relationships between metaclasses)

Metaquerying: expressing queries with

variables both in predicate and object position, and
TBox atoms

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (40/70)

Enriching the mapping languages: mapping intensional
knowledge

Source S:

T-CarTypes

Code Name

T1 Coupé

T2 SUV

T3 Sedan

T4 Estate

T-Cars

CarCode CarType EngineSize BreakPower Color TopSpeed

AB111 T1 2000 200 Silver 260

AF333 T2 3000 300 Black 200

BR444 T2 4000 400 Grey 220

AC222 T4 2000 125 Dark Blue 180

BN555 T3 1000 75 Light Blue 180

BP666 T1 3000 600 Red 240

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (41/70)

Example

Ontology O: Car v Vehicle

Source S:
T-CarTypes

Code Name

T1 Coupé

T2 SUV

T3 Sedan

T4 Estate

T-Cars

CarCode CarType EngineSize BreakPower Color TopSpeed

AB111 T1 2000 200 Silver 260

AF333 T2 3000 300 Black 200

BR444 T2 4000 400 Grey 220

AC222 T4 2000 125 Dark Blue 180

BN555 T3 1000 75 Light Blue 180

BP666 T1 3000 600 Red 240

Mapping M:

{(y) | T-CarTypes(x, y)}; TypeOfCar(y), y v Car

{(x, v, z) | T-Cars(x, y, t, u, v, q) ∧ T-CarTypes(y, z)}; z(x)

{(x, y) | T-CarTypes(z1, x) ∧ T-CarTypes(z2, y) ∧ x 6= y}; x v ¬y

The ontology O is enriched through M and S.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (42/70)

Metamodeling and metaquerying

With metaclasses and metaproperties in the ontology, metaqueries become
natural, e.g.:

Example

Interesting queries that can be posed to 〈O,S,M〉 exploit the higher-order
nature of the system:

Return all the instances of Car, each one with its own type:
q(x, y) ← y(x), Car(x), TypeOfCar(y)

Return all the concepts which AB111 is an instance of:
q(x) ← x(AB111)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (43/70)

Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian

Object properties: ate, liked, dislike

{ (x) | ate(x, y), liked(x, y), margherita(y) }

{ (x) | ate(x, y), liked(x, y), margherita(y), dislike(x, margherita) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian,
z 6= ortolana }

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (44/70)

Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian

Object properties: ate, liked, dislike

{ (x) | ate(x, y), liked(x, y), margherita(y) }

{ (x) | ate(x, y), liked(x, y), margherita(y), dislike(x, margherita) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian,
z 6= ortolana }

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (44/70)

Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian

Object properties: ate, liked, dislike

{ (x) | ate(x, y), liked(x, y), margherita(y) }

{ (x) | ate(x, y), liked(x, y), margherita(y), dislike(x, margherita) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian,
z 6= ortolana }

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (44/70)

Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian

Object properties: ate, liked, dislike

{ (x) | ate(x, y), liked(x, y), margherita(y) }

{ (x) | ate(x, y), liked(x, y), margherita(y), dislike(x, margherita) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian,
z 6= ortolana }

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (44/70)

Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian

Object properties: ate, liked, dislike

{ (x) | ate(x, y), liked(x, y), margherita(y) }

{ (x) | ate(x, y), liked(x, y), margherita(y), dislike(x, margherita) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z) }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian }

{ (x, z) | ate(x, y), liked(x, y), z(y), dislike(x, z), z v vegeterian,
z 6= ortolana }

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (44/70)

Higher order semantics: interpretation as a pair 〈Σ, I0〉

Interpretation structure Σ:

Interpretation function I0, assigning semantics (i.e., a domain object) to
expressions.

Note: a domain object is not forced to be an individual (e.g., see β), or to
have a concept or relation extension

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (45/70)

Higher order semantics: satisfaction

Suitable conditions state when an axiom is satisfied by an interpretation 〈Σ, I0〉:
for concepts: 〈Σ, I0〉 |= e1 v e2 if (eI01)E ⊆ (eI01)E

for individuals: 〈Σ, I0〉 |= e1(e2) if (eI02)E ∈ (eI01)E

for relations: 〈Σ, I0〉 |= e1(e2, e3) if (eI02 , e
I0
3) ∈ (eI01)R

for attributes: 〈Σ, I0〉 |= e1(e2, e3) if (eI02 , e
I0
3) ∈ (eI01)A

· · ·

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (46/70)

The “metagrounding” technique

Let Q be a query over an ontology O (without identification assertions).

a metagrounding of Q is a query Q′ obtained from Q by substituting the
metavariables occurring in Q in class, object property or data property
positions with a class, object property and data property expression over
O, respectively

e.g., if O1 contains the classes A,B,C and the object property R, and Q is
the query

Q1()← A v ¬x,B(y), R(x, z), z(y)

then a metagrounding of Q is the query Q′ obtained by applying the
substitution {x← C, z ← C}, i.e.,

Q1()← A v ¬C,B(y), R(C,C), C(y)

Answering Q through metagrounding means computing the union of the
answers to all metagroundings of Q

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (47/70)

Does metagrounding work?

Example

O1 : {B(F), C(F), A v ¬C,R(C,A), R(B,C), A(E)}
Q1()← A v ¬x,B(y), R(x, z), z(y)

Although no metagrounding of Q1 is true, one can show that Q1 is indeed true,
by partitioning the models of O1 into

1 those for which A and B are disjoint, and

2 those for which A and B are not disjoint

and showing that the metagrounding (x← B, z ← C, y ← F) makes Q1 true in
(1), and the metagrounding (x← C, z ← A, y ← F) makes Q1 true in (2).

Metagrounding does not suffice

In general, answering metaqueries cannot be done through metagrounding.
Note that in the above example, the “culprit” is the uncertainty of the axiom
A v ¬B.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (48/70)

Uncertain axioms and TBox-complete ontologies

Definition

An axiom α over the alphabet of O is certain if either O |= α, or O |= ¬α.

O is TBox-complete if there exists no negative axiom that can be
expressed over the alphabet of O that is not certain

TBox-completeness can be checked in quadratic time w.r.t. the size of the
ontology alphabet

a methodology can be devised to obtain a TBox-complete ontology from
an ontology that is not TBox-complete, keeping the same “intuitive
intended models”

TBox-complete ontologies are common in practice. For example, every
ontology designed following the traditional methodology for designing ER
schemas can be naturally turned into a TBox-complete ontology

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (49/70)

Uncertain axioms and TBox-complete ontologies

There is a model can(〈O,A〉) of 〈O,A〉 such that, for each model M ′ of
〈O,A〉, there is an extended homomorphism from can(〈O,A〉) to M ′.
Extended means that the homomorphism preseves also TBox assertions,

e.g., if c
can(〈O,A〉)
1 ⊆ ccan(〈O,A〉)2 , then h(c1)M

′ ⊆ h(c2)M
′
.

It can be shown that in can(〈O,A〉) there are exactly the same classes and
relations we have in 〈O,A〉, and the TBox assertions that are satisfied in
can(〈O,A〉) are exactly those that are logically implied by 〈O,A〉.
This allows us to show that given a TBox-complete ontology O and a
query Q, Q can be answered by applying the metagrounding technique, i.e.
Q is true if at least one of its metagrounding is true.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (50/70)

Answering metaqueries over TBox-complete ontologies
through metagrounding

Query answering algorithm

input ontology O, query Q
if there exists a metagrounding Q′ such that O |= int(Q′) and O |= ext(Q′),

where

int(Q′) denotes the TBox atoms of Q′, and

ext(Q′) denotes the ABox atoms of Q′

then return true
else return false

the algorithm is sound and complete for TBox-complete ontologies

O |= int(Q′) and O |= ext(Q′) can be checked by using any off-the-shelf
OBDM inference and querying systems

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (51/70)

The general case

Let UO be the set of negative assertions that can be expressed over the
alphabet of O and are uncertain in O

Definition

If α ∈ UO, then a violation set of α w.r.t. O is a minimal set Vα,O of
ABox axioms over the predicates of O and a set of fresh individuals not in
O, such that α ∪ Vα,O is unsatisfiable

If σ ⊆ UO, then the σ-completion of O, denoted Oσ, is the ontology

O ∪ σ ∪ CUO\σ, where CUO\σ is the union of the violation sets of axioms in
UO that are not in σ

Note: Intuitively, Oσ is obtained from O by adding all axioms in σ, and suitable
axioms in such a way that all axioms in UO \ σ are violated
Note: Oσ is TBox-complete

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (52/70)

Violation sets and ontology completion – example

Example

For the following ontology O2:

{B(F), C(F), A v ¬C,R(E,E), R(F, F), R(C,A), R(B,C), A(E)}

We have UO2 = {A v ¬B}, and

for σ1 = {A v ¬B}, we have Oσ1
2 = O2 ∪ {A v ¬B}.

for σ2 = ∅, we have Oσ2
2 = O2 ∪ {A(s), B(s)}

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (53/70)

Algorithm for answering metaqueries over general
ontologies

By exploiting the notions of violation set and ontology completion, we are able
to derive the following sound and complete algorithm:

Query answering algorithm

input: ontology O, query Q
if there exists σ ⊆ UO such that Oσ 2 Q
then return false
else return true

Complexity

ABox complexity TBox complexity Combined complexity
TBox-complete AC0 PTime NP-complete
ontologies
General ontologies AC0 coNP-complete Πp

2-complete

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (54/70)

The notion of dynamic classification

Metamodeling can be used to express important modeling patterns, such as
dynamic classification.

Static classifications:
Person is classified by sex into Male and Female. This means that
Person(John), and sex(John,Male) implies Male(John).

Dynamic classifications:
Product is classified by HasProductType.

HasProductType v rdf:type

∃HasProductType v Product

(funct HasProductType)
∀x (∃yHasProductType(y, x))↔ x v Product

∀x∀y (rdf:type(x, y) ∧ ∃z HasProductType(z, y))→ HasProductType(x, y)

Note that the following is implied:
∀x∀y∀z∀w HasProductType(x, z) ∧ HasProductType(y, w) ∧ z 6= w → z v ¬w

Note that such metamodeling pattern requires to go beyond OWL 2 QL

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (55/70)

Outline

1 Algorithms for query answering

2 Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (56/70)

The problem of inconsistency

Up to now, we have implicitly assumed to deal with satisfiable OBDM systems,
but in practice the OBDM system can be unsatisfiable.

Problem

Query answering based on classical logic becomes meaningless in the presence
of inconsistency (ex falso quodlibet).

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (57/70)

Example: an inconsistent DL-Lite ontology

O
RedWine v Wine WhiteWine v Wine
RedWine v ¬WhiteWIne Wine v ¬Beer
Wine v ∃producedBy ∃producedBy v Wine
Wine v ¬Winery Beer v ¬ Winery
∃producedBy− vWinery (funct producedBy)

M
R1(x,y,‘white’) ; WhiteWine(x) R1(x,y,‘red’) ; RedWine(x)
R2(x,y) ; Beer(x) R1(x,y,z) ∨ R2(x,y) ; producedBy(x,y)

S
R1(grechetto,p1,‘white’) R1(grechetto,p1,‘red’)
R2(guinnes,p2) R1(falanghina,p1,‘white’)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (58/70)

Inconsistent-tolerant semantics

Problem

To handle classically-inconsistent OBDM systems in a more meaningful way,
one needs to change the semantics.

The semantics proposed in [Lembo et al, RR 2010] for inconsistent OBDM
systems is based on the following principles:

We assume that O and M are always consistent (this is true if O is
expressed in DL-LiteA,id), so that inconsistencies are caused by the
interaction between the data at S and the other components of the
system, i.e., between M(S) and O
We resort to the notion of repair [Arenas et al, PODS 1999]. Intuitively, a
repair for 〈O,S,M〉 is an ontology 〈O,A〉 that is consistent, and
“minimally” differs from 〈O,S,M〉.

See [Leopoldo Bertossi, “Database Repairing and Consistent Query
Answering”, Synthesis Lectures on Data Management, Vol. 3, No. 5,
Morgan and Claypool].

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (59/70)

Inconsistent-tolerant semantics

What does it mean for A to be “minimally different” from 〈O,S,M〉? We base
this concept on the notion of symmetric difference.

We write S1 ⊕ S2 to denote the symmetric difference between S1 and S2, i.e.,
S1 ⊕ S2 = (S1 \ S2) ∪ (S2 \ S1)

Definition (Repair)

Let K = 〈O,S,M〉 be an OBDM system. A repair of K is an ABox A such
that:

1 Mod(〈O,A〉) 6= ∅,
2 no set of facts A′ exists such that

Mod(〈O,A′〉) 6= ∅,
A′ ⊕M(S) ⊂ A⊕M(S)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (60/70)

Example: Repairs

Rep1

{WhiteWine(grechetto), Beer(guinnes), WhiteWine(falanghina)}

Rep2

{RedWine(grechetto), Beer(guinnes), WhiteWine(falanghina)}

Rep3

{WhiteWine(grechetto), producedBy(guinnes, p2),
WhiteWine(falanghina)}

Rep4

{RedWine(grechetto), producedBy(guinnes, p2),
WhiteWine(falanghina)}

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (61/70)

Reasoning wih all repairs: the AR semantics

Problems:

Many repairs in general

What is the complexity of reasoning about all such repairs?

Theorem

Let K = 〈O,S,M〉 be an OBDM system, and let α be a ground atom.
Deciding whether α is logically implied by every repair of K is coNP-complete
with respect to data complexity.

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (62/70)

coNP hardness of the AR-semantics

Ontology O
∃R v Unsat
∃R− v ¬∃LT−1
∃R− v ¬∃LF−1
∃R− v ¬∃LT−2
∃R− v ¬∃LF−2
∃R− v ¬∃LT−3
∃R− v ¬∃LF−3
∃LT 1 v ¬∃LF 1

∃LT 1 v ¬∃LF 2

∃LT 1 v ¬∃LF 3

∃LF 1 v ¬∃LT 2

∃LF 1 v ¬∃LT 3

∃LT 2 v ¬∃LF 2

∃LT 2 v ¬∃LF 3

∃LF 2 v ¬∃LT 3

∃LT 3 v ¬∃LF 3

3-CNF formula φ: (a1 ∨ ¬a2 ∨ ¬a3) ∧ (¬a3 ∨ a4 ∨ ¬a1)

ABox A corresponding to φ

a	

c1	 c2	

a1	 a2	 a3	 a4	

R	 R	

LT1	 LF2	 LF3	 LF3	 LF1	 LT4	

φ satisfiable iff 〈O,A〉 6|=AR Unsat(a)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (63/70)

When in doubt, throw it out: the IAR semantics

Other intractability results of the AR semantics, even for simpler languages
(e.g., [Bienvenu et al 2012-2015])

Idea: The IAR semantics

We consider the “intersection of all repairs”, and the set of models of such
intersection under O as the semantics of the system (When in Doubt, Throw It
Out).

Note that the IAR semantics is an approximation of the AR semantics

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (64/70)

Inconsistent-tolerant query answering

Two possible methods for answering queries posed to K = 〈O,S,M〉 according
to the inconsistency-tolerant semantics:

Compute the intersection A of all repairs of K, and then compute ~t such
that 〈O,A〉 |= q(~t)

Rewrite the query q into q′ in such a way that, for all ~t, we have that
K |=IAR q(~t) is equivalent to ~t ∈ q′(M(S)). Then, evaluate q′ overM(S).

We have devised a rewriting technique which encodes a UCQ q into a FOL
query q′ which, evaluated against the original M(S), retrieves only the certain
answers of q w.r.t the IAR semantics [Lembo et al, JSW 2015].

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (65/70)

Rewriting technique

Given a UCQ Q = q1 ∨ q2 ∨ . . . ∨ qn over 〈O,S,M〉
we compute PerfectRefIAR(Q,O,M) as

MapRewritingM(IncRewritingUCQIAR(PerfectRef(Q,O),O))
we evaluate PerfectRefIAR(Q,O,M) over S

where

PerfectRef(Q,O) rewrites Q taking care of O
IncRewritingUCQIAR(Q,O) =

∨n
i=1 IncRewriting(qi,O) rewrites Q taking

care of inconsistencies

MapRewritingM(Q) rewrites Q taking care of M

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (66/70)

Example

Let us consider the CQ
q = ∃x.RedWine(x)

We have that IncRewritingIAR(q,O) is

∃x.RedWine(x) ∧ ¬WhiteWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (67/70)

Results

Theorem

Let Q be a UCQ over 〈O,S,M〉. Deciding whether ~t ∈ certIAR(Q, 〈O,S,M〉)
is in AC0 in data complexity.

Complexity

problem AR-semantics IAR-semantics

instance checking coNP-complete in AC0

UCQ answering coNP-complete in AC0

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (68/70)

Outline

1 Algorithms for query answering

2 Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (69/70)

Conclusions: Many challenges for OBDM

Query answering in OBDM systems (Ontop, Mastro, etc.)

More optimizations in query answering
Rewriting wrt mapping (even GAV mapping are problematic)
More powerful metamodeling and optimized metaquerying

Inconsistency-tolerant query answering

More semantics?
Optimizations
Preferences over repairs
More powerful (meta)querying

Ontology-based update

Semantics
Pushing the updates to the data sources
Updates in the presence of inconsistencies

Experimenting OBDM in real applications

Maurizio Lenzerini Ontology-based Data Management BigDat 2017 (70/70)

	Algorithms for query answering
	Beyond classical first-order queries

