
Ontologies in Computer Science: Principles, Methods,
and Applications to Data Management

Maurizio Lenzerini
Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Part I

Seminars in Advanced Topics in Computer Science Engineering
April 27 - May 4, 2018

Maurizio Lenzerini Ontologies in Computer Science (Part I) Seminars 2017-2018 (1/35)



Information system architecture enabled by DBMS

Pre-DBMS architecture (need of a unified data storage):

Application 

Data sources 

Application Application 

“Ideal information system architecture” with DBMS (’70s):

Database 

Application Application Application 

Maurizio Lenzerini Ontologies in Computer Science (Part I) Seminars 2017-2018 (2/35)



Today in many organizations ...

Application 

Data sources 

Application Application 

Distributed, redundant, application-dependent, and mutually incoherent
data

Desperate need of a coherent, conceptual, unified view of data
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... even with just one data source

Fragment of a relational table in a Bank 
Information system:!

ID_GRUP	   FLAG_CP	   FLAG_FATT	  FATTURATO	  FLAG_CF	  

124589	  

140904	  

124589	  

-‐452901	  

129008	  

-‐472900	  

130976	  

30-‐lug-‐2004	  

15-‐mag-‐2001	  

5-‐mag-‐2001	  

13-‐mag-‐2001	  

10-‐mag-‐2001	  

10-‐mag-‐2001	  

7-‐mag-‐2001	  

1-‐gen-‐9999	  

15-‐giu-‐2005	  

30-‐lug-‐2004	  

27-‐lug-‐2004	  

1-‐gen-‐9999	  

1-‐gen-‐9999	  

9-‐lug-‐2003	  

92736	  

35060	  

92736	  

92770	  

62010	  

62010	  

75680	  

S	  

N	  

N	  

S	  

N	  

S	  

N	  

N	  

S	  

N	  

S	  

N	  

195000,00	  

230600,00	  

195000,00	  

392000,00	  

247000,00	  

0	  00	  

N	  

N	  

S	  

N	  

S	  

N	  

CUC	   TS_START	   TS_END	  
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... even with just one data source
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-‐452901	  

129008	  

-‐472900	  

130976	  

30-‐lug-‐2004	  

15-‐mag-‐2001	  

5-‐mag-‐2001	  

13-‐mag-‐2001	  

10-‐mag-‐2001	  

10-‐mag-‐2001	  

7-‐mag-‐2001	  

1-‐gen-‐9999	  

15-‐giu-‐2005	  

30-‐lug-‐2004	  

27-‐lug-‐2004	  

1-‐gen-‐9999	  

1-‐gen-‐9999	  

9-‐lug-‐2003	  

92736	  

35060	  

92736	  

92770	  

62010	  

62010	  

75680	  

S	  

N	  

N	  

S	  

N	  

S	  

N	  

N	  

S	  

N	  

S	  

N	  

195000,00	  

230600,00	  

195000,00	  

392000,00	  

247000,00	  

0	  00	  

N	  

N	  

S	  

N	  

S	  

N	  

CUC	   TS_START	   TS_END	  

Nega%ve	  value	  denotes	  a	  holding	  
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... even with just one data source
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195000,00	  
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195000,00	  

392000,00	  

247000,00	  

0	  00	  

N	  

N	  

S	  

N	  

S	  

N	  

CUC	   TS_START	   TS_END	  

S	  means	  that	  the	  
customer	  is	  the	  head	  of	  
the	  group	  it	  belongs	  to	  	  

S	  means	  that	  the	  
customer	  is	  the	  leader	  of	  
the	  group	  it	  belongs	  to	  	  
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... even with just one data source
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CUC	   TS_START	   TS_END	  

N	  means	  that	  the	  	  
FATTURATO	  field	  is	  not	  valid	  	  
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Data preparation and information integration

Large enterprises spend a great deal of time and money on data
preparation and information integration (∼40% of information-technology
shops’ budget).

Market for information integration software estimated to grow to $3.4
billion by 2019 [Gartner, 2015]

Data integration is a large and growing part of software development,
computer science, and specific applications settings, such as scientific
computing, semantic web, etc..

Data preparation and integration is crucial for “big data” processing (to
make sense of big data!)

Basing the integrated view of data on a clean, rich and abstract conceptual
representation of the data has always been both a goal and a challenge
[Mylopoulos et al 1984]
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Managing data through the lens of an ontology:
Ontology-based Data Management

Ontology-based Data Management is a new paradigm, rooted on the idea of
using Database Theory fundamentals, and Logic-based Knowledge
Representation and Reasoning techniques for a new way of managing data, and
characterized by the following principles:

Data may reside where they are (no need to move data)

Build a conceptual specification of the domain of interest, in terms of
knowledge structures

Map such knowledge structures to concrete data sources

Express all services over the knowledge structures

Automatically translate knowledge services to data services
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Ontology-based data management: architecture

C1

C2

C3
Ontology

Source
1

Source
2

Source
3

Mapping

Data sources

Service

Based on three main components:

Ontology, a declarative, logic-based specification of the domain of interest,
used as a unified, conceptual view for clients

Data sources, representing external, independent, heterogeneous, storage
(or, more generally, computational) structures

Mappings, used to semantically link data at the sources to the ontology
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The course

Part I
Ontology-based data management: The framework
Queries in OBDM
The nature of query answering in OBDM

Part II
Ontology languages
Modeling the domain through the ontology
Modeling the mapping with the data sources

Part III
Algorithms for query answering
Beyond classical first-order queries
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Outline of part I

1 Ontology-based data management: The framework

2 Queries in OBDM

3 The nature of query answering in OBDM
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Formal framework of ontology-based data management

An ontology-based data management (OBDM or OBDA) system is a triple
Σ = 〈O,S,M〉, where

O is the ontology, expressed as a logical theory (here, a TBox in a
Description Logic)

S is a relational database representing the data sources (note that
federation tools are able to present a set of heterogeneous data sources as
a single relational database)

M is a set of mapping assertions, each one of the form

Φ(~x) ; Ψ(~x)

where

Φ(~x) is a FOL query over S, returning values for ~x
Ψ(~x) is a FOL query over O, whose free variables are from ~x.
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Ontology-based data management system – Example

Ontology O
DL notation:

Employee v ∃worksFor
Employee v ∃empCode
Employee v ∃salary
Project v ∃worksFor−

Project v ∃projectName
∃worksFor v Employee
∃worksFor− v Project

Classical FOL notation:

∀xEmployee(x)→ ∃yworksFor(x, y)
∀xEmployee(x)→ ∃y empCode(x, y)
∀xEmployee(x)→ ∃y salary(x, y)
∀xProject(x)→ ∃yworksFor(y, x)
∀xProject(x)→ ∃y projectName(x, y)
∀x∀yworksFor(x, y)→ Employee(x)
∀x∀yworksFor(x, y)→ Project(y)

DLs use unary predicates (concepts, or classes), and binary predicates
between classes (relations, or roles, or object properties), and other binary
predicates relating classes to value types (attributes, or data properties)

→ corresponds to v
R− denotes the inverse of the relation R

λx.C(x) is written as C

λx.∃yR(x, y) is written as ∃R
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Ontology-based data management system – Example

Ontology O (TBox)

Employee v ∃worksFor
Employee v ∃empCode
Employee v ∃salary
Project v ∃worksFor−

Project v ∃projectName
∃worksFor v Employee
∃worksFor− v Project

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Federated schema of the DB S
D1[SSN: String,PrName: String]

Employees and Projects they work for

D2[Code: String, Salary : Int]
Employee’s Code with salary

D3[Code: String, SSN: String]
Employee’s Code with SSN

. . .

Mapping M

M1: SELECT SSN,PrName

FROM D1

; V1(SSN,PrName) ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN,Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; V2(SSN,Salary) ; Employee(pers(SSN)),
salary(pers(SSN), Salary)

Note: in practice we often write mappings using an intermediate view symbol.
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Semantics

Let I= (∆I , ·I) be an interpretation for the ontology O, where ∆I is the
domain and ·I is the interpretation function.

Def.: Mapping satisfaction (sound mappings)

We say that I satisfies Φ(~x) ; Ψ(~x) wrt a database S, if the sentence

∀~x (Φ(~x) → Ψ(~x))
is true in I ∪ S.

Def.: Model

I= (∆I , ·I) is a model of Σ = 〈O,S,M〉 if:

I is a model of O, i.e., it satisfies all axioms in O;

I satisfies M wrt S, i.e., satisfies every assertion in M wrt S.

Def.: Semantics

The semantics of Σ is the set sem(Σ) of all models of Σ.
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Ontology-based data management (OBDM): topics

Ontology-based [ data access | query answering ] (OBDA | OBQA)
Ontology-based data quality (OBDQ)

Ontology-based data governance (OBDG)

Ontology-based data restructuring (OBDR)

Ontology-based business intelligence (OBBI)

Ontology-based data exchange and coordination (OBDE)

Ontology-based data update (OBDU)

Ontology-based service and process management (OBDS)

General requirements:

large data collections

efficiency with respect to size of data (data complexity)
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Outline of part I

1 Ontology-based data management: The framework

2 Queries in OBDM

3 The nature of query answering in OBDM
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Conjunctive queries

are the most common kind of first-order queries

also known as select-project-join SQL queries

allow for easy optimization in relational DBMSs

Definition

A conjunctive query (CQ) is a first-order query of the form

{ (~x) | ∃~y. r1(~x1, ~y1) ∧ · · · ∧ rm(~xm, ~ym) }

where

~x is the union of the ~xi’s, and ~y is the union of the ~yi’s

r1, . . . , rm are relation symbols (not built-in predicates)

We use the following abbreviation: { (~x) | r1(~x1, ~y1), . . . , rm(~xm, ~ym) }
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Complexity of relational calculus

We consider the complexity of the recognition problem, i.e., checking whether a
tuple of constants is in the answer to a query:

measured wrt the size of the database ; data complexity

measured wrt the size of the query and the database ;

combined complexity

Complexity of relational calculus

data complexity: polynomial, actually in LogSpace (or, in terms of circuit
complexity, in AC0)

combined complexity: PSpace-complete

Complexity of conjunctive queries

data complexity: in LogSpace

combined complexity: NP-complete
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Queries in OBDM

The domain ∆ is fixed, and we do not distinguish an element of ∆ from
the constant denoting it ; standard names

Queries to Σ = 〈O,S,M〉 are first-order queries over the alphabet AO of
the ontology

When “evaluating” q over Σ, we have to consider that there may be many
interpretation in sem(Σ)

We consider those answers to q that hold for all models in sem(Σ)
; certain answers
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Semantics of queries to Σ

Definition

Given an OBDM system Σ and query q posed to Σ, the set of certain answers
to q wrt Σ is

cert(q,Σ) =
⋂
{ qM | M ∈ sem(Σ) }

Query answering in OBDM means to compute the certain answers, i.e., it
corresponds to logical implication

Complexity is usually measured wrt the size of the source db S,
i.e., we consider data complexity

When we want to look at query answering as a decision problem, we
consider the problem of deciding whether a given tuple ~c is a certain
answer to q wrt Σ, i.e., whether ~c ∈ cert(q,Σ)
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Which languages?

Which language for expressing the ontology?

We use Description Logics (OWL), but which one?

Which language for expressing the mappings?

We use logic, but which fragment?

Which language for expressing queries over the ontology?

At least classical conjunctive queries, but we aim at using SPARQL

Challenge: optimal compromise between expressive power and data complexity.
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Outline

1 Ontology-based data management: The framework

2 Queries in OBDM

3 The nature of query answering in OBDM
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Abstracting from the mapping

For the moment, let us abstract from the mapping: we assume that all the
semantics of mappings can be captured by computing M(S), which is the
database obtained by treating mappings as assertions translating the data at
the sources into facts expressed over the alphabet of the ontology.

M(S) can indeed be seen as a set of facts built on the alphabet of O (i.e., a
set of ground atomic formulas in logic, or simply, an ABox, in DL terminology).
In other words, formally, we can consider our system as constituted by the pair

〈O,A〉
where O is the TBox, and A is the (virtual) ABox.

In practice, instead of computing M(S) and consider queries over such set of
facts, one can use M to rewrite a query expressed over M(S) into a query
expressed over S, using M.
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Which ontology language?

Person

hates

ComputerProfessor

supervisedBy

ComputerScientist ComputerEngineer

disjoint,complete

q(x ) ← supervisedBy(x, y),ComputerScientist(y),
hates(y, z ),ComputerEngineering(z )
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Query answering (QA)

Question

Is ontology-based query answering essentially the same problem as query
answering in databases?

In other words, is query answering just evaluating a formula over a (finite)
intepretation?

Maurizio Lenzerini Ontologies in Computer Science (Part I) Seminars 2017-2018 (27/35)



QA in OBDM – Example(∗)

Person

hates

ComputerProfessor

supervisedBy

ComputerScientist ComputerEngineer

disjoint,complete

(∗) [Andrea Schaerf 1993]

Note that ComputerProfessor is partitioned into
ComputerScientist and ComputerEngineer.

john

andrea: ComputerProfessor mary: ComputerSC

paul: ComputerEng

supervisedBysupervisedBy

hates

hates
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QA in OBDM – Example (cont’d)

Person

hates

ComputerProfessor

supervisedBy

ComputerScientist ComputerEngineer

disjoint,complete

john

andrea: ComputerProfessor mary: ComputerSC

paul: ComputerEng

supervisedBysupervisedBy

hates

hates

q(x) ← supervisedBy(x, y),ComputerScientist(y),
hates(y, z),ComputerEngineer(z)

Answer: ???

To determine this answer, we need to resort to reasoning by cases on the instances.
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QA in OBDM – Example (cont’d)

Person

hates

ComputerProfessor

supervisedBy

ComputerScientist ComputerEngineer

disjoint,complete

john

andrea: ComputerProfessor mary: ComputerSC

paul: ComputerEng

supervisedBysupervisedBy

hates

hates

q(x) ← supervisedBy(x, y),ComputerScientist(y),
hates(y, z),ComputerEngineer(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases on the instances.
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Complexity of conjunctive query answering in DLs

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (1)

OWL 2 ? coNP-hard (2)

(1) Going beyond probably means not scaling with the data.
(2) Already for a TBox with a single disjunction (see example above).

Questions

Can we find interesting DLs for which the query answering problem can be
solved efficiently (in LogSpace wrt data complexity)?

If yes, can we leverage relational database technology for query answering
in OBDM?
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Query rewriting

Query answering can always be thought as done in two phases:

1 Rewriting (wrt the ontology): produce from q and the TBox O a new
query rq,O.

2 Query evaluation: evaluate rq,O over M(S) seen as a complete database
(and without considering O).
; rq,O is the so-called perfect rewriting of q w.r.t. O exactly when the
query evaluation step produces cert(q, 〈O,M(S)〉, for every S.

Note: The “always” holds if we pose no restriction on the language in which to
express the rewriting rq,O.

Note: if we have built M(S), then instead of evaluating rq,O over M(S), we
rewrite rq,O wrt M, and then we evaluate the resulting query over S.
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Q-rewritability

Let Q be a class of queries (or query language) and L an ontology language.

Def.: Q-rewritability

Query answering is Q-rewritable if for every TBox O of L and for every query q,
the perfect rewriting rq,O of q w.r.t. O can be expressed in the query language
Q.

The notion of FOL-rewritability is particularly interesting, where FOL denotes
the class of queries expressible in First-Order Logic.
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QA in OBDM – Example

Person

hates

ComputerProfessor

supervisedBy

ComputerScientist ComputerEngineer

disjoint,complete
∀x∀y ComputerScientist(x) ∧ hates(x, y)→

ComputerScientist(y)

q(x) ← ComputerScientist(x)

The certain answers to the above query are computed by evaluating:
q′(x) ← ComputerScientist(x)
q′(x) ← ComputerScientist(y), hates+(y, x)

It can indeed be shown that we need transitive closure in the language of the
rewriting.
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Complexity of query answering in DLs

Questions

Can we find interesting DLs for which query answering is FOL-rewritable?

Even more specifically, can we find interesting DLs for which query
answering is UQC-rewritable?

If yes, we can indeed leverage relational database technology for query
answering in OBDM (RDBMs are generally very good at optimizing UCQs).
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Language of the rewriting

The expressiveness of the ontology language affects the query language into
which we are able to rewrite CQs:

When we can rewrite into UCQ.
; Query evaluation can be “optimized” via RDBMS
When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via RDBMS
When we can rewrite into non recursive Datalog.
; Query evaluation can be still done via RDBMS, but with
subqueries/views
When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.
When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).
When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) Disjunctive Datalog.
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