
Data Management – AA 2018/19
Solutions for the exam of 12/07/2019

Problem 1
A transition point in a schedule S over transactions T1, . . . , Tn is a sequence of two consecutive
actions ai, bj in S such that ai is a read or a write action of transaction Ti, bj is a read or a
write action of transaction Tj with i 6= j, and ai is not the final read or write action of Ti. A
schedule is said to be quasi-serial, if it contains exactly one transition point. By referring to the
transactions T1 = r1(x)w1(y), T2 = w2(x)w2(y), and T3 = w3(x)w3(y), prove or disprove the
following statements, motivating each of the answers in detail.

1.1 There is no quasi-serial schedule on transactions T1, T2, T3 that is conflict-serializable.

1.2 There is no quasi-serial schedule on transactions T1, T2, T3 that is view-serializable.

1.3 There is no quasi-serial schedule on transactions T1, T2, T3 that is strict.

1.4 There is no quasi-serial schedule on transactions T1, T2, T3 that is rigorous.

Solution to problem 1

1.1 The statement can be proven by observing that, since any schedule S on transactions T1, T2, T3

that is quasi-serial has exactly one transition point, it contains two consecutive actions ai, bj
such that ai is a read or a write action of transaction Ti, bi is a read or a write action of
transaction Tj with i 6= j, and ai is not the final read or write action of Ti. Now, let us consider
all possible cases of transition point in S. If the transition point in S involves T1 and T2, then
S contains the sequence r1(x)w2(x)w2(y)w1(y) or the sequence w2(x) r1(x)w1(y)w2(y), and
therefore in both cases there is an edge from T1 to T2 and an edge from T2 and T1 in the
precedence graph. Analogously, it can be seen that if the transition point in S involves T1

and T3, then there is an edge from T1 to T3 and an edge from T3 and T1 in the precedence
graph, and, finally, if the transition point in S involves T2 and T3, then there is an edge from
T2 to T3 and an edge from T3 and T2 in the precedence graph. In all cases, the precedence
graph associated to S contains a cycle, and therefore S is not conflict-serializable.

1.2 The statement can be disproven by considering the following quasi-serial schedule

r1(x)w2(x)w2(y)w1(y)w3(x)w3(y)

and observing that it is view-equivalent to the serial schedule r1(x)w1(y)w2(x)w2(y)w3(x)
w3(y).

1.3 The statement can be disproven by observing that the above mentioned quasi-serial schedule
r1(x)w2(x)w2(y)w1(y)w3(x)w3(y) is strict.

1.3 We know that every rigorous schedule is conflict-serializable, and therefore the existence of a
rigorous quasi-serial schedule on transactions T1, T2, T3 would imply the existence of a quasi-
serial schedule on transactions T1, T2, T3 that is conflict-serializable. However, we showed in
1.1 that no quasi-serial schedule on transactions T1, T2, T3 exists that is conflict-serializable.
This proves that there is no quasi-serial schedule on transactions T1, T2, T3 that is rigorous.



Problem 2

The relation Student(id,school,genre,grade,year) contains
information about the final grades of a set of high-school students
in the last 30 years. We know that there are 12.000 schools, each
school has 200 students per year taking the final exam, 50% of
the students are female, and 100 tuples of the relation fit in one
page. The relation is stored in node 1 of a distributed system
with 30 nodes in total, where each node has 420 frames available
in its buffer. Consider the query Q shown on the right, and tell
both which is the algorithm you would use to answer the query,
and its cost in terms of number of page accesses.

Query Q:

select school, year, avg(grade)
from Student
where genre = ’female’
group by school, year
order by school

Solution to problem 2

Obviously, one possibility is to evaluate the query at one node, say node 1. Note that the number of
tuples corresponding to the groups computed by the “group-by” is 12.000× 30 = 360.000 (number
of schools times the number of years), each with three values. Since 100 tuples with 6 values
fit in one page, we infer that 200 tuples with 3 values fit in one page, and therefore, we need
360.000/200 = 1.800 pages to store the information about the tuples constituting the result. Since
the buffer has 420 frames available at node 1, we conclude that we cannot answer the query in one
pass if we just compute the answer at node 1.

Let us therefore consider the algorithm based on the parallel evaluation of the query, and see if we
can evaluate the query in one pass using this method. In node 1 we read the (12.000×200×30)/100 =
720.000 pages of Student using one buffer frame, and for each tuple with genre = ’female’ of each
of such pages, we use a hash function based on school,year, so as to compute the bucket (among
the 30 buckets, each one corresponding to one node) where the tuple should go. Obviously, we do
that using 30 frames in the buffer for the buckets, and when a frame is full, we send its content to
the corresponding node. We assume that the hash function distributes uniformly the tuples in the
30 buckets. When a page arrives at node i, every tuple of the page is analyzed, and the group to
which the tuple belongs is created (if it is the first), or updated so as to store the sum of the grades
of the students belonging to that school and that year. We rely on the fact that, by virtue of the
hash function, the tuples belonging to the same group are sent to the same bucket (i.e., to the same
node), and we also keep the tuples arrived at each node sorted according to school. At the end of
this process, each node has a subset of the final result, sorted by school.

Note that at each node we need 1.800/30 = 60 pages to store the tuples corresponding to the
groups. Since each node has 420 buffer frames available, we conclude that we can store the tuples
corresponding to the groups in the buffer of each node, and also carry out the sorting on school of
such tuples in the buffer. Note that this is true also for node 1, where one frame is used for reading
the relation and filter the students, 30 frames are used for the buckets, and the remaining frames
(much more than 60) are available for the tuples corresponding to the groups to be stored in node
1.

The last step aims at sorting the whole result. Since the tuples at each node are already sorted,
it is sufficient to send all the tuples to one node, say node 1 again, and execute the merge step on
the various tuples so as produce the final result. The final merge can again be done using the buffer,
in particular the 420 buffer frames at node 1. Actually, besides the output frame we only need 30
frames again: the pages sent by node i will be received in the frame i of node 1, for i = 1..30. The
result of the merge will be written in a file at node 1.

It follows that, if we ignore, as usual, both the cost of writing the final result, and the communi-
cation cost for sending the tuples, the overall cost is simply the one of reading the relation Student,
i.e., 720.000 page accesses.



Problem 3

The quotient between two relations, denoted by ÷, is a binary operator of the extended relational
algebra, defined as follows: if R(A,B,C,D) and S(C,D) are two relations, the result of R ÷ S is the
set

{ 〈a, b〉 ∈ R[A,B] | ∀c, d : 〈c, d〉 ∈ S → 〈a, b, c, d〉 ∈ R }
In other words, R ÷ S contains all the tuples of R[A,B], i.e., the projection of R on attributes A,B,
that are combined in R with all the tuples of S. Let R and S be stored as heap files with 160.000 pages,
and 450 pages, respectively, and let the buffer have 500 frames available. Describe the algorithm
you would use to compute the result of R ÷ S, and tell which is the cost of the algorithm in terms
of number of page accesses.

Solution to problem 3

Probably the first technique that may come to our mind is the block-nested loop. We immediately
note that the smallest relation, i.e., S, fits in the buffer, and therefore can act as the outer relation
in the bock-nested loop algorithm. So, one could think of storing the whole relation S in the buffer,
and then reading R one page at a time to check whether its tuples (or rather, the tuples in the
projection R[A,B] of R on attributes A,B) belong to the result. However, it is not clear how we
can check whether one tuple 〈a, b〉 in such projection is included or not in the result, because this
check amounts to verify whether for every tuple 〈c, d〉 in S, the tuple 〈a, b, c, d〉 is in R, and we do
not have all the tuples of R in the buffer. We observe that such check would be facilitated if the
relation R was sorted with sorting key A,B. Indeed, in this case, it is sufficient to count the number
N of tuples of S when loading them into the buffer, then load one page at a time the relation R, and
for each pair 〈a, b〉 in R[A,B], count the number Na,b of tuples 〈c, d〉 in S such that 〈a, b, c, d〉 ∈ R.
The tuple 〈a, b〉 will be in the result of the quotient (and therefore will be put in the frame of the
buffer devoted to the output) if and only if Na,b = N . Note that, since R is sorted with sorting key
A,B, all the tuples with 〈a, b〉 in the attributes A,B are stored contiguously in R. It follows that the
whole algorithm is as follows:

• Sort the relation R on search key A,B.

• Load the relation S in the buffer, at the same time counting the number N of its tuples.

• Load the relation R previously sorted one page at a time, and for each pair 〈a, b〉 in R[A,B],
count the number Na,b of 〈c, d〉 such that 〈a, b, c, d〉 ∈ R, by exploiting the fact that all such
tuples are contigous. If Na,b = N , then put the pair 〈a, b〉 in the output frame. As usual,
write the output frame into secondary storage whenever it is full.

As for the cost of the above algorithm, we observe the following.

• To sort the relation R we can use the two-pass algorithm because we have 500 buffer frames
available, and 500 × 500 > 160.000, and therefore we spend 3 × 160.000 = 480.000 page
accesses, plus 160.000 page accesses to write the sorted relation.

• To load the relation S in the buffer, and count the number of its tuples we spend 450 page
accesses.

• To load the relation R previously sorted one page at a time, we spend 160.000 page accesses.

The total cost will be 480.000 + 160.000 + 450 + 160.000 = 800.450 page acceses.



Problem 4
Consider the following schedule on transactions {T1, T2, T3}:

S = r1(x)w3(x) r2(x) r1(y)w1(x) r2(y)w2(y)w3(y)

4.1 Show the precedence graph associated to S, and tell whether S is conflict-serializable or not,
explaining the answer in detail.

4.2 Tell whether S is view-serializable or not, explaining the answer in detail.

4.3 If the answer to 4.2 is positive, then show a serial schedule on transactions {T1, T2, T3} that is
view-equivalent to S. If the answer to 4.2 is negative, then tell whether there is a way to add
to S suitable operations on local variables carried out by the transactions {T1, T2, T3} in such
a way that the resulting schedule is serializable. We remind the student that when we consider
the operations on local variables carried out by transactions, the read and write actions are
expressed in the notation ri(x, Z) – meaning that the value of the database element x is read
by transaction i and then stored in the local variable Z – and wi(x, Z) – meaning that the
value of the local variable Z is written by transaction i in x.

4.4 Tell whether S is ACR (Avoiding Cascading Rollbacks) or not, explaining the answer in detail.

Solution to problem 4

4.1 The pair of conflicting actions w3(x), r2(x) and the pairs of conflicting actions r2(y), w3(y)
that appear in S imply that there is a cycle in the precedence graph associated to S. It
follows that S is not conflict-serializable.

4.2 Since w3(y) is the final write on y in S, and w2(y) is in S, we observe that T3 must appear
after T2 in every serial schedule S ′ on T1, T2, T3 that is view-equivalent to S, because otherwise
S ′ would have a different “final write se” with respect to S. On the other hand, the sequence
w3(x) r2(x) in S implies that in any serial schedule S ′ on T1, T2, T3 that is view-equivalent to
S transaction T2 appears immediately after transaction T3, because otherwise S ′ would have
a different “read from” relation with respect to S. We conclude that no serial schedule on
T1, T2, T3 exists that is view-equivalent to S, i.e., S is not view-serializable.

4.3 It is well-known that a schedule S on T1, T2, . . . , Tn is serializable if there exists a serial schedule
on T1, T2, . . . , Tn that is equivalent to S, where two schedules S1 and S2 on the the same set of
transactions are equivalent if, for each database state D, the execution of S1 starting from the
database state D produces the same outcome (i.e., leaves the database in the same state) as
the execution of S2 starting from the same database state D. It follows that there is a simple
method to show that there is a way to add to S suitable operations on local variables carried
out by the transactions T1, T2, T3 in such a way that the resulting schedule is serializable: it is
sufficient to insert operations on local variables in such a way that any write operations in S
will write the same value (e.g., the value 1) on the corresponding database element. Following
this idea, S is transformed into the following schedule S ′:
r1(x, z1,0), z3,1 := 1, w3(x, z3,1), r2(x, z2,0), r1(y, z1,1), z1,2 := 1, w1(x, z1,2), r2(y, z2,1), z2,2 := 1,
w2(y, z2,2), z3,2 := 1, w3(y, z3,2)
that leaves the database in a state where the value of both the element x and the element y
of the database is 1. It is not difficult to see that any serial schedule built on the transactions
of S ′ is equivalent to S ′. For example, the following serial schedule S ′′:
r1(x, z1,0), r1(y, z1,1), z1,2 := 1, w1(x, z1,2),
r2(x, z2,0), r2(y, z2,1), z2,2 := 1, w2(y, z2,2),
z3,1 := 1, w3(x, z3,1), , z3,2 := 1, w3(y, z3,2)
buolt on the actions of S ′ leaves the database in a state where the value of both the element
x and the element y of the database is 1, and therefore is equivalent to S ′. Since there is a
serial schedule that is equivalent oto S ′, we can conclude that S ′ is serializable.



4.4 S is clearly not ACR, because r2(x) reads element x from transaction T3 (action w3(x)) while
transaction T3 is not committed yet (T3 cannot commit until the end, which coincides with
action w3(y)).

.

Problem 5

Assume that the relation R(A,B,C,E,F,G) has 960.000 tuples, each at-
tribute and each pointer in the system occupy 40 Bytes, each page has
space for 240 Bytes, B has 1.000 values uniformly distributed among
the tuples of R, and there is an unclustering B+-tree index on R with
search key B using alternative 2. Consider the query Q2 shown on
the right, describe the algorithm you would use to compute the result
of evaluating the query, and tell which is the cost of the algorithm in
terms of number of page accesses.

Query Q2:

select A,E
from R
where B = 10 and C = 20

Solution of problem 5
The query is so simple that we can avoid to show the logical and the physical plan. So, we turn
pur attention directly to the algorithm. We rely on an index-based algorithm for implementing the
“selection” operator of relational algebra. We use the index on the condition B = 10 for reaching
the “right” leaf of the tree, and then we scan all the leaves with the value 10 of the search key, and
follow the corresponding pointers to retrieve the data records and select only those satisfying the
condition C = 20.

Let us evaluate the cost of the algorithm. The B+-tree index is unclustering, and therefore
dense. So, the number of search key values that are stored in the leaves of the B+-tree index is
960.000. Each data entry occupies 80 Bytes, and therefore 3 data entries fits in one page, and the
fan-out of the tree is 2. Taking into account the 67% occupancy rule, we know that 2 data entries
are stored in each leaf of the B+-tree index. It follows that the tree has 960.000 / 3 = 320.000 leaves.
This means that the cost of reaching the right leaf is log2 320.000 = 19. Once we have reached the
right leaf, we still have to scan all the leaves containing the data entries associated to the search
key value 10. The number of such data entries is equal to the number of data records satisying teh
condition B = 10, i.e., 960.000/1.000 = 960; they are packed into 960/2 = 480 pages. Finally, we
have to follow the 960 pointers and access the corresponding pages of the data file. Therefore, the
total cost is 19 + 480 + 960 = 1459.


