
Self assessment - 02 - Solutions highlights

Updated 30/12/2019 - 03/01/2020 - 30/01/2020 - 03/01/2024

1 Exercise

Consider the plant

ẋ1 = x1 + x3 + u

ẋ2 = u

ẋ3 = −2x3

y = x1 + x2 + αx3

with α ∈ R a real parameter.

1. Study the controllability property and, if necessary, do a Kalman decomposition w.r.t. con-
trollability.

2. Find the value(s) of α such that there exists an unobservable asymptotically stable subsystem.
Decompose w.r.t. observability. From now on use this value of α.

3. Using the previous decomposition, is it possible to find an output stabilizing dynamic con-
troller of dimension 2? Why?

4. Find the plant’s transfer function and determine if the system is stabilizable with a simple
static output feedback.

5. Determine an output dynamic controller which assigns the closed-loop poles in −1, −2 and
−3.

6. How does the previous closed-loop system behaves at steady-state w.r.t. a constant reference
and to an unknown constant output disturbance?

2 Exercise

Let the open-loop system be

F (s) =
K(s+ 1)

s(s+ 100)2

1. Study, as K ∈ R varies, the stability of the unit feedback closed-loop system both using the
Nyquist criterion and the root-locus plot.

2. Determine if there is a closed-loop dominant pole and, if it exists, discuss its contribution as
K increases (positive values only).
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Figure 1: Ex. 5, loudspeaker block diagram

3 Exercise

Let the open-loop system be

F (s) =
10

s(s+ 11)

Determine the frequency range (in rad/s or Hertz) where the closed-loop system guarantees an
attenuation of at least 20 dB to sinusoidal disturbances acting on the feedback loop. An answer
based on an approximate behavior is accepted.

4 Exercise

Let the open-loop system be

P (s) =
K(s+ z)

(s+ 2)(s+ 3)
, z > 0

Determine for the closed-loop system the different types of stability as both K ∈ R and z > 0 vary.
Illustrate the different corresponding root-locus plots.

5 Exercise

In a magnetic loudspeaker, a cone of mass m and position z(t) is kept in place by an elastic
suspension characterized by an elastic constant ke. During its movement, the cone is subject
to some viscous damping (acoustic coupling with the air) which depends linearly, through the
coefficient h, on the cone’s velocity ż. The mobile coil is represented by an electrical circuit with a
resistor R and an inductance L while the electroacoustic coupling due to the magnetic flux in the
air gap is given by ki. Let i(t) be the current through the mobile coil and u(t) the applied input
voltage. The dynamic equations are

L
di(t)

dt
+Ri(t) + ki

dz(t)

dt
= u electric components

m
d2z(t)

dt2
+ h

dz(t)

dt
+ kez(t) = kii(t) forces equilibrium

• Show that the block diagram reported in Fig. 1 corresponds to the system under consideration.

• Find the transfer function u(s)→ ż(s).

• Is there a physical interpretation of the particular numerator found in the previous question?
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6 Exercise

Let the plant be modeled by the following transfer function

P (s) =
10

s(s+ 0.1)

Design a control scheme which guarantees a steady-state error in magnitude smaller than 1% w.r.t.
a unit reference ramp, a phase margin of at least 30◦ and a crossover frequency of 1 rad/s.

7 Exercise

Study, as K ∈ R varies, the stability of the unit feedback closed-loop system having F (s) as
open-loop. Use both the Nyquist criterion and the root-locus plot.

F (s) =
K(s2 + 20s+ 100)

s2(s+ 1)

Finally check with the Routh criterion.

8 Exercise

We want to control the temperature T (t) inside a closed tank containing a fluid. Using the energy
conservation principle we obtain the following differential equation which describes the temperature
T (t) time evolution

CṪ (t) + qcv [T (t)− Ti] +
1

R
[T (t)− Ta] = Qin(t)

where Qin(t) can be manipulated.

Symbol Units Description

C J/K Thermal capacity

q kg/s Fluid flow in transit

cv J/(kg . K) Fluid specific heat

Ti K Constant input fluid temperature

R K . s/J Thermal resistance due to the tank’s wall

Ta K External constant temprature

Qin(t) J/s Input heat flux

• Give a state-space representation of the system. Let T (t) be measurable.

• How does the dynamic behavior change as C varies? Give a physical interpretation.

• Draw a control scheme to regulate the internal temperature T (t).

• Discuss which specifications would you require and how to solve them.

9 Exercise

For the interconnected system in Fig. 2, find the transfer function d2 → y.
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Figure 2: Ex. 9, interconnected system

10 Exercise

Let the plant be

P (s) =
1

s+ 0.1

Design a control system such that the following specifications are met:

a) the output asymptotically tracks the reference signal r(t) = tδ−1(t), with a maximum allowed
error in magnitude equal to 1;

b) no steady-state influence of a constant disturbance acting on the plant’s output;

c) phase margin of at least 30◦;

d) crossover frequency equal to ω∗
c = 0.1 rad/sec.
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A Exercise 1

A =

 1 0 1
0 0 0
0 0 −2

 , B =

 1
1
0

 , C =
(

1 1 α
)

Triangular A matrix, therefore λ1 = 1, λ2 = 0 and λ3 = −2.

1. The controllability matrix is singular and has rank = 2, therefore there exists an uncontrollable
subsystem of dimension 1.

P =

 1 1 1
1 0 0
0 0 0

 , Im(P ) = gen


 1

1
0

 ,

 1
0
0

 = gen


 1

0
0

 ,

 0
1
0


and the change of coordinates can be chosen with T−1 given by

T−1 =

 1 0 0
0 1 0
0 0 1

 = identity matrix

which means the system is already decomposed w.r.t. controllability and the uncontrollable
system is characterized by the eigenvalue λ3 = −2

Note that since the A matrix has an upper block triangular structure and the B has its last
element equal to 0,

A =

 1 0 1
0 0 0
0 0 −2

 =

(
A11 A12

0 A22

)
, B =

(
B1

0

)
with A22 = −2, B1 =

(
1
1

)

we could have immediately stated that the eigenvalue λ3 = −2 was uncontrollable. Moreover
knowing from the controllability rank test that the uncontrollable subsystem has dimension 1,
then it necessarily has to be that both λ1 and λ2 are controllable that is (A11, B1) controllable.

2. Since λ3 = −2 is the only asymptotically stable eigenvalue, we can use the PBH test to find
the value(s) of α for which this eigenvalue is unobservable

rank

(
C

A− λ3I

)
= rank


1 1 α
3 0 1
0 2 0
0 0 0

 = 2 < 3 iff 6α− 2 = 0 ⇔ α = 1/3

Note that it could happen that for the same value of α other eigenvalues become unobservable
and therefore the unobservable subsystem would not be asymptotically stable. We have the
observability matrix given by

O =

 1 1 1/3
1 0 1/3
1 0 1/3

 , Ker(O) = gen


 1

0
−3


which shows that the unobservable subsystem has dimension 1 so it is fully characterized
by the eigenvalue λ3 = −2. Alternatively one could check the observability PBH test for
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the other eigenvalues but since we are asked to do the Kalman decomposition, checking the
observability matrix is a necessary first step.

For the Kalman decomposition wrt observability, choose (the inverse is not complicated)

T̃−1 =

 1 0 1
0 1 0
0 0 −3

 ⇒ T̃ =

 1 0 1/3
0 1 0
0 0 −1/3


which leads to

Ã =

(
Ã11 0

Ã21 Ã22

)
=

 1 0 0
0 0 0
0 0 −2

 , B̃ = T̃B =

 1
1
0

 , C̃ =
(

1 1 0
)

but with the special feature that Ã21 = 0.

Note that this special “block-diagonal” structure does not depend on the particular choice of
the Im(P ) base. For example, if one chooses instead of the identity matrix for T , the matrix

T−1
2c =

 1 1 0
1 0 0
0 0 1

 ⇒ T2c =

 0 1 0
1 −1 0
0 0 1


the decomposition wrt controllability leads to

A2c =

 0 0 0
1 1 1
0 0 −2

 B2c =

 1
0
0

 C2c =
(

2 1 1/3
)

The corresponding observability matrix is

O2c =

 2 1 1/3
1 1 1/3
1 1 1/3

 , Ker(O2c) = gen


 0

1/3
−1


and therefore

T−1
2i =

 1 0 0
0 1 1/3
0 0 −1

 ⇒ T2i =

 1 0 0
0 1 1/3
0 0 −1


The decomposition wrt observability is finally

A2o =

 0 0 0
1 1 0
0 0 −2

 B2o =

 1
0
0

 C2o =
(

2 1 0
)

with the same “block-diagonal” structure.

3. From the previous decomposition wrt observability (any) we always obtain a system of the
form

Ã =

(
Ã11 0

0 Ã22

)
, B̃ =

(
B̃1

0

)
, C̃ =

(
C̃1 0

)
with (Ã11, B̃1) controllable and (Ã11, C̃1) observable. The asymptotic stable dynamics asso-
ciated to the eigenvalue λ3 = −2 is both uncontrollable and unobservable (check with PBH
tests).

For such a system, using the separation principle consists in
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• choosing a state feedback which stabilizes the system as if the whole state was available

• designing an observer to reconstruct the state

• using the reconstructed state in the previous feedback instead of the actual state.

In general the resulting controller has the dimension of the observer.

Note, however, that in this case, partitioning the state according to the controllability de-
composition (with T̃ being either the identity matrix or, for example, T2c)

z = T̃ x =

(
z1
z2

)
, with z1 ∈ IR2

the state feedback would be of the form u = F1z1, so, if possible, we need to observe/reconstruct
only the z1 components. In all choices this corresponds to a linear combination of the first
two state components of the original system. Since the observable subsystem coincides with
the controllable one, we only need to design the observer for the observable subsystem

ξ̇1 = Ã11ξ1 + B̃1u+K1(y − yr)
yr = C̃1ξ

In other words, since the state feedback requires only z1 ∈ IR2 which coincides with the (or
is a linear combination of the) state of the observable subsystem, we can reconstruct only z1.
By the separation principle, using the feedback u = F1ξ1 together with the designed observer
of dimension 2, the closed-loop system is asymptotically stable (provided the eigenvalues are
chosen appropriately).

Note that this does not happen in general since we may need also unobservable components
of the state in the state feedback and thus the observer would be of full dimension.

4. From the block-diagonal structure of Ã, the same structure is inherited by (sI− Ã) and being
in general (for square matrices M11 and M22)(

M11 0
0 M22

)−1

=

(
M−1

11 0

0 M−1
22

)
we directly have, due to the special structure of B̃ and C̃,

P (s) = C̃(sI − Ã)−1B̃ = C̃1(sI − Ã11)
−1B̃1 =

2s− 1

s(s− 1)

With a static feedback u = Ky, we obtain the following closed loop pole polynomial

p(s,K) = s(s− 1) +K(2s− 1) = s2 + s(2K − 1)−K

which is clearly unstable for any value of K. Note that being the system non-minimum phase,
we can only say it is not stabilizable with high-gain feedback; here we checked for all values
of the gain K.

5. We can solve the problem with a simple pole assignment design. Being n = 2, a parametric
controller of dimension n−1 = 1 (the closed loop system will then have n+n−1 = 2 + 1 = 3
poles) of the form

C(s) =
as+ b

s+ c

7



(a) Nyquist plot by
hand
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Figure 3: Exercise 2 - Nyquist plot for positive K and root locus.

will allow to assign, for example, the following desired closed loop polynomial

p∗(s) = (s+ 1)(s+ 2)(s+ 3) = s3 + 6s2 + 11s+ 6

The actual closed loop system polynomial is

p(s) = (s+ c)s(s− 1) + (as+ b)(2s− 1) = s3 + (2a+ c− 1)s2 + (2b− a− c)s− b

and therefore, comparing the two polynomials gives a = 30, b = −6 and c = −53. The final
output feedback controller is then

C(s) =
30s− 6

s− 53

6. The previous output feedback controller leads to an asymptotically stable closed loop system
(and the hidden dynamics is characterized by λ3 = −2). Moreover the plant has a pole is
s = 0 in the forward loop, so the system is of type 1 and the steady-state response to a
constant reference will coincide with the reference itself.

B Exercise 2

The Nyquist plot is quite standard and, after drawing the Bode plots, looks like the one reported
in Fig. 3 for positive values of K

The corresponding Nyquist plot for negative K is obtained with a 180◦ degrees rotation. It is
straightforward to conclude that the Nyquist criterion is verified only for positive values of the gain
K. The root-locus is also shown in Fig. 3

From the root locus it is quite evident that a closed loop pole will lie between 0 and −1 while
the other two poles will be further to the right of the imaginary axis (real part close to −100).
Therefore there is a clear dominant pole, the slower (closer to the origin) one. However it should
also be noted that as K increases this closed loop pole will approach the open loop zero in s = −1
and therefore its effect will become smaller and smaller. One could compute the step response and
analyze how the residue of the closed loop pole closer to the origin (the apparent dominant one)
tends to zero as K increases.
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C Exercise 3

The effect of a disturbance entering the feedback loop on the controlled variable is represented by
the complementary sensitivity function (with a minus sign)

Wny(s) = − F (s)

1 + F (s)
= − 10

s(s+ 11) + 10
= − 10

(s+ 1)(s+ 10)

From the corresponding magnitude Bode diagram or equivalently from its approximation it is
straightforward to note that the required attenuation (-20 dB) is attained at frequencies greater
than approximately 10 rad/s (or 10/(2π) ≈ 1.6 Hertz).

D Exercise 4

By letting the zero in s = −z move on the real axis to the left of the origin (z is positive), we have
the situations illustrated in Fig. 4. The only critical situation is when the singular point moves
from the positive to the negative real axis i.e. from the situation (a) to the (c). In particular we
need to understand when the singular point is in s = 0 as in the situation (b).

Re

Im

Re

Im

(a)

(b)

Re
Im

(d)

Re

Im

(e)

Re

Im

(c)

Figure 4: Exercise 4 - Root locus as z varies

To find the singular points we use the formula

1

s+ 2
+

1

s+ 3
− 1

s+ z
= 0 ⇒ s2 + 2zs+ 5z − 6 = 0

and therefore one singular point will be in s = 0 when z = 6/5. The discussion on how K and z
affect the stability of the closed loop system follows directly.

E Exercise 5

Taking the Laplace transform of the two equations we obtain

(Ls+R)i(s) = u(s)− kiż(s) electric components

(ms+ h)ż(s) = kii(s)− kez(s) forces equilibrium

These relations can be directly verified on the block diagram scheme as shown in Fig. 5.
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Figure 5: Exercise 5 - Loudspeaker

By manipulating the previous equations and being ż(s) = sz(s) (by ż(s) we denote the Laplace
transform of ż(t)), we have[

((ms+ h)(Ls+R) + k2i )s+ ke(Ls+R)
]
z(s) = kiu(s)

and therefore

F (s) =
ż(s)

u(s)
=

kis

((ms+ h)(Ls+R) + k2i )s+ ke(Ls+R)

This transfer function has gain equal to F (0) = 0 and therefore a constant voltage cannot produce
a non-zero velocity at steady-state which confirms the physical intuition.

F Exercise 6

Standard loop shaping exercise. The plant is

P (s) =
10

s(s+ 0.1)
=

100

s(1 + 10s)
⇒ Kp = 100

Due to the presence of a pole in s = 0 in the forward path, the system is of type 1 and therefore,
if the closed loop system is asymptotically stable, the steady state error will be

e1 =
1

KL
=

1

KcKp
⇒ |e1| ≤ 0.01⇔ Kc ≥

1

0.01Kp
= 1

We choose Kc = 1. From the approximate Bode diagrams of KcP (jω) we see that we need to
increase the phase and attenuate the magnitude at the desired crossover frequency of 1 rad/s. We
can therefore choose a lead/lag function combination. We can select the lead with ma = 8 and
a normalized frequency of 0.9. This choice will give an amplification of approximately 2 dB and
a phase lead of 35◦. Note that the actual phase at the desired frequency will be greater than
the approximated −180◦. We therefore choose the lag function in order to attenuate 22 dB and
introduce at most 5◦ of phase lag. For example a possible choice is mi = 12 and a normalized
frequency of 100. To achieve these effects at the desired crossover frequency of 1 rad/s, we obtain
τa = 0.9 and τi = 100. The overall controller is finally given by

C(s) = Kc
1 + τas

1 + τa/mas

1 + τi/mis

1 + τis
=

1 + 0.9s

1 + 0.9/8s

1 + 100/12s

1 + 100s

The closed loop system asymptotic stability is guaranteed by the Bode stability theorem. For
completeness the Bode diagrams of interest are reported in Fig. 6.

10



M
ag

ni
tu

de
 (d

B)

-100

-50

0

50

100

150

10-4 10-3 10-2 10-1 100 101 102 103
Ph

as
e 

(d
eg

)
-180

-135

-90

-45

0

45

90
plant
lead
lag
final loop function

Bode Diagram

Frequency  (rad/s)

Figure 6: Exercise 6 - Bode diagrams

Just as an example, one could have obtained the lead with two coincident lead functions having
ma = 3 and τa = 0.4 thus requiring a smaller attenuation (20 dB instead of 22 dB) which can be
obtained with mi = 10 and normalized frequency 100. The resulting controller is

C2(s) =

(
1 + 0.4s

1 + 0.4/3s

)2(1 + 100/10s

1 + 100s

)
and the corresponding Bode diagrams are shown in Fig. 7.
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Figure 7: Exercise 6 - Bode diagrams with the alternative choice C2(s)

G Exercise 7

The Bode canonical form is

F (s) =
K(s2 + 20s+ 100)

s2(s+ 1)
=
K(s+ 10)2

s2(s+ 1)
=

100K(1 + s/10)2

s2(1 + s)

and the resulting Nyquist plot, after having also plotted the Bode diagrams, is approximately as
in Fig. 8. Since the open loop system has no poles with positive real part, the closed loop will be
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asymptotically stable iff the Nyquist plot makes no encirclements around the point (−1, 0). It is
therefore fundamental to understand where the crossing of the real axis occurs. For negative values
of the gain K, the Nyquist obtained by a 180◦ rotation indicates that the closed loop system will
be unstable.
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Figure 8: Exercise 7 - Bode plot (approximate and exact) and Nyquist plot for positive K

The root-locus is shown in Fig. 9 and is consistent with the previous analysis on the Nyquist
plot. The critical value Kcrit of the positive K which corresponds to the crossing of the imaginary
axis can be determined through the Routh criterion

1 20K

1 +K 100K

20K
1+K (K − 4)

100K

From the Routh table we have Kcrit = 4. Note that the value K = −1 which zeroes a first
element in the Routh table is not a valid candidate for being a Kcrit. First, from the root locus
plot we see that the critical value should be positive (but we could be unsure about the plot). The
real reason is that zeroing an element on the first column gives a potential critical value of the gain.
The real critical value will arise only when the number of positive roots – and therefore the number
of sign changes – differs as K goes through that critical value. For K slightly smaller than −1, the
first column has signs “+ − −−” and for slightly larger values than −1 the signs are “+ + +−”.
The number of sign changes remains the same so −1 is not a critical value.

H Exercise 8

We have a first order equation in the temperature T (t) which will clearly be the state of our system
(only variable which is differentiated). Moreover it is indicated that Qin(t) can be manipulated
and therefore it is the control input. The two other inputs Ti and Ta are to be considered as
disturbances. We can therefore rewrite the system equation as

Ṫ (t) = − 1

C

(
qcv +

1

R

)
T (t) +

1

C

(
Qin(t) + qcvTi +

1

R
Ta

)
which is of the form

Ṫ (t) = AT (t) +B (Qin(t) + d) with d = qcvTi +
1

R
Ta
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Figure 9: Exercise 7 - Root locus

Since T (t) is measurable, the output can be chosen as y = T (t). From the dynamic equation, the
one dimensional system is characterized by the real negative eigenvalue

λ = − 1

C

(
qcv +

1

R

)
Note that the disturbance d, as shown in the equation, enters at the same level as the input so it
can be considered as an input disturbance. The transfer function from Qin(t)+d to T (t) is directly
obtained as

P (s) =
1

C

1

s− λ =
1

Cs+ qcv + 1
R

There are a number of interesting remarks.

• As C increases, λ becomes smaller and the system is slower consistently with having a larger
thermal capacity (as an inertia in a mechanical system).

• As the thermal resistance increases the system becomes slower.

• If the fluid flow is larger (larger q) the system is faster.

• Note that the system gain is independent from the thermal capacity, i.e. if a constant variation
is applied through Qin(t) (for example from Qin1 to Qin2), the temperature will change more
or less rapidly depending on the thermal capacity (eigenvalue changes) but the final reached
temperature will be independent from C.

A typical control scheme aimed at controlling the temperature T (t) is shown in Fig. 10. The
discussion on the required specifications is free but one has to highlight the following important
aspects:

• never forget to analyze/check the closed loop stability.

• Since the open loop has no poles in s = 0 we have to decide if we want a type 0 system but
with a high gain in order to guarantee a small steady state temperature error or a type 1
system (by introducing a pole in s = 0 in the controller) but with worse transient behavior.
In order to analyze this last situation a quick root locus (1 pole in 0 and one in λ) helps. In
both cases the closed system is asymptotically stable.

• An approximate analysis on the control sensitivity function can also be easily carried out in
both situations.
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I Exercise 9

The most direct solution is through some algebraic manipulations. Setting all the other inputs (r
and d1) to zero, from the block diagram we have the following relationships where all the terms
refer either to transfer functions or the Laplace transform of the signal

m = −R1y

u = d2 +R2(m− P2u)

y = P1P2u

Manipulating these equations we finally obtain

Fd2y(s) =
y(s)

d2(s)
=

P1(s)P2(s)

1 +R2(s)P2(s)[1 +R1(s)P1(s)]

J Exercise 10

Clearly specification a) overrules b) since it requires a pole in s = 0 and a gain Kc of at least 0.1.
The pole in s = 0 in the controller makes the astatism requirement automatically satisfied (provided
the closed loop system will be asymptotically stable). The necessary part of the controller is given
by

C1(s) =
0.1

s

From the Bode diagrams of the modified plant C1(s)P (s), we see that we need an attenuation of 20
dB while we can stand a lag of at most 15◦. For example choosing the lag function having mi = 10
and with normalized frequency 30 (i.e. τi = 30/0.1 = 300) leads to the final controller

C(s) =
0.1

s

1 + 30s

1 + 300s

The different Bode diagrams of interest are reported in Fig. 11 together with a simulation. Stability
is finally ensured by Bode’s stability theorem.
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