Self assessment - 01

30/10/2014 - Updated 31/01/2020

1 Exercise

Let the input $u(t)$ and output $y(t)$ of a system satisfy the following linear differential equation

$$
y^{(5)}(t)+4 y^{(4)}(t)+3 y^{(3)}(t)-2 y^{(2)}(t)+y^{(1)}(t)+y(t)-u(t)=0
$$

where $y^{(i)}(t)$ denotes the i-th time derivative of $y(t)$. For this system:

1. find a state space representation
2. compute the transfer function and say if there exists any uncontrollable or unobservable mode
3. say if the system is asymptotically stable or not.

2 Exercise

Let the system S respond, from zero initial conditions, with

$$
y(t)=\left(1-t+\frac{t^{2}}{2}-e^{-t}\right) \delta_{-1}(t)
$$

to the input

$$
u(t)=\delta(t)-2 e^{-3 t} \delta_{-1}(t)
$$

Find the impulse response $w(t)$ of S.

3 Exercise

Find the output forced response (output zero-state response) $y(t)$ of the system represented by

$$
F(s)=\frac{50}{s^{2}+15 s+50}
$$

to the input $u(t)$ shown in Fig. 1

4 Exercise

For each system having the dynamics matrix A_{i} discuss the stability property

$$
\begin{array}{cc}
A_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -3 & 1 \\
0 & 1 & 3
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
-1 & 4 & -2 \\
0 & -3 & 1 \\
0 & 0 & 3
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-3 & -3 & 0 \\
-3 & 1 & 3
\end{array}\right), \\
A_{4}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 3
\end{array}\right), \quad A_{5}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-10 & -1 & -12
\end{array}\right), \quad A_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & -3
\end{array}\right)
\end{array}
$$

Figure 1: Ex. 3, input $u(t)$

5 Exercise

Assuming the coincidence of poles and eigenvalues, study the stability property of the following systems.

$$
\begin{gathered}
P_{1}(s)=\frac{s-1}{s^{2}}, \quad P_{2}(s)=\frac{s-1}{s(s+1)}, \quad P_{3}(s)=\frac{s+1}{s^{3}+12 s^{2}+3 s}, \quad P_{4}(s)=\frac{s+1}{s^{3}+12 s^{2}+s+10} \\
P_{5}(s)=\frac{s^{2}-18}{s^{3}+12 s^{2}+s-12}, \quad P_{6}(s)=\frac{-1}{s^{3}+2 s^{2}+s+1}, \quad P_{7}(s)=\frac{s-10}{s^{5}+s^{4}+2 s^{3}+s^{2}+3 s+4}
\end{gathered}
$$

6 Exercise

For the system having dynamics matrix

$$
A=\left(\begin{array}{cc}
k & 1 \\
0 & 0
\end{array}\right)
$$

determine, depending upon the values of $k \in R$, the natural modes and study stability.

7 Exercise

Find the forced response of the system

$$
P(s)=\frac{s-1}{s+1}
$$

to the input $u(t)=e^{t} \delta_{-1}(t)-2 t \delta_{-1}(t)$.

8 Exercise

For the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right) x+\binom{0}{1} u \\
y & =\left(\begin{array}{ll}
1 & -1
\end{array}\right) x
\end{aligned}
$$

find the forced zero-state response to the input $u(t)$ shown in Fig. 2 using

$$
\mathcal{L}\left[\sin (\omega t) \delta_{-1}(t)\right]=\frac{\omega}{s^{2}+\omega^{2}}
$$

Figure 2: Ex. 8, input $u(t)$

9 Exercise

Find the natural modes of the system having dynamics matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & -1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

10 Exercise

Compute the free state and output response of the system

$$
\begin{aligned}
& \dot{x}(t)=\left(\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right) x(t)+\binom{1}{2} u(t) \\
& y(t)=\left(\begin{array}{ll}
2 & 1
\end{array}\right) x(t)
\end{aligned}
$$

from the initial condition

$$
x(0)=\binom{2}{0}
$$

11 Exercise

Determine the initial conditions of the system

$$
\begin{aligned}
\dot{x}(t) & =\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) x(t)+\binom{1}{2} u(t) \\
y & =\left(\begin{array}{ll}
1 & -1
\end{array}\right) x(t)
\end{aligned}
$$

for which we obtain a non-diverging free output.

12 Exercise

For the system given by

$$
\dot{x}(t)=\left(\begin{array}{rr}
6 & -3 \\
2 & -1
\end{array}\right) x(t)
$$

determine the initial conditions, if any, such that the zero-input output response remains constant.

A Exercise 1

State will have dimension 5 . One possible choice is given by y and its derivatives up to $y^{(4)}$

$$
x^{T}(t)=\left[\begin{array}{lllll}
y(t) & y^{(1)}(t) & y^{(2)}(t) & y^{(3)}(t) & y^{(4)}(t)
\end{array}\right]^{T}
$$

With this choice we obtain

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & -1 & 2 & -3 & -4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad D=0
$$

To find the transfer function we could use the formula involving (A, B, C, D) but this would require the inversion of the 5×5 matrix $(s I-A)$. More directly we can recognize in the structure of the obtained A, B and C the controller canonical form and therefore we can directly state that

$$
F(s)=\frac{1}{s^{5}+4 s^{4}+3 s^{3}-2 s^{2}+s+1}
$$

Otherwise, since the transfer function relates the input to the output zero-state response (i.e. with $x(0)=0$), applying the derivative theorem to the differential equation leads to

$$
s^{5} Y(s)+4 s^{4} Y(s)+3 s^{3} Y(s)-2 s^{2} Y(s)+s Y(s)+Y(s)=U(s)
$$

and to the transfer function $F(s)=Y(s) / U(s)$ previously found. System stability can be inferred from the eigenvalues, but since the denominator of the transfer function has degree equal to $n=5$, the poles coincide with the eigenvalues. The Routh necessary condition is not satisfied and therefore the system is not asymptotically stable.

B Exercise 2

We can find the impulse response from the inverse Laplace transform of the transfer function which can be found as the ratio of the zero-state response transform with the input transform that is, being

$$
\begin{aligned}
& Y(s)=\frac{1}{s}-\frac{1}{s^{2}}+\frac{1}{s^{3}}-\frac{1}{s+1} \\
& U(s)=1-\frac{2}{s+3}
\end{aligned}
$$

we have

$$
F(s)=\frac{1 /\left(s^{3}(s+1)\right)}{(s+1) /(s+3)}=\frac{(s+3)}{s^{3}(s+1)^{2}}
$$

We then just have to do an expansion in partial fractions.

Figure 3: Ex. 3, input $u(t)$

C Exercise 3

This exercise requires the correct use of the Laplace transform time shifting property and rewriting $u(t)$ as a linear combination of functions which have simple Laplace transform. The input $u(t)$, as shown in Fig. 3, can also be written as

$$
\begin{aligned}
u(t) & =t \delta_{-1}(t)-2(t-1) \delta_{-1}(t-1)+2(t-2) \delta_{-1}(t-2)-2(t-3) \delta_{-1}(t-3)+(t-4) \delta_{-1}(t-4) \\
& =\sum_{k=0}^{4} a_{k}(t-k) \delta_{-1}(t-k)
\end{aligned}
$$

and therefore

$$
U(s)=\left(1-2 e^{-s}+2 e^{-2 s}-2 e^{-3 s}+e^{-4 s}\right) \frac{1}{s^{2}}
$$

and $Y(s)=F(s) U(s)$.
Recall that if, in general, $Y(s)=Y_{0}(s) e^{-s T}$ then

$$
y(t)=y_{0}(t-T) \delta_{-1}(t-T)
$$

and therefore defining

$$
Y_{0}(s)=F(s) \frac{1}{s^{2}}=\frac{R_{11}}{s}+\frac{R_{12}}{s^{2}}+\frac{R_{2}}{s+5}+\frac{R_{3}}{s+10}
$$

we have, once the residues have been computed,

$$
y(t)=\sum_{k=0}^{4} a_{k} y_{0}(t-k) \delta_{-1}(t-k)
$$

with $R_{11}=-3 / 10, R_{12}=F(0)=1, R_{2}=2 / 5$ and $R_{3}=-1 / 10$. The input and final output are plotted in Fig. 4.

Figure 4: Ex. 3, input $u(t)$ and corresponding response $y(t)$

D Exercise 4

When possible we try to exploit some particular matrix structure to simplify calculation as much as possible.

- Note that matrix A_{1} is block diagonal

$$
A_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -3 & 1 \\
0 & 1 & 3
\end{array}\right)=\left(\begin{array}{cc}
A_{\alpha} & 0 \\
0 & A_{\beta}
\end{array}\right) \quad \text { with } \quad A_{\alpha}=(-1) \quad A_{\beta}=\left(\begin{array}{cc}
-3 & 1 \\
1 & 3
\end{array}\right)
$$

and therefore

$$
\operatorname{eig}\left\{\left(\begin{array}{cc}
A_{\alpha} & 0 \\
0 & A_{\beta}
\end{array}\right)\right\}=\operatorname{eig}\left\{A_{\alpha}\right\} \cup \operatorname{eig}\left\{A_{\beta}\right\}
$$

We have aut $\left\{A_{\alpha}\right\}=-1$ and

$$
p_{A_{\beta}}(\lambda)=\operatorname{det}\left(\lambda I-A_{\beta}\right)=\lambda^{2}-10 \Rightarrow \operatorname{eig}\left\{A_{\beta}\right\}=\{+\sqrt{10},-\sqrt{10}\}
$$

Since one eigenvalue $\sqrt{10}$ is positive (and theefore has positive real part) the system is unstable. As an alternative we could have applied the Routh criterion to the characteristic polynomial

$$
p_{A_{1}}(\lambda)=\lambda^{3}+\lambda^{2}-10 \lambda-10
$$

The necessary condition is not satisfied and therefore we can only assess that not all the eigenvalues have negative real part. Note that the Routh table has a row (with only one element) equal to zero since the first two rows are linearly dependent.

$$
\begin{array}{|rr}
1 & -10 \\
1 & -10 \\
0 &
\end{array}
$$

(N.B. There are rules to overcome this situation).

- Being the matrix A_{2} upper triangular, the eigenvalues coincide with the elements on the diagonal $\lambda_{1}=-1, \lambda_{2}=3$ and $\lambda_{3}=3$. The eigenvalue $\lambda_{3}=3$ makes the system unstable.
- Similarly, being A_{3} lower triangular again the eigenvalues are the elements on the main diagonal and therefore, having $\lambda_{3}=3$, the system is unstable.
- Matrix A_{4} is block triangular

$$
A_{4}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 3
\end{array}\right)=\left(\begin{array}{cc}
A_{\alpha} & \star \\
0 & A_{\beta}
\end{array}\right)
$$

(with \star matrix having the right dimensions) and therefore we have

$$
\operatorname{eig}\left\{\left(\begin{array}{cc}
A_{\alpha} & \star \\
0 & A_{\beta}
\end{array}\right)\right\}=\operatorname{eig}\left\{A_{\alpha}\right\} \cup \operatorname{eig}\left\{A_{\beta}\right\}
$$

Being

$$
p_{A_{\beta}}(\lambda)=\lambda^{2}-3 \lambda+1
$$

both roots (eigenvalues) of $p_{A_{\beta}}(\lambda)=0$ have positive real part since the elements of the first column of the Routh table (which coincide for a second order equation with the polynomial coefficients) change sign twice. The corresponding system is unstable.

- Note that A_{5} is in the controller canonical form and therefore its characteristic polynomial is

$$
p_{A 5}(\lambda)=\lambda^{3}+12 \lambda^{2}+\lambda+10
$$

with Routh table

1	1
12	10
$1 / 6$	
10	

The corresponding system is asymptotically stable.

- First note that A_{6} is lower triangular and therefore the system has the double eigenvalue $\lambda_{1}=0$ - which prevents the system from being asymptotically stable - and $\lambda_{2}=-3$. Moreover A_{6} is also block diagonal with

$$
A_{\alpha}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

In order to understand if this double eigenvalue in 0 leads to instability or not, recall that the eigenvalues of a matrix coincide with those of its transpose

$$
\operatorname{eig}\left\{A_{\alpha}\right\}=\operatorname{eig}\left\{A_{\alpha}^{T}\right\}
$$

This can be shown with the similarity transformation T such that

$$
A_{\alpha}^{T}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=T A_{\alpha} T^{-1}=T\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) T^{-1} \quad \text { with } \quad T=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=T^{-1}
$$

and therefore A_{α} and A_{α}^{T} are similar and share the same eigenvalues. We can then note that A_{α}^{T} is a Jordan block of dimension $2($ index $=2)$ for the eigenvalue $\lambda_{1}=0$ which makes the system unstable.

E Exercise 5

For the considered systems we have the following results.

- The system has a double pole is $s=0$ and therefore it is not asymptotically stable. To see it is unstable we can either recall that an eigenvalue will appear as a pole with at most multiplicity equal to its index (dimension of the largest Jordan block). Therefore here we would have an index equal to 2 and this leads to instability. This is evident from the realization

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad B_{1}=\binom{0}{1}, \quad C_{1}=\left(\begin{array}{ll}
-1 & 1
\end{array}\right), \quad D_{1}=0
$$

which shows the presence of the Jordan block.
Alternatively, since the transfer function is the Laplace transform of the impulse response $p_{1}(t)$, we have

$$
P_{1}(s)=\frac{s-1}{s^{2}}=\frac{R_{1}}{s}+\frac{R_{2}}{s^{2}}, \quad \text { with } \quad R_{1}=1, \quad R_{2}=-1
$$

and the impulse response

$$
p_{1}(t)=\mathcal{L}^{-1}\left[P_{1}(s)\right]=\left(R_{1}+R_{2} t\right) \delta_{-1}(t)
$$

shows the presence of the diverging natural mode $t \delta_{-1}(t)$.

- Being the poles of $P_{2}(s)$ equal to $p_{1}=0$ and $p_{2}=-1$, the system is marginally stable (or more properly Lyapunov stable).
- The denominator of $P_{3}(s)$ can be factored as

$$
s^{3}+12 s^{2}+3 s=s\left(s^{2}+12 s+3\right)
$$

thus we have a pole in $s=0$ and two poles with negative real part. The system is therefore marginally stable (or more properly Lyapunov stable).

- The Routh criterion for $P_{4}(s)$ is satisfied therefore the system is asymptotically stable. The roots are (found numerically) $p_{1}=-11.9862, p_{2 / 3}=-0.0069 \pm 0.9134 j$.

1	1
12	10
$1 / 6$	
10	

- The system is not asymptotically stable since the necessary condition is not satisfied. Building the Routh table

$$
\left\lvert\, \begin{array}{cc}
1 & 1 \\
12 & -12 \\
2 & \\
-12 &
\end{array}\right.
$$

shows that there is only one change of sign so one root with positive real part. As a check, numerically the roots are $p_{1}=-11.8297, p_{2}=-1.0959$ and $p_{3}=0.9256$.
\bullet Routh criterion shows asymptotic stability. The roots are $p_{1}=-1.7549, p_{2 / 3}=-0.1226 \pm 0.7449 j$.

$$
\begin{array}{cc}
1 & 1 \\
2 & 1 \\
1 / 2 & \\
1 &
\end{array}
$$

- Being the Routh table

$|$| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 1 | 1 | 4 |
| 1 | -1 | |
| 2 | 4 | |
| -3 | | |
| 4 | | |

the system with transfer function $P_{7}(s)$ is unstable due to the presence of two poles with positive real part (2 sign variations in the first column). The poles are $p_{1}=-1, p_{2 / 3}=-0.7177 \pm 1.3651 j$ and $p_{4 / 5}=0.7177 \pm 1.0801 j$.

F Exercise 6

Being the matrix triangular

$$
p_{A}(\lambda)=(\lambda-k) \lambda \quad \Rightarrow \text { eigenvalues: } \begin{cases}\lambda_{1}=0, \lambda_{2}=k, & \text { if } k \neq 0 ; \\ \lambda_{1}=\lambda_{2}=0, & \text { if } k=0\end{cases}
$$

If $k \neq 0$ the natural modes are $e^{\lambda_{1} t}=e^{k t}$ and $e^{\lambda_{2} t}=1$; if $k>0$ the system is unstable while for $k<0$ we have marginal stability (or preferably Lyapunov stability).

For the case $k=0$ we have several equivalent options.
With $k=0$ matrix A

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

has an obvious Jordan block of dimension 2 (index 2) and therefore the zero eigenvalue leads to instability. The natural modes are $e^{0 t}=1$ and $t e^{0 t}=t$.

Equivalently, with $k=0$, the dynamics equations are

$$
\dot{x}=A x, \quad x \in \mathbf{R}^{2}, \quad \rightarrow \quad\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=0
\end{array}\right.
$$

The second equation has the constant solution $x_{2}(t)=x_{2}(0)$ and therefore $x_{1}(t)=x_{2}(0) t+x_{1}(0)$. These are the components of the free (unforced, zero-input) state evolution

$$
x_{z i}(t)=e^{A t} x(0)=\left\{\begin{array}{l}
x_{2}(0) t+x_{1}(0) \\
x_{2}(0)
\end{array}\right.
$$

which clearly shows the diverging behavior for generic initial conditions.
In the Laplace domain, note that

$$
\mathcal{L}\left[e^{A t}\right]=(s I-A)^{-1}=\frac{1}{s^{2}}\left\{\begin{array}{ll}
s & 1 \\
0 & s
\end{array}\right)
$$

which can be expanded as (Heaviside)

$$
(s I-A)^{-1}=\frac{1}{s}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{s^{2}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Being the matrices (residues) independent from s, the inverse Laplace transform is

$$
e^{A t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \delta_{-1}(t)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) t \delta_{-1}(t)
$$

Post-multiplication (right multiplication) by the initial condition $x(0)$ leads to the same unforced response previously found.

G Exercise 7

The forced response transform is given by

$$
Y(s)=P(s) U(s)
$$

and therefore, being

$$
U(s)=\frac{1}{s-1}-2 \frac{1}{s^{2}}=\frac{s^{2}-2 s+2}{s^{2}(s-1)}
$$

we get

$$
Y(s)=\frac{s-1}{s+1} \frac{s^{2}-2 s+2}{s^{2}(s-1)}=\frac{s^{2}-2 s+2}{s^{2}(s+1)}=\frac{R_{11}}{s}+\frac{R_{12}}{s^{2}}+\frac{R_{2}}{s+1}
$$

with $R_{11}=-4, R_{12}=2$ and $R_{2}=5$. An interesting aspect of this example is that the diverging exponential component of the input e^{t} is not present at the output (while the polynomial component is) since the system has "filtered" this diverging forcing term through the presence of the zero in $s=1$ in the transfer function $P(s)$.

H Exercise 8

The forced response transform is given by

$$
Y(s)=P(s) U(s)
$$

and therefore the only difficulty lies in finding $U(s)$ from known Laplace transform and properties. The input $u(t)$ is a truncated sinusoidal function with frequency 1 Hz or $2 \pi \mathrm{rad} / \mathrm{s}$ as shown in Fig. 5-A.

As shown in Fig. 5-D, the input $u(t)$ can be seen as the result of a time shift of 1 sec (Fig. 5 -B) to which an opposite and time shifted of 2 sec sinusoid (Fig. 5-C) has been added and therefore

$$
u(t)=[\sin (2 \pi(t-1))] \delta_{-1}(t-1)-[\sin (2 \pi(t-2))] \delta_{-1}(t-2)
$$

Defining $y_{0}(t)$ as the output corresponding to the input $\sin 2 \pi t$, the output $y(t)$ is given by

$$
y(t)=y_{0}(t-1) \delta_{-1}(t-1)-y_{0}(t-2) \delta_{-1}(t-2)
$$

We therefore just need to compute $y_{0}(t)$ as the inverse Laplace transform of

$$
Y_{0}(s)=P(s) \frac{2 \pi}{s^{2}+4 \pi^{2}}
$$

with $P(s)$ the transfer function of the given system (state space representation is in the controller canonical form)

$$
P(s)=\frac{-s+1}{s^{2}+2 s+1}=-\frac{s-1}{(s+1)^{2}}
$$

We have

$$
Y_{0}(s)=-\frac{s-1}{(s+1)^{2}} \frac{2 \pi}{s^{2}+4 \pi^{2}}=\frac{R_{1}}{s+2 \pi j}+\frac{R_{1}^{*}}{s-2 \pi j}+\frac{R_{21}}{s+1}+\frac{R_{22}}{(s+1)^{2}}
$$

with

$$
\begin{aligned}
R_{1} & =[(s+2 \pi j) Y(s)]_{s=-2 \pi j}=\frac{\pi\left(4 \pi^{2}-3\right)}{\left(1+4 \pi^{2}\right)^{2}}+\frac{1-12 \pi^{2}}{2\left(1+4 \pi^{2}\right)^{2}} j \\
R_{21} & =\left[\frac{d}{d s}\left((s+1)^{2} Y(s)\right)\right]_{s=-1}=\frac{-2 \pi\left((2 \pi)^{2}-3\right)}{\left(1+(2 \pi)^{2}\right)^{2}} \\
R_{22} & =\left[(s+1)^{2} Y(s)\right]_{s=-1}=\frac{4 \pi}{1+(2 \pi)^{2}}
\end{aligned}
$$

Figure 5: Ex. 8, input $u(t)$
and therefore, defining the residue R_{1} as $R_{1}=a+j b$, we have

$$
\frac{R_{1}}{s+2 \pi j}+\frac{R_{1}^{*}}{s-2 \pi j}=2 a \frac{s}{s^{2}+(2 \pi)^{2}}+2 b \frac{2 \pi}{s^{2}+(2 \pi)^{2}}
$$

which admits the inverse Laplace transform

$$
2 a \cos 2 \pi t+2 b \sin 2 \pi t
$$

The overall $y_{0}(t)$ is then given by

$$
y_{0}(t)=2 a \cos 2 \pi t+2 b \sin 2 \pi t+R_{21} e^{-t}+R_{22} t e^{-t}
$$

I Exercise 9

Being the matrix block diagonal, the eigenvalues are the union of the eigenvalues of

$$
A_{1}=\left(\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right), \quad A_{2}=(1)
$$

that is $\lambda_{1}=1, \lambda_{2}=i$ and $\lambda_{3}=\lambda_{2}^{*}=-i$ (the characteristic polynomial of A is $p_{A}(\lambda)=(\lambda-1)\left(\lambda^{2}+\right.$ $1)$). The natural modes are therefore

$$
e^{\lambda_{1} t}=e^{t}, \quad \sin t \quad \text { (or equivalently } \cos t \text {) }
$$

J Exercise 10

The characteristic polynomial is $p_{A}(\lambda)=\lambda^{2}+4 \lambda+3=(\lambda+1)(\lambda+3)$ and therefore $\lambda_{1}=-1$, $\lambda_{2}=-3$. The eigenvector associated to $\lambda_{1}=-1$ is

$$
u_{1}=\binom{1}{-1}
$$

or any parallel. the eigenvector associated to $\lambda_{2}=-3$ is

$$
u_{2}=\binom{1}{1}
$$

Choose $U=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right)$ so that

$$
U^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=\binom{v_{1}^{T}}{v_{2}^{T}}
$$

From the spectral form we obtain

$$
\begin{aligned}
x_{z i}(t)=e^{A t} x(0) & =\left(e^{\lambda_{1} t} u_{1} v_{1}^{T}+e^{\lambda_{2} t} u_{2} v_{2}^{T}\right) x(0) \\
& =\left\{e^{-t}\binom{1}{-1}\left(\begin{array}{cc}
1 / 2 & -1 / 2
\end{array}\right)+e^{-3 t}\binom{1}{1}\left(\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right)\right\}\binom{2}{0} \\
& =\left\{e^{-t}\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)+e^{-3 t}\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)\right\}\binom{2}{0} \\
& =\binom{1}{-1} e^{-t}+\binom{1}{1} e^{-3 t}
\end{aligned}
$$

while

$$
y_{z i}(t)=C e^{A t} x(0)=C x_{z i}(t)=e^{-t}+3 e^{-3 t}
$$

As an alternative, we can find the coefficients $c_{1}=v_{1}^{T} x_{0}$ and $c_{2}=v_{2}^{T} x_{0}$ which give the initial condition x_{0} in the $\left(u_{1}, u_{2}\right)$ basis

$$
x(0)=c_{1} u_{1}+c_{2} u_{2}=u_{1}+u_{2}
$$

and therefore, being $v_{i}^{T} u_{j}=\delta_{i j}, c_{1}$ and c_{2} scalars,

$$
\begin{aligned}
e^{A t} x(0) & =\left(e^{\lambda_{1} t} u_{1} v_{1}^{T}+e^{\lambda_{2} t} u_{2} v_{2}^{T}\right) x(0) \\
& =\left(e^{\lambda_{1} t} u_{1} v_{1}^{T}+e^{\lambda_{2} t} u_{2} v_{2}^{T}\right)\left(c_{1} u_{1}+c_{2} u_{2}\right) \\
& =c_{1} e^{\lambda_{1} t} u_{1}+c_{2} e^{\lambda_{2} t} u_{2}
\end{aligned}
$$

K Exercise 11

The eigenvalues and associated eigenvectors are

$$
\lambda_{1}=-1 \rightarrow u_{1}=\binom{1}{3}, \quad \lambda_{2}=1 \rightarrow u_{2}=\binom{1}{1}
$$

The output zero-input response is therefore

$$
\begin{aligned}
y_{z i}(t) & =C e^{A t} x(0)=C\left\{e^{\lambda_{1} t} u_{1} v_{1}^{T}+e^{\lambda_{1} t} u_{2} v_{2}^{T}\right\} x(0) \\
& =\left\{e^{\lambda_{1} t} C u_{1} v_{1}^{T}+e^{\lambda_{1} t} C u_{2} v_{2}^{T}\right\} x(0) \\
& =\left\{e^{\lambda_{1} t} C u_{1} v_{1}^{T}\right\} x(0)
\end{aligned}
$$

being $C u_{2}=0$ and therefore any initial condition solves the problem. This is understandable since $C u_{2}=0$ implies that the diverging natural mode $e^{\lambda_{2} t}=e^{t}$ is unobservable.

L Exercise 12

The eigenvalues and associated eigenvectors are

$$
\lambda_{1}=0 \rightarrow u_{1}=\binom{1}{2}, \quad \lambda_{2}=5 \rightarrow u_{2}=\binom{3}{1}
$$

and therefore we have a constant natural mode (for $\lambda_{1}=0$) and a diverging one (for $\lambda_{2}=5$). In order for the diverging natural mode not to compare in the output free response, the initial state needs to belong to the eigenspace relative to $\lambda_{1}=0$, that is

$$
x(0)=\alpha u_{1}=\binom{\alpha}{2 \alpha}
$$

Since $\lambda_{1}=0$ the output response from $x(0)$ not only will be non diverging but also constant.

