
Self assessment - 00A

February 29, 2024

1 Exercise

Given the matrices

A1 =

 1 1 1
−2 −1 −1
1 0 0

 , A2 =

 1 1 1
−1 −1 −1
0 0 0


1. Find the nullspace of A1 and A2.

2. Prove that vectors w1 and w2 generate the same subspace than w3 and w4 with

w1 =

−3
1
2

 , w2 =

−3
2
1

 , w3 =

 0
−1
1

 , w4 =

 1
1
−2


3. Prove that both (w1,w2) and (w3,w4) generate the nullspace of A2.

2 Exercise

Given the matrices

A1 =

 3 1 1
−3 −1 −1
0 0 0

 , A2 =

 1 1 1
−1 −1 −1
0 0 0


1. Find the eigenvalues of A1 and their geometric multiplicities.

2. Find the eigenvalues of A2 and their geometric multiplicities.

3 Exercise

Consider the following plant with α ∈ R a real parameter.

ẋ1 = x1 + x3 + u

ẋ2 = u

ẋ3 = −2x3

y = αx1 + x2 + x3

1. Find (A,B,C,D) of the state space representation.
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2. Compute the eigenvalues of A and their corresponding eigenvectors. What are the natural
modes of the system?

3. Which initial conditions guarantee that the state ZIR will converge to zero asymptotically?

4. Which initial conditions guarantee that the state ZIR will not diverge?

5. Can we avoid, with a proper choice of the output through α, the divergence of the output
ZIR for every initial condition?

6. Can we avoid divergence of the impulse response with a proper choice of α?

4 Exercise

Consider the horizontal motion of a point mass under the action of a force f(t) and a friction force
proportional, with coefficient µ > 0, to the mass velocity. The following questions need to be solved
symbolically, without assigning particular numeric values for the system parameters m and µ.

1. Find the state space representation by considering that we are also interested in the mass
position.

2. If possible, find the change of coordinates (similarity transformation) that will diagonalize
the dynamic matrix.

3. Write the matrix exponential in the original state (position displacement and velocity).

4. Assuming the mass is pushed from its rest position with a unit impulse force f(t) = δ(t),
where will the mass stop?

5. Find explicitly the position p(t) and velocity ṗ(t) time evolution when no input is applied but
the system starts from a generic initial condition (p0, ṗ0), in other words find the state Zero
Input Response (ZIR). How is the found ZIR related to the natural modes of the system?

6. For the state ZIR, find the relationship between ṗ(t) and p(t), i.e. write the solution ṗ(t) in
terms of the solution p(t) so that we can plot the ZIR in the (p, ṗ) phase plane. The obtained
relationship will also depend upon the initial condition (p(0), ṗ(0)) = (p0, ṗ0). Comment the
typical system trajectories in the phase plane.

7. Find the set of initial conditions (p0, ṗ0) such that the ZIR tends asymptotically to the origin
(0, 0). Plot this set in the phase plane (p, ṗ).

8. Find explicitly the position and velocity time evolution when the system starts from the rest
configuration (p0, ṗ0) = (0, 0) and a unit constant force f(t) = 1 is applied from t = 0.

9. Assume that the constant unit force is applied only for a finite time interval of length T , i.e.
f(t) = 1 for t ∈ [0, T ] and f(t) = 0 for t > T . Write the state forced response.

10. Write the state evolution when the constant applied force during the interval of duration T
has amplitude α, i.e. f(t) = α for t ∈ [0, T ]?

11. Assume we start for the initial condition (p0, 0), we want to find α (if it exists) such that the
input f(t) = α for t ∈ [0, T ] will lead to a state evolution that will asymptotically tend to the
origin. To do so, note that the given input will transfer the state from its original value to a
new value reached at time t = T . From that state the system evolves with no input applied.
Use the previous results in order to solve the problem.

2



5 Solution Exercise 1

1. The two nullspaces are given by

A1v =

 1 1 1
−2 −1 −1
1 0 0

v1

v2

v3

 = 0 → Ker(A1) = gen


 0
−1
1


A2v =

 1 1 1
−1 −1 −1
0 0 0

v1

v2

v3

 = 0 → Ker(A2) = gen


−1

1
0

 ,

−1
0
1

 = gen {va,vb}

Note that va and vb are linearly independent and therefore we could have chosen any other
vector w linear combination of va and vb as another equivalent base vector. For example

wa = va − vb =

 0
1
−1

 → Ker(A2) = gen {va,vb} = gen {va,wa}

or even

wb = 3va − 2vb =

−1
3
−2

 → Ker(A2) = gen {va,vb} = gen {va,wa} = gen {wa,wb}

since wb is linearly independent from wa, while we cannot write

Ker(A2) = gen {wa,wc} with wc = 2va − 2vb =

 0
2
−2

 = 2wa

since wa and wc are not linearly independent.

2. We want to prove that gen {w1,w2} = gen {w3,w4}. First notice that w1 and w2 are linearly
independent since the two vectors are not parallel (for two vectors this is equivalent to saying
that the two vectors are linearly independent). Then it can be readily1 seen that

w3 = w1 −w2 and w4 = −5

3
w1 +

4

3
w2

i.e. both vectors can be generated from the base {w1,w2} and thus belong to the same
subspace. Moreover since w3 and w4 are not parallel they can be chosen as a base (for the
same subspace generated by {w1,w2}).

3. Similarly, being

w1 = va + 2vb w2 = 2va + vb w3 = −va + vb w1 = va − 2vb
1The second relation can be found by solving the three equations in the two unknowns a and b such that w4 =

aw1+ bw2, i.e. −3a−3b = 1, a+2b = 1 and 2a+ b = −2. If no solution (a, b) can be found then w4 is not obtainable
as a linear combination of w1 and w2 and therefore does not belong to the subspace generated by {w1,w2}. For

example the vector wT
5 =

(
1 1 2

)T
does not belong to gen {w1,w2}.
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6 Solution Exercise 2

Due to the particular block triangular structure, the eigenvalues of the two matrices are

eig(A1) = eig

(
3 1
−3 −1

)
∪ {0} = {2, 0, 0}, eig(A2) = eig

(
1 1
−1 −1

)
∪ {0} = {0, 0, 0}

that is A1 has eigenvalues λ1 = 2 with algebraic multiplicity 1 and λ2 = 0 with algebraic multiplicity
2, while A3 has eigenvalues λ1 = 0 with algebraic multiplicity 3.

1. For A1, the geometric multiplicity of λ1 is 1 (being always 0 < geom. mult. ≤ alg. mult.)
while we need to determine the dimension of Ker(A1−λ2I) to find the geometric multiplicity
of λ2. Since

Ker(A1 − λ2I) = Ker(A1) = Ker

 3 1 1
−3 −1 −1
0 0 0

 = gen


−1/3

1
0

 ,

−1/3
0
1


so clearly the dimension of Ker(A1 − λ2I) is 2 and therefore the geometric multiplicity of
λ2 = 0 is 2. Note that there is no need to find a basis of Ker(A1 − λ2I) since we are only
interested in its dimension. We could therefore instead use the rank-nullity theorem (applied
to a generic square n× n matrix M) which states that

dim (Ker(M)) + rank(M) = n

Since we are not able to find a non-zero minor of dimension 2 in the matrix A1 − λ2I = A1,
then the rank is 1 (some elements, which are minors of dimension 1, are different from 0) and
therefore we have

dim (Ker(A1 − λ2I)) = 3− 1 = 2

which implies that the geometric multiplicity of λ2 = 0 is 2.

2. For A2, to find the geometric multiplicity of the unique eigenvalue λ1 = 0, again we need
to find the dimension of Ker(A2 − λ1I) = Ker(A2). Since the rank of A2 is clearly 1, the
dimension of the nullspace is

dim (Ker(A2)) = 3− 1 = 2

which is confirmed by

Ker(A2 − λ1I) = Ker(A2) = Ker

 1 1 1
−1 −1 −1
0 0 0

 = gen


−1

1
0

 ,

−1
0
1


7 Solution Exercise 3

1. From direct inspection we have

A =

1 0 1
0 0 0
0 0 −2

 , B =

1
1
0

 , C =
(
α 1 1

)
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2. Being the matrix A upper triangular, the eigenvalues are λ1 = 1, λ2 = 0 and λ3 = −2. To
compute the eigenvectors we solve

(A− λ1I)u1 = 0 →

0 0 1
0 −1 0
0 0 −3

u1 = 0 → u1 =

1
0
0


(A− λ2I)u2 = 0 →

1 0 1
0 0 0
0 0 −2

u2 = 0 → u2 =

0
1
0


(A− λ3I)u3 = 0 →

3 0 1
0 2 0
0 0 0

u3 = 0 → u3 =

 1
0
−3


The natural modes are

eλ1t = et, eλ2t = 1, eλ3t = e−2t

3. Since the modes are diverging (et), bounded (1) and converging (e−2t), the only initial con-
ditions in the state ZIR that will guarantee a converging state evolution are those parallel to
u3, that is x(0) = a u3 with a non-zero (i.e. x(0) belonging to the eigenspace associated to
λ3 = −2). In this way there are no components along the other two eigenspaces

eAtx(0) =

3∑
i=1

eλituiv
T
i a u3 = a e−2tu3 since vT1 u3 = vT2 u3 = 0

4. We need to choose the initial condition with no component in the eigenspace relative to λ1

or, equivalently, we can choose any initial condition belonging to the subspace generated by
{u2, u3} i.e.

x(0) = au2 + bu3 =

 b
a
−3b

 , a, b ∈ R

5. The output ZIR is given by

CeAtx(0) =

3∑
i=1

eλitCuiv
T
i x(0)

The only way to cancel out the contribution of the unstable mode eλ1t in the output ZIR
(independently from the value of the initial condition) is by choosing C such that Cu1 = 0.
This can be achieved with α = 0. In this case, the output ZIR will never diverge.

6. Similarly, being the impulse response

CeAtB =

3∑
i=1

eλitCuiv
T
i B

since vT1 B 6= 0 the only possibility is to choose again α = 0.
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8 Solution Exercise 4

[This solution clearly exceeds what is expected from a student work but should rather be seen as a
detailed analysis of an easy example useful to clarify the theory seen in class.]

The differential equation relating position p(t), velocity ṗ(t) and acceleration p̈(t) is

mp̈+ µṗ = f(t)

1. Choosing as state xT =
(
p ṗ

)T
, f(t) as input u and the position p as output, we have the

following state space representation

ẋ =

(
0 1
0 −µ/m

)
x+

(
0

1/m

)
u = Ax+Bu

y =
(
1 0

)
x = Cx

2. The system has two distinct eigenvalues λ1 = 0 and λ2 = −µ/m. The associated eigenvectors,
needed to diagonalize the dynamic matrix, are

λ1 = 0 → (A− λ1I)u1 = Au1 = 0 → u1 =

(
1
0

)
λ2 = 0 → (A− λ2I)u2 =

(
µ/m 1

0 0

)
u2 = 0 → u2 =

(
1

−µ/m

)
and therefore using the similarity matrix

T−1 =
(
u1 u2

)
=

(
1 1
0 −µ/m

)
→ T =

(
1 m/µ
0 −m/µ

)
we get

Ā = TAT−1 =

(
0 0
0 −µ/m

)
, B̄ = TB =

(
1/µ
−1/µ

)
, C̄ = CT−1 =

(
1 1

)
The new diagonalizing coordinates are

z = Tx =

(
1 m/µ
0 −m/µ

)(
p
ṗ

)
=

(
p+ m

µ ṗ

−m
µ ṗ

)

3. The matrix exponential is found through the diagonalized matrix Ā as

eAt = eT
−1ĀT t = T−1eĀtT =

(
1 1
0 −µ/m

)(
1 0

0 e−µ t/m

)(
1 m/µ
0 −m/µ

)

=

(
1 m(1− e−µ t/m)/µ

0 e−µ t/m

)
4. We need to find the impulse response, which is independent from the choice of the state,

w(t) = C̄eĀtB̄ =
(
1 1

)(1 0

0 e−µ t/m

)(
1/µ
−1/µ

)
=

1

µ

(
1− e−µ t/m

)
6



Therefore the output (position p) will tend, after an impulsive force has been applied, to the
constant value

p̄ = lim
t→∞

w(t) =
1

µ

To find the impulsive response we could have also computed the transfer function (by doing the
Laplace transform of the differential equation starting from zero initial position and velocity)

(ms2 + µs)p(s) = f(s) → W (s) =
Output(s)

Input(s)
=
p(s)

f(s)
=

1

s(ms+ µ)

which can be expanded in partial fractions

W (s) =
1/m

s(s+ µ/m)
=
R1

s
+

R2

s+ µ/m

with the residues being

R1 = {sW (s)}s=0 =
1

µ

R2 = {(s+ µ/m)W (s)}s=−µ/m = − 1

µ

and take its inverse Laplace transform

w(t) = L−1(W (s)) = L−1

(
1

µ

(
1

s
− 1

s+ µ/m

))
=

1

µ

(
1− e−µ t/m

)
5. Since we already computed the matrix exponential, we can directly write the state ZIR

xZIR(t) = eAtx(0) =

(
1 m(1− e−µ t/m)/µ

0 e−µ t/m

)(
p(0)
ṗ(0)

)
=

(
p(0) +m(1− e−µ t/m)ṗ(0)/µ

e−µ t/mṗ(0)

)
Obviously, the ZIR state response is a linear combination of the system natural modes.

6. From the previous expression of xZIR(t), being the two components respectively (p(t), ṗ(t))
with

ṗ(t) = e−µ t/mṗ(0)

one can rewrite the position time evolution p(t) as

p(t) = p(0) +
m

µ
(1− e−µ t/m)ṗ(0) = p(0) +

m

µ
ṗ(0)− m

µ
e−µ t/mṗ(0) = p(0) +

m

µ
ṗ(0)− m

µ
ṗ(t)

and therefore the state ZIR components are related as

ṗ(t) = − µ
m
p(t) + ṗ(0) +

µ

m
p(0)

which is just a straight line of slope −µ/m in the (p, ṗ) plane. When the inital conditions
change we obtain a set of parallel straight lines. We need however to interpret carefully this
result. Let us first look at the equilibrium points of the system. These are the solution of

Axe = 0 → xe =

(
pe
0

)
and therefore this set, in the (p, ṗ) plane is represented by the horizontal axis. There are a
number of interesting observations which confirm our physical intuition.
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ṗ

p

(A)

(B)

(C)

(D)

equilibrium
points

(a)

(b)

pe3

Figure 1: Exercise 4 - phase plane and some ZIR trajectories from different initial conditions

• Starting from the same initial condition (p(0), ṗ(0)) with positive initial velocity, case
(A), we can compare the different resulting trajectories when the friction decreases:
with a friction coefficient µ1 the mass stops (asymptotically) in pe1 (one of the infinite
equilibrium points) with zero velocity. With a lower friction coefficient µ2 < µ1 the state
evolution (a line in the phase plane for this system) will end up in a farther point pe2
since the line slope −µ2/m has a smaller absolute value w.r.t. −µ1/m.

• Starting with a negative velocity (ṗ(0) < 0), case (B), will make the mass move back-
wards. The mass ends in the equilibrium point pe.

• Starting from the same initial position p(0), case (C), we need different initial velocities
ṗ(0) to end in the same final position if we have different masses. The smaller the mass
m the larger the initial velocity must be since if m1 < m2, the slope −µ/m2 has a smaller
absolute value w.r.t. −µ/m1. In Fig. 1, case (C), the line (a) corresponds to m2 while
line (b) to m1 with m1 < m2. We also understand that theoretically, one way to remain
in the same position, i.e. to have pe3 = p(0), with a non-zero initial velocity (this motion
would result in a vertical segment) we need a zero mass (to have a ±∞ slope). This is
more evident from the derivation of x∞ZIR in the next question.

• We know that starting from x(0) =
(
p(0) ṗ(0)

)T
=
(
0 0

)T
, the effect of an impulse is

equivalent to starting in a ZIR from an initial condition which coincides with the input
vector B. For the given system, the state impulse response is equal to the state ZIR
from the initial condition

xi0 =

(
pi(0)
ṗi(0)

)
=

(
0

1/m

)
i.e. the impulse generates an instantaneous initial velocity. As a check, we use the
already computed matrix exponential to find the state impulse response. We have

eAtB =

(
1 m(1− e−µ t/m)/µ

0 e−µ t/m

)(
0

1/m

)
=

(
(1− e−µ t/m)/µ

e−µ t/m/m

)
which coincides with the state ZIR (see previous questions) with x0 = B.

If we start from a generic initial condition x(0) =
(
p(0) ṗ(0)

)T
, the state response is

the sum of the state impulse response and the state free evolution

x(t) = eAtx0 + eAtB = eAt(x0 +B) = eAtx̄(0) with x̄(0) = x0 +B

that is the state evolution coincides with a state free response from the new initial
condition x̄(0). Again the effect of the impulsive force (unit impulse as input) is to
instantaneously change the velocity.
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7. From the previously computed general state ZIR

xZIR(t) =

(
p(0) +m(1− e−µ t/m)ṗ(0)/µ

e−µ t/mṗ(0)

)
we notice that, as t→∞, the state tends to

x∞ZIR =

(
p(0) + m

µ ṗ(0)

0

)
Therefore in order for this final point to be the origin, the initial conditions must satisfy the
relation

p(0) +
m

µ
ṗ(0) = 0

This set of initial conditions can be expressed either in terms of p(0) or ṗ(0) as p(0)

− µ
m
p(0)

 or

−mµ ṗ(0)

ṗ(0)


In the phase plane, this set is the line with slope −µ/m passing through the origin.

8. When a unit step force is applied and the system starts in (p(0), ṗ(0)) = (0, 0) the state
evolution is the state forced response – or state Zero State Response (ZSR) – to the input
u = δ−1(t). We can either work in the time or in the Laplace domain.

• We need to compute explicitly

xZSR(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ =

∫ t

0

(
(1− e−µ (t−τ)/m)/µ

e−µ (t−τ)/m/m

)
dτ =

(
pZSR(t)
ṗZSR(t)

)
We can compute the first component, the position

pZSR(t) =
1

µ

[∫ t

0
dτ − e−

µ
m
t

∫ t

0
e
µ
m
τdτ

]
=

1

µ

[
t− m

µ

(
1− e−

µ
m
t
)]

We can also do the same for the second component, but since we know it’s the velocity we
can directly take the time derivative of pZSR(t) (check as an exercise) and therefore

ṗZSR(t) =
1

µ

[
1− e−

µ
m
t
]

9. The input, now a unit force applied for a time interval T , can be written as

uT (t) = δ−1(t)− δ−1(t− T )

Using the Laplace transform translation result, we can compute xT (the state response to the
input uT ) in terms of the state response to the unit step input previously found xZSR(t) as

xT (t) = xZSR(t)δ−1(t)− xZSR(t− T )δ−1(t− T )
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Figure 2: Exercise 4 - State trajectory in t (top) and in the phase plane (bottom) when an input
uT (t) is applied starting from zero initial conditions. From the phase plane plot, the input transfers
the state from the origin to x(T ). For t ≥ T the system evolves with no input applied that is as a
ZIR from the initial state x(T ).

since the response of a translated input δ−1(t − T ) is equal to the translation (by the same
time interval T ) of the response xZSR(t) to the non-translated input δ−1(t).

The presence of the Heaviside functions in the expression of xT (t) is needed to remember that
xZSR(t) is null for negative time and thus its translation xZSR(t− T ) is null before t = T .

Note that the effect of this input of finite duration is to transfer the state from x(0) (here
x(0) = 0) to a new state x(T ) (the value of the state in t = T ). After T , the system has
no inputs and evolves as a state ZIR from the initial state x(T ). A simulation is shown in
Fig. 2. In particular the input uT with T = 1 s transfers the state in x(1) = (0.43, 0.79) i.e.
in position p(1) = 0.42 m with velocity ṗ(1) = 0.79 m/s. After 1 second the system starts
evolving in free evolution. In the phase plane, when the input is applied the state trajectory
evolves as (pZSR(t), ṗZSR(t)). Noting that

ṗZSR(t) = − µ
m
pZSR(t) +

1

m
t

we obtain the trajectory in the phase plane which is not a straight line due to the presence
of the term t/m. During the second phase (ZIR), starting in t = T , the state is in free
evolution and the phase plane trajectory is a straight line. Asymptotically the mass will stop
in p̄ = 2 m.

We see that the state evolution when uT (t) is applied can be also computed as follows.

• Compute the value xT (T ) of the state forced evolution (ZSR), i.e. starting from the null
state, in t = T when the input uT (t) is applied.

• Compute the state free evolution (ZIR) from xT (T ), i.e. when no input is applied.

Note, however, that the state xT (T ) is the same reached in t = T by applying only δ−1(t)
(the second step has no effect yet). So the previous remark can be changed into “ ... compute
xZSR(T ) when the input δ−1(t) is applied ... ”.

10. Being the system linear, the forced response (ZSR) to αuT (t) is just α times the forced
response to uT (t) which has been already computed.
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11. We need to put together some of the obtained results.

• Since the system is linear the state response starting from a non-zero initial condition
and subject to an input is given by the sum of the state ZIR and ZSR (free plus forced
evolution). Therefore the state response from (p(0), ṗ(0)) = (p0, 0) will be(

p(t)
ṗ(t)

)
=

(
p0

0

)
+

(
α(pZSR(t)δ−1(t)− pZSR(t− T )δ−1(t− T ))
α(ṗZSR(t)δ−1(t)− ṗZSR(t− T )δ−1(t− T ))

)
• Since we know the set of initial conditions for which the free evolution converges to the

origin and we noticed that from t = T the system is in free evolution from xZRS(T )(
p(T )
ṗ(T )

)
=

(
p0

0

)
+

(
αpZSR(T )
αṗZSR(T )

)
we just need to find α (if it exists) such that the input αδ−1(t) moves the state from
(p0, 0) to a state (p(T ), ṗ(T )) which belongs to the set

S0 =

{
(p(T ), ṗ(T )) such that p(T ) +

m

µ
ṗ(T ) = 0

}
We need to solve in α the equation

p(T ) +
m

µ
ṗ(T ) = p0 + αpZSR(T ) + α

m

µ
ṗZSR(T ) = 0

i.e.
α = − µ

m

p0(
ṗZSR(T ) + µ

mpZSR(T )
)

Finally, recalling that during the forced phase ṗZSR(t) = µ pZSR(t)/m+t/m, the previous
expression simplifies in

α = −µ
T
p0

As an example, see the resulting motion of Fig. 3 where µ = 0.7.

12. Let’s use the impulsive response to compute the output ZSR to a sinusoidal input force
f(t) = sin ω̄t when the output is the mass velocity. With this choice we have

y(t) = ṗ(t) =
(
0 1

)(p(t)
ṗ(t)

)
= Cx

and therefore the (output) impulsive response is

w(t) = CeAtB =
(
0 1

)((1− e−µ t/m)/µ

e−µ t/m/m

)
=

1

µ
e−µ t/m

The ZSR is then the convolution of the impulsive response with the input, i.e.

y(t) = ṗ(t) =

∫ t

0
w(t− τ)f(τ)dτ =

1

m
e−µ t/m

∫ t

0
e−µ τ/m sin ω̄τ dτ

Using ∫
ecx sin bx dx =

ecx

c2 + b2
(c sin bx− b cos bx)

11
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Figure 3: Exercise 4 - State trajectory in t (top) and in the phase plane (bottom) when an input
αuT (t) is applied starting initial conditions (−2, 0). From the phase plane plot, the input transfers
the state from the initial state an x(T ) belonging to S0. For t ≥ T the system evolves with no
input from the initial state x(T ).

we obtain

ṗ(t) =
1

m
e−µ t/m

[
eµ τ/m

( µm)2 + ω̄2

( µ
m

sin ω̄τ − ω̄ cos ω̄τ
)]t

0

=
1

m

1

( µm)2 + ω̄2

( µ
m

sin ω̄ t− ω̄ cos ω̄ t+ ω̄e−µ/m t
)
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