Self assessment - 00A

November 7, 2016

1 Exercise

Given the matrices

$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

- 1. Find the nullspace of A_1 and A_2 .
- 2. Prove that vectors \mathbf{w}_1 and \mathbf{w}_2 generate the same subspace than \mathbf{w}_3 and \mathbf{w}_4 with

$$\mathbf{w}_1 = \begin{pmatrix} -3\\1\\2 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} -3\\2\\1 \end{pmatrix}, \quad \mathbf{w}_3 = \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \quad \mathbf{w}_4 = \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

3. Prove that both $(\mathbf{w}_1, \mathbf{w}_2)$ and $(\mathbf{w}_3, \mathbf{w}_4)$ generate the nullspace of A_2 .

2 Exercise

Given the matrices

$$A_1 = \begin{pmatrix} 3 & 1 & 1 \\ -3 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

- 1. Find the eigenvalues of A_1 and their geometric multiplicities.
- 2. Find the eigenvalues of A_2 and their geometric multiplicities.

3 Exercise

Consider the following plant with $\alpha \in \mathbb{R}$ a real parameter.

$$\dot{x}_1 = x_1 + x_3 + u$$

$$\dot{x}_2 = u$$

$$\dot{x}_3 = -2x_3$$

$$y = \alpha x_1 + x_2 + x_3$$

1

1. Find (A, B, C, D) of the state space representation.

- 2. Compute the eigenvalues of A and their corresponding eigenvectors. What are the natural modes of the system?
- 3. Which initial conditions guarantee that the state ZIR will converge to zero asymptotically?
- 4. Which initial conditions guarantee that the state ZIR will not diverge?
- 5. Can we avoid, with a proper choice of the output through α , the divergence of the output ZIR for every initial condition?
- 6. Can we avoid divergence of the impulse response with a proper choice of α ?

4 Exercise

Consider the horizontal motion of a point mass under the action of a force f(t) and a friction force proportional, with coefficient $\mu > 0$, to the mass velocity. The following questions need to be solved symbolically, without assigning particular numeric values for the system parameters m and μ .

- 1. Find the state space representation by considering that we are also interested in the mass position.
- 2. If possible, find the change of coordinates (similarity transformation) that will diagonalize the dynamic matrix.
- 3. Write the matrix exponential in the original state (position displacement and velocity).
- 4. Assuming the mass is pushed from its rest position with a unit impulse force $f(t) = \delta(t)$, where will the mass stop?
- 5. Find explicitly the position p(t) and velocity $\dot{p}(t)$ time evolution when no input is applied but the system starts from a generic initial condition (p_0, \dot{p}_0) , in other words find the state Zero Input Response (ZIR). How is the found ZIR related to the natural modes of the system?
- 6. For the state ZIR, find the relationship between $\dot{p}(t)$ and p(t), i.e. write the solution $\dot{p}(t)$ in terms of the solution p(t) so that we can plot the ZIR in the (p,\dot{p}) phase plane. The obtained relationship will also depend upon the initial condition $(p(0),\dot{p}(0)) = (p_0,\dot{p}_0)$. Comment the typical system trajectories in the phase plane.
- 7. Find the set of initial conditions (p_0, \dot{p}_0) such that the ZIR tends asymptotically to the origin (0,0). Plot this set in the phase plane (p,\dot{p}) .
- 8. Find explicitly the position and velocity time evolution when the system starts from the rest configuration $(p_0, \dot{p}_0) = (0, 0)$ and a unit constant force f(t) = 1 is applied from t = 0.
- 9. Assume that the constant unit force is applied only for a finite time interval of length T, i.e. f(t) = 1 for $t \in [0, T]$ and f(t) = 0 for t > T. Write the state forced response.
- 10. Write the state evolution when the constant applied force during the interval of duration T has amplitude α , i.e. $f(t) = \alpha$ for $t \in [0, T]$?
- 11. Assume we start for the initial condition $(p_0, 0)$, we want to find α (if it exists) such that the input $f(t) = \alpha$ for $t \in [0, T]$ will lead to a state evolution that will asymptotically tend to the origin. To do so, note that the given input will transfer the state from its original value to a new value reached at time t = T. From that state the system evolves with no input applied. Use the previous results in order to solve the problem.