
Some past exam problems in Control Systems - Part 3

December, 2019 - updated 05/01/2020 - 30/01/2020

1) Consider the open-loop system

L(s) =
K

s(s+ 1)(s/10 + 1)

1. Determine if and for which values of K the closed-loop system is asymp-
totically stable.

2. Determine the non-zero critical value of Kcrit for which the closed-loop
system moves from being asymptotically stable to unstable.

3. Draw the Bode plots with K = Kcrit (consistent with the knowledge that
this is a critical value of the gain).

4. Draw the corresponding Nyquist plot and recall what this critical value
implies in terms of the Nyquist plot.

5. Based upon the previous observations and plots, find the closed-loop poles
for K = Kcrit.

1 - Solution
Closed-loop pole polynomial

p(s,K) =
1

10
s3 +

11

10
s2 + s+K

K needs to be positive (necessary condition). From the Routh table (multiplying
some rows by a positive number),

1/10 1

11/10 K

(11-K)

K

the closed-loop system is asymptotically stable for 0 < K < 11. For K > 11
there are two changes of sign in the first column i.e. two roots with positive real
part. This can also be seen through the root locus. Therefore the critical value
is Kcrit = 11.

Since for the closed-loop system, as K positive crosses the critical value, the
number of poles with positive real part passes from zero to two, this corresponds
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Figure 1: Bode diagram for K = Kcrit and root locus

to the Nyquist plot passing through the point (−1, 0) and therefore the Bode
plot will have zero gain and phase margin.

02) Let the plant dynamics be represented by

ẋ1 = 5x1 + 8x2 − 4u

ẋ2 = −3x1 − 5x2 + 2u

y = x2

The state is not measurable.

1. Find a controller such that the output, at steady state, follows exactly the
reference r(t) = tδ−1(t) without being affected by a constant unknown
disturbance d acting at the plant’s output.

2. How does the closed-loop system react at steady state to the disturbance
d(t) = a tδ−1(t), with a unknown real constant?

2 - Solution summary
Matrices are

A1 =

(
5 8
−3 −5

)
, B1 =

(
−4
2

)
, C1 =

(
0 1

)
with characteristic polynomial

p1(λ) = (λ+ 1)(λ− 1)

and transfer function

P1(s) =
2

s− 1

and therefore we have stable hidden dynamics characterized by the eigenvalue
λ = −1. For a reference of order 1, zero steady-state error requires 2 poles in
s = 0 in the open loop which makes also the system astatic w.r.t. the given
disturbance. Stability is guaranteed by adding to

P̂ (s) =
2

s2(s− 1)
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• two negative zeros so to make n −m = 1, and then choose a sufficiently
high gain

• or one negative zero to make n−m = 2 and a zero/pole pair with the pole
sufficiently negative to move the center of asymptotes in the left half-plane,
plus a sufficiently high gain.

Once the controller is found, the sensitivity function (characterizing the disturbance–
output behavior) will have gain equal to zero since the two poles in s = 0 in the
open loop will lead to two zeros in s = 0 in S(s) which will be of the form

S(s) =
s2S′(s)

#

with S′(0) 6= 0 since S′(s) does not have zeros in s = 0. Therefore the steady-
state response to a ramp disturbance d(t) = a tδ−1(t) is

yss = lim
s→0

sy(s) = lim
s→0

sS(s)a
1

s2
= lim

s→0
s
s2...

#
a

1

s2
= 0

Note that this is a special case in which the final value theorem is applicable
since the rational function sy(s) has all its roots at the denominator with real
part strictly less than 0.

3) Give the state space representation (A,B,C,D) of a three dimensional system
characterized by the only eigenvalue λ = 0 which, independently from the B
and C matrices will give a transfer function with at most two poles. Is the
system marginally stable? Motivate clearly your answer.

3 - Solution summary From the theory (slides) the dynamic matrix with
eigenvalue λ = 0

A =

0 1 0
0 0 0
0 0 0


with any B and C will provide at most 2 poles in s = 0 since the index (di-
mension of the largest Jordan block) of the eigenvalue λ = 0 is 2. Being the
geometric multiplicity (equal to 2 since there are two Jordan blocks) different
from the algebraic multiplicity (which is equal to 3) the system is unstable.

4) For the represented control scheme in Fig 2, find the transfer function from
the reference r(t) to the signal e(t).

Assuming that the closed-loop system is asymptotically stable, does the
presence of a pole in s = 0 in C(s) guarantee that the output will exactly follow
a constant reference r(t) = r?

04 - Solution summary) The error e will respond to a reference as

e(s) = S(s)r(s)− Cf (s)P (s)S(s)r(s) = (1− Cf (s)P (s))S(s)r(s)
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+ -

r (t) e (t) m (t) y (t)

P (s)C (s)

+

+

Cf (s)
mf (t)

Figure 2: Control system.

Note that

e(s)

r(s)
= (1− Cf (s)P (s))S(s) =

(
1− Cf (s)

NP (s)

DP (s)

)
1

1 + L(s)

=
DP (s)− Cf (s)NP (s)

DP (s)

DP (s)DC(s)

DP (s)DC(s) +NP (s)NC(s)

=
(DP (s)− Cf (s)NP (s))DC(s)

DP (s)DC(s) +NP (s)NC(s)

From the final value theorem, the presence of a pole in s = 0 (i.e., DC(0) = 0) in
the controller guarantees that, if the steady state exists, for a constant reference
the error will tend to 0 as t→∞ since the transfer function gain is 0.

05) Consider the plant shown in Fig. 3 with

P1 : ẋ1 = −x1 + u P2(s) =
(s− 1)2

(s+ 1)2

y = x1

1. Determine the structure of a controller (and the corresponding control
scheme) that guarantees asymptotic rejection, at the regulated output y2,
of any constant disturbance d.

2. Compute, for the control system, the transfer function from d to y2.

3. Draw the root locus of the resulting loop function (both positive and
negative)

P1 +

+
d

yu u2 y2
P2(s)

Figure 3: Plant
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05 - Solution summary) The first system has transfer function

P1(s) = c(s− a)−1b+ d =
1

s+ 1

We need to add a pole in s = 0 in the controller to guarantee astatism in an
output feedback control scheme. The temporary loop function becomes

La(s) =
1

s
P2(s)P1(s) =

(s− 1)2

s(s+ 1)3

The closed-loop pole polynomial is

p(s,K) = s4+3s3+3s2+s+K(s2−2s+1) = s4+3s3+(3+K)s2+(1−2K)s+K

and the corresponding root locus is shown in Fig. 4. We see that there is
an interval of positive values for the controller gain K which give closed-loop
stability. The singular point candidates, different from the multiple open-loop
zeros and poles, are given by the solutions

3

s+ 1
+

1

s
− 2

s− 1
=

3s(s− 1) + (s+ 1)(s− 1)− 2s(s+ 1)

...
=

2s2 − 5s− 1

...
= 0

which are both real, one positive and one negative. The resulting root locus is
shown in Fig. 4
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Figure 4: Root locus of problem 05

6) Consider the system represented by

ẋ1 = 0.8x1 − 0.4x2 − 4u

ẋ2 = −1.4x1 − 1.8x2 + 2u

y = −0.6x1 − 0.2x2
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The state is not measurable. Stabilize the system.

06 - Solution summary) The system is characterized by eigenvalues 1 and
-2 and is not fully controllable (while it is fully observable). The uncontrollable
dynamics is given by the eigenvalue −2 (either you check with the PBH test or
you do the Kalman decomposition w.r.t. controllability)

rk[O] = rk

[(
−0.6 −0.2
−0.2 0.6

)]
= 2, R =

(
−4 −4
2 2

)
⇒ T−1 =

(
2 0
−1 1

)
and the transfer function is

F (s) =
2

s− 1

which is stabilizable with a simple gain K > 0.5.

7) Let the plant be

P (s) =
1

s+ 10

Find a controller which, simultaneously,

• is able to exactly track (or follow) at steady state a reference r(t) =
10 δ−1(t)

• is able to reduce at steady state, by at least a factor of 10, the effect on the
output of any sinusoidal disturbance d(t) = d sinωt acting on the output
when ω belongs to the interval [1, 10] rad/s.

07 - Solution summary) For the first requirement, we necessarily need a pole
in s = 0. The resulting Bode plots of the actual loop and sensitivity function
are shown in Fig. 5 (Top).

Recalling that an output disturbance affects the output, in closed loop,
through the sensitivity function S(s), guaranteeing a reduction at steady state
by at least a factor of 10 means that the contribution of the disturbance to the
output – at steady state the response to a sinusoidal input is a sinusoidal with
the same frequency and with magnitude and phase depending on the frequency
response at that frequency – should have a magnitude less than 1/10 (in decibels
less than -20 dB) in the considered frequency range of the disturbance.

|S(jω)| ≤ 1/10 ⇒ |S(jω)|dB ≤ −20 dB for ω ∈ [1, 10]

Moreover, considering the approximation of the sensitivity function in terms of
the loop function, the previous specification can be met by requiring that the
loop function magnitude should be greater than 20 dB in the same frequency
range

|S(jω)|dB ≤ −20 dB ⇒ |L(jω)|dB ≥ 20 dB for ω ∈ [1, 10]

To meet this requirement, we see that it is sufficient to add a gain of at least
60 + 3 dB, that is of approximately 1000

√
2, and therefore the final controller

(pole in s = 0 and gain) is given by

C(s) =
1000
√

2

s

6



10 -2 10 -1 100 101 102 103
-100

-50

0

50

loop function
sensitivity

10 -2 10 -1 100 101 102 103
-100

-50

0

50

100

final loop function
final sensitivity

Figure 5: (Top) Bode magnitude plots of the loop and sensitivity functions after
the introduction of the pole in s = 0, (Bottom) and after the additional gain.

The final magnitude plots are reported in Fig. 5 (Bottom) proving that the
requirement has been successfully met.

8) Consider the control scheme illustrated in Fig. 6. Design the two controllers
K1(s) and K2(s) in order to guarantee that at steady state the closed-loop
system follows a constant reference with no error.

K2(s)
+

-

+ yr

-
1
s

s+2
s-3

K1(s)

Figure 6: Control scheme exercise 8

08 - Solution summary) From the control scheme we understand that the
inner loop will move the pole in s = 0 so it will not be useful for the Type
1 requirement. To fulfil this specification we need a pole in s = 0 in the first
controller which now becomes

K1(s) =
1

s
K ′1(s)

A possible solution could be to choose K2(s) = K2 pure gain in such a way that
closing the inner loop will result in a pole in s = −2, that is

inner loop =
K2/s

1 +K2/s
=

K2

s+K2
→ K2 = 2

This creates a cancellation of a stable pole in the series interconnection of the
loop function which simplifies in

L(s) = K1(s)
2

s+ 2

s+ 2

s− 3
= K ′1(s)

2

s(s− 3)
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We need to choose K ′1(s) in order to guarantee asymptotic stability of the closed
loop. A simple zero/pole pair properly chosen and a gain (see root locus tech-
nique) solves the problem.

Otherwise, choose K2 to stabilize inner loop, e.g., K2 = 1 so that the open
loop becomes

L(s) = K1(s)
1

s+ 1

s+ 2

s− 3
= K ′1(s)

s+ 2

s(s+ 1)(s− 3)

again the same type of solution is possible.

9) Let (S) be the parallel of the following two systems

(S1) : ẋ1 = 2x1 + u1, y1 = 2x1 (S2) : P2(s) =
s− 1

s(s− 2)

Can we stabilize (S) with a state feedback? The answer should be clear and
complete.

09 - Solution summary) Computing the transfer function of S1 we have

P1(s) =
2

s− 2

and either we already notice that the two systems (we could have noticed before,
of course) have the same eigenvalue and therefore theory says it will lead to a
loss of controllability and observability or we compute the parallel as

P1(s) + P2(s) =
3s− 1

s(s− 2)

and notice that the number of poles is 2 rather than the expected value of 3.
We have a hidden dynamics which we can recognize to be uncontrollable and
unobservable by interconnecting the two systems in state space with

P2(s) =
s− 1

s(s− 2)
→ A2 =

(
0 1
0 2

)
, B2 =

(
0
1

)
, C2 =

(
−1 1

)
The interconnected system is

A =

2 0 0
0 0 1
0 0 2

 , B =

1
0
1

 , C =
(
2 −1 1

)
Controllability (and observability) matrix has rank 2 < 3.

10) Consider the interconnected system shown in Fig. 7 where

F (s) =
−2

s+ 1
, G(s) =

1

s+ 1

When r(t) = 0 the system has just one input d(t) and its state-space represen-
tation is

(S) : ẋ(t) = Ax(t) +Bd(t), y(t) = Cx(t)
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F (s) G (s)

d (t)

r (t) y (t)+

++
-

Figure 7: The interconnected system (which gives (S) if r(t) = 0)

1. Find the state-space representation of the interconnected system (S).

2. Study the observability and controllability property of (S).

3. Compute the zero-state output response y(t) to a unit step d(t).

10 - Solution summary) When r(t) = 0, the loop transfer function from d to
the input of G(s) is given by

W1(s) =
1

1 + F (s)
=

1

1− 2
s+1

=
s+ 1

s− 1
=

2

s− 1
+ 1

System (S) is therefore the series interconnection between W1(s) and G(s); how-
ever note that there is a zero/pole cancellation when writing the final transfer
function and therefore it is not possible, in order to obtain the overall state-space
representation, to write the realization of the product of the transfer functions.
We have to write the single realizations before interconnecting in series that is,
defining as x1 the state corresponding to W1(s) and x2 to G(s),

ẋ1 = x1 + d, y1 = 2x1 + d

ẋ2 = −x2 + y1, y = x2

where y1 denotes the output of W1(s) and therefore also the input of G(s). We
thus obtain

ẋ =

(
ẋ1
ẋ2

)
=

(
1 0
2 −1

)
x+

(
1
1

)
d, y =

(
0 1

)
x

We know there is the creation of hidden dynamics characterized by the eigen-
value λ = −1 so there is for sure loss of controllability and/or observability (from
the theory we know that a zero–pole cancellation in a series interconnection
leads to uncontrollable hidden dynamics). The controllability and observability
matrices have rank

rk[P ] = rk

(
1 1
1 1

)
= 1 < 2 = n, rk[O] = rk

(
0 1
2 −1

)
= 2 = n

which confirms what we know. The final transfer function from d to y is

W (s) = W1(s)G(s) =
s+ 1

s− 1

1

s+ 1
=

1

s− 1

and therefore the step response from d is

y(s) =
1

s− 1

1

s
=
−1

s
+

1

s− 1
→ y(t) = −δ−1(t) + etδ−1(t)
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