
Control Systems - January 30, 2023

A Student name: Matricola:

1) Consider the system

P (s) =
(s− 10)2

(s2 + 100)(s+ 10)

and a static controller C(s) = K.

1. Establish if it is possible to stabilize the given plant with the static controller C(s) = K (in a unit feedback
interconnection).

2. Draw the corresponding root locus.

3. Determine the values of the gain K for which some closed loop poles (if any) cross the imaginary axis.

4. Confirm the stability analysis (as a function of K) through the Nyquist criterion. All possible situations
should be discussed as a function of K. The associated Bode plots are required.

2) Consider the dynamic system characterized by the matrices

A =

−3 0 0
1 1 0
0 0 −1

 , B =

−1
0
0

 , C =
(
0 1 1

)
, D = 0.

1. Find the state feedback law u = Fx which assigns coincident eigenvalues to the closed loop.

2. Is it possible to obtain the same result with a static controller C(s) = Kc via output feedback? If yes,
determine the value of Kc.

3) Consider the dynamic system characterized by the matrices

A =

0 0 0
0 0 1
0 0 0

 , B =

−1
0
0

 , C =
(
1 0 0

)
, D = 0.

1. Compute the (output) impulse response.

2. Study the system stability.

4) Consider the plant P (s) =
10

s
. Determine, a controller C1(s) in a feedback control scheme such, that at

steady state,

1. a constant unknown disturbance affecting the plant’s input is not affecting the output;

2. the reference r(t) = −tδ−1(t) is perfectly followed by the controlled output.

Determine an alternative controller C2(s) which guarantees a quicker convergence to zero of the tracking error
with respect to C1(s).

Possible useful numbers for some problem:
√

2 ≈ 1.41,
√

3 ≈ 1.73,
√

5 ≈ 2.24,
√

7 ≈ 2.64,
√

11 ≈ 3.31.



1 - Sol.) The system P (s) is non-minimum phase and therefore, although it has n − m = 1, it cannot be
stabilized by high gain (however this does not mean it cannot be stabilized with a different controller). The
closed loop pole polynomial is given by

p(s,K) = (s2 + 100)(s+ 10) +K(s− 10)2 = s3 + (K + 10)s2 + (100− 20K)s+ 100(K + 10)

and the corresponding Routh table is

1 100− 20K

K + 10 100(K + 10)

α

K + 10

with

α = − 1

K + 10
(100(K + 10)− (K + 10)(100− 20K)) = −20K

and so the closed loop system is asymptotically for −10 < K < 0.
The number of sign changes in the first column of the Routh table as a function of K is reported in Table 1.

−10 0
1 + + +

K + 10 - + +

−20K + + -

K + 10 - + +

# sign changes 3 0 2

Table 1: Sign changes in first column of the Routh table as a function of K

We notice that when K increases and crosses −10 all three poles move from the right to the left half-plane
and therefore, quite surprisingly, simultaneously cross the imaginary axis. Clearly, being two open loop poles on
the imaginary axis, when K further increases and crosses K = 0 two closed loop poles go to the right half-plane.

The true root locus is shown in Fig. 1 (left) where we notice that there is a small part of the negative root
locus which enters the left half-plane corresponding to small (since we are approaching the open loop poles)
values of |K|. This is consistent with the interval of values for K which guarantee closed loop asymptotic
stability.

An alternative and compatible root locus is also shown (right) if the singular points are not computed
explicitly as in this case since this would mean solving the third order polynomial

1

s+ 10j
+

1

s− 10j
+

1

s+ 10
− 2

s− 10j
=
s3 − 30s2 − 300s− 3000

· · ·
= 0

The solutions (39.51,−4.76 ± 7.3j) are still candidate singular points (except for the real solution) and not
compatible with the right plot.
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Figure 1: Exercise 1: Root locus: true (left) - alternative (right)

The Bode canonical form of KP (s) is

KP (s) =
K

10

(1− s/10)2

(1 + s2/100)(1 + s/10)
.
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Figure 2: Exercise 1: Bode plots for K = 10 and Nyquist plot (a) for K = 10 – (b) for −10 < K < 0.

The Bode and Nyquist plots are shown in Fig. 2; the closed loop stability is confirmed when −10 < K < 0 since
Ncc = 0 = n+

L .

Typical errors:

• A root locus that is not giving the same result as the analysis through the Routh criterion should trigger
an alert.

• When putting the transfer function or the frequency response in the Bode canonical form the term (s−10)2

is erroneously written as −100(1− s/10)2 instead of 100(1− s/10)2.

• In the necessary condition, the inequality 100 − 20K > 0 has been frequently wrongly rewritten (it’s an
inequality, these errors should not happen).

• Plotting the Nyquist plot seems to be still a problem, in particular the closure at infinity.

2 - Sol.) Due to the triangular structure of the matrix A, the eigenvalues are λ1 = −3, λ2 = 1 and λ3 = −1.
Let’s first verify if the problem can be solved by checking the controllability of the system. Computing the
controllability matrix P it turns out that it is singular (det(P ) = 0) and its rank is 2. Therefore there exists a
one-dimensional uncontrollable subsystem. We need to check if this uncontrollale subsystem is asymptotically
stable (the system is therefore stabilizable with state feedback) or not. We could check controllability of the
unstable eigenvalue λ2 = 1 using the PBH test, however it will be useful to do the decomposition and therefore
we compute the image of P .

P =

−1 3 −9
0 −1 2
0 0 0

 ⇒ Im[P ] = gen


−1

0
0

 ,

 3
−1
0

 = gen


1

0
0

 ,

0
1
0


Note that T−1 can be chosen as the identity matrix (and therefore T−1 = I = T ). In other words the system
is already in Kalman’s controllability canonical form and the uncontrollable subsystem is characterized by the
eigenvalue λ3 = −1. We could have already noticed from the structure of the matrices A and B that for sure
the eigenvalue λ3 = −1 is uncontrollable and since the uncontrollable subsystem has dimension 1, for sure the
other two eigenvalues are controllable. The controllable subsystem is given by

Sc : A11 =

(
−3 0
1 1

)
, B1 =

(
−1
0

)
Since we want to assign coincident eigenvalues and the eigenvalue λ3 = −1 is not affected by any state feedback,
we should assign the remaining eigenvalues also as λ∗1 = λ∗2 = −1, i.e.,

p∗(λ) = (λ+ 1)2 = λ2 + 2λ+ 1 p∗(A11) = A2
11 + 2A11 + I2×2 =

(
4 0
0 4

)
The controllable subsystem controllability matrix is

Pc = [B1, A11B1] =

(
−1 3
0 −1

)
⇒ P−1

c =

(
−1 −3
0 −1

)
⇒ γc =

(
0 −1

)
so that the state feedback Fc is

Fc = −γc p
∗(A11) =

(
0 4

)
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and in the original coordinates, being T = I3×3

F =
(
Fc 0

)
=
(
0 4 0

)
When, instead, we do an output feedback with the static controller C(s) = Kc, we should first recall that the
system S has one hidden (uncontrollable) dynamics characterized by the eigenvalue λ3 = −1 and this eigenvalue
is not affected by the output feedback. Since the system is observable being

O =

 C
CA
CA2

 =

 0 1 1
1 1 1
−2 1 1

 det[O] = 4 6= 0

the poles of S are given by the eigenvalues of A11 and the transfer matrix is given by

P (s) =
(
1 0

)
(sI2×2 −A11)−1B1 =

−1

(s− 1)(s+ 3)

where we have taken the first two components of the C matrix since the state of the controllable subsystem is
given by the first two components of the state. We now have that the two poles (and thus eigenvalues) of the
closed loop system, as a function of Kc, will vary as indicated by the root locus. In particular, setting K = −Kc

we can trace the root locus of KP (s) with pole polynomial

p(s,K) = (s− 1)(s+ 3) +K = s2 + 2s+K − 3 or p(s,Kc) = s2 + 2s−Kc − 3

which clearly has a singular point between the two open loop poles −3 and 1 corresponding to a positive value
of K (or negative of Kc). Since it is required to obtain the same result as with the state feedback, the question
is if there exists a value of Kc (or K) which gives two closed loop poles coincident in −1, or, in other words, if
there is a singular point in −1. The candidate singular points equation is

1

s− 1
+

1

s+ 3
= 0 ⇔ 2s+ 2 = 0 ⇔ s∗ = −1

so s∗ = −1 is a singular point and the corresponding value of K = 4 (or Kc = −4) is obtained solving

p(s∗,K) = 0

It is therefore possible with Kc = −4 to obtain all the closed loop eigenvalues coincident in −1 via output
feedback. We could have directly checked if there was a Kc such that

p(s,Kc) = s2 + 2s−Kc − 3 = (s+ 1)2.

Alternatively, setting u = −Kc y = −Kc Cx in the state equation ẋ = Ax + Bu we have the closed loop
system under static output feedback

ẋ = (A−BKcC)x

For our system

A−BKcC =

−3 0 0
1 1 0
0 0 −1

−Kc

0 −1 −1
0 0 0
0 0 0

 =

−3 Kc Kc

1 1 0
0 0 −1


which, due to the block triangular structure, has the obvious eigenvalue in −1 (the uncontrollable one) and the
eigenvalues of

Ā =

(
−3 Kc

1 1

)
⇔ pĀ(λ) = det

[(
λ+ 3 −Kc

−1 λ− 1

)]
= λ2 + 2λ− 3−Kc

so we have to choose Kc = −4 to have the remaining two eigenvalues coincident in −1.
Although it is not, a priori, in the allowed class of controllers (static controller) and therefore this solution

is not suggested, it is interesting to see what happens if we look for a dynamic controller which tries to solve
the same problem, i.e., assigns the poles in −1. Since the plant’s transfer function is

P (s) =
−1

(s− 1)(s+ 3)

the controller should be of dimension 1 (r = n− 1) and of the form

C(s) =
as+ b

s+ c
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The resulting closed loop has the denominator

dCL(s) = (s− 1)(s+ 3)(s+ c)− (as+ b) = s3 + s2(c+ 2) + s(2c− a− 3)− 3c− b

and if we assign three (r + n) poles in −1, the desired closed loop pole polynomial is

d∗CL(s) = (s+ 1)3 = s3 + 3s2 + 3s+ 1

Equating the coefficients and solving, we find a = −4, b = −4 and c = 1, that is the following controller

C(s) =
−4s− 4

s+ 1
= −4

which is the required static controller.

Typical errors:

• Choosing a complicated base for the Im[P ] clearly makes the computation longer and more prone to errors.

• Building an observer would lead to a dynamic controller, i.e., a controller which has a state.

• In order to find the transfer function, we should take advantage of the knowledge that there is an uncontrol-
lable subsystem; this simplifies the computation greatly with respect to computing the full C(sI−A)−1B.

• Recall that in order, for example, to compute A2B for the controllability matrix, it is easier and faster to
compute it using the previous result AB; in other words compute it as A2B = A.AB instead of computing
A2 and then multiply by B.

• When you compute the inverse M−1 of a matrix M , always check that it satisfies M.M−1 = I.

• Read the text, the goal was to obtain a closed loop system with coincident eigenvalues, both with a state
feedback and a static output feedback.

3 - Sol.) To compute the impulse response w(t) = CeAtB we need to compute the matrix exponential which
takes on the form (being A2 = 0)

eAt = I3×3 +At =

1 0 0
0 1 t
0 0 1


Therefore we have

w(t) = CeAtB =
(
1 0 0

)1 0 0
0 1 t
0 0 1

−1
0
0

 = −1 or better = −δ−1(t)

We could also have computed the impulse response as

w(t) = L−1
[
C(sI −A)−1B +D

]
that is, havings 0 0

0 s −1
0 0 s

−1

=
1

s3

s2 0 0
0 s2 s
0 0 s2

 =


1
s 0 0

0 1
s

1
s2

0 0 1
s

 or directly = L
[
eAt
]

we finally obtain

w(t) = L−1

[
−1

s

]
= −δ−1(t)

From the presence of the natural mode t we clearly understand that the system is unstable.
Alternatively, having three coincident eigenvalues λ1 = 0 and therefore algebraic multiplicity ma = 3, we can
compute the geometric multiplicity by searching for the kernel of A− λ1I3×3

Ker (A− λ1I3×3) = Ker (A) = gen


1

0
0

 ,

0
1
0

 ⇒ dim (Ker (A− λ1I3×3)) = 2 ⇒ mg = 2.
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Recall that, since the rank of A − λ1I3×3 = A is 1, then we could have directly concluded through the Rank-
Nullity theorem that the nullspace has dimension 3 − 1 = 2. Since mg < ma and the eigenvalue has zero real
part, the system is unstable.

Of course we could have also directly recognized the presence of 2 Jordan blocks (and therefore the geometric
multiplicity is 2) corresponding to the eigenvalue λ1 = 0, of dimension 1 and 2

A =

 0 0 0
0 0 1
0 0 0


.

Typical errors:

• Stability is an internal property of the state evolution and therefore looking at the transfer function or
the impulse response – an Input/Output characterization of the system behavior – is not sufficient to
establish the stability of the system.

• In this case we cannot use the spectral form to compute the matrix exponential (coincident eigenvalues).

• Some have studied the stability of the closed loop system (the system in a unit feedback) but this was not
the question.

4 - Sol.) The first requirement is astatism w.r.t. a constant disturbance acting at the plant’s input and this
requires the presence of a pole in s = 0 before the entry point of the disturbance, that is in the controller. Since
the plant has already a pole in s = 0, now the closed loop system (with the additional pole of the controller) is
of type 2 and therefore, if asymptotically stable, will also guarantee a zero steady state error w.r.t. to a reference
input r(t) = tδ−1(t) (order 1) which solves the second point provided we have closed loop asymptotic stability.
From the simple Bode plots of the modified plant

P̂ (s) =
10

s2
,

since the phase is constantly equal to −π, the phase margin is equal to zero for any crossover frequency. We are
in a situation where the Bode stability theorem can be applied. We can proceed, for stabilization, either with
the loop shaping or with the root locus.

• Loop shaping - We can choose a lead function (any would do) to increase the phase in a given interval.
For example let’s choose ma = 10 and τa = 1 leading to

Ra(s) =
1 + s

1 + 0.1s

There is not even the necessity to change the controller gain since the obtained crossover frequency
guarantees a positive phase margin so that the overall controller is

C1(s) =
1 + s

s(1 + 0.1s)

and stability is guaranteed by Bode’s stability theorem.

• Root locus - We can equivalently obtain a simple controller reasoning on the root locus of

P̂ (s) = K
10

s2
=
K ′

s2

where we have set K ′ = 10K. Since the modified plant P̂ (s) is characterized by n−m = 2 and a center of
asymptotes so = 0, we can simply move the center of asymptotes choosing the zero/pole pair for example
as (−1,−10) so that the new center of asymptotes is in s′o = −4.5. In this case we have a probable root
locus (with no singular points) but the computation of the singular points

2

s
+

1

s+ 10
− 1

s+ 1
= 0 ⇔ 2(s+ 1)(s+ 10) + s(s+ 1)− s(s+ 10) = 2s2 + 13s+ 20 = 0

which has the two real – and thus singular points – solutions s∗1 = −4 and s∗2 = −2.5, shows that the real
root locus is different. A different choice of the zero/pole pair (for example (−1,−4)) gives the simpler
root locus. In any case, we see that after the addition of the zero/pole pair the closed loop system is
asymptotically stable for any positive K ′ and thus also for any positive K. So the controller, choosing
K = 1, is

C1(s) =
s+ 1

s(s+ 10)

6



• Third alternative - Having already introduced a pole in our controller, we can also think of making the
loop function having n −m = 1 by adding a negative zero so that the loop function remains minimum
phase. Then we know that for sure there exists a sufficiently high positive gain Kc that will stabilize the
closed loop system. Choosing for example a zero in s = −1, we have the following proper controller

C(s) =
Kc(s+ 1)

s

and the corresponding closed loop polynomial

p(s,Kc) = s2 +Kcs+Kc

The closed loop system is asymptotically stable for Kc > 0.

In order to speed up the closed loop system response, we can increase the closed loop bandwidth (from the
reference to the output, i.e., of the complementary sensitivity function) by increasing the crossover frequency
of the loop function. This can be obtained by increasing the controller gain but in the first case we need to be
more careful (see Fig. 3). In the third case we can also choose a zero more distant from the origin and a value
of the gain which guarantees closed loop poles with more negative real part.
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Figure 3: Exercise 4: Two possible root locus.

In the left plot of Fig. 3, an increase in Kc one closed loop pole moves towards the zero and therefore cannot
be made arbitrarily fast thus limiting the closed loop bandwidth. However that pole will get closer and closer
to the open loop zero and thus there will be an almost cancellation or, equivalently, its contribution will not be
significant. We can increase the closed loop bandwidth as much as we want.

Typical errors:

• The most common and serious error is not considering the stability of the closed loop system after adding
the pole in s = 0.

• Some state that a gain is sufficient to stabilize the modified plant P̂ (s) since the closed loop system is
characterized by the pole polynomial

s2 + 10Kc

since, if Kc is positive then all coefficients of the second order polynomial have the same sign (necessary
& sufficient condition for asymptotic stability) but forget the 0 coefficient of the first order term s since
it is missing.
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