
Control Systems - February 4, 2020 - (Solution)

Student name: Matricola:

1) In Fig. 1 a force f pushes a mass m1 which slides with no friction on a flat horizontal surface. The
mass m2 lies on top of the mass m1 and viscous friction is present between the two masses (the friction
force is proportional with coefficient µ to the relative velocity of the two masses).

1. Write the dynamic equations governing the motion of the system. We are not interested in the
position of the masses so, since there is no term depending on the positions, choose as state vector
the masses absolute velocities.

2. Determine the system eigenvalues and corresponding natural modes.

3. Give a physical interpretation of the obtained eigenvalues.
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Figure 1: Ex. 1 – The two-mass system.

Sol. 1 We have Newton’s equations

m1v̇1 = −µ(v1 − v2) + f

m2v̇2 = µ(v1 − v2)

and therefore, choosing as suggested the state vector [v1, v2]T , the dynamic matrix A is

A =

(
−µ/m1 µ/m1

µ/m2 −µ/m2

)
⇒ pA(λ) = λ2 + λµ(

1

m1
+

1

m2
) = λ

(
λ+ µ(

1

m1
+

1

m2
)

)
which shows the presence of the eigenvalues λ1 = 0 and the negative eigenvalue λ2 = −µ(1/m1 + 1/m2).
If we choose the system center of mass velocity

vc =
m1v1 +m2v2
m1 +m2

it’s dynamics is

v̇c =
m1v̇1 +m2v̇2
m1 +m2

=
−µ(v1 − v2) + f + µ(v1 − v2)

m1 +m2
=

f

m1 +m2



and reflects the fact that the center of mass, if no force is applied (then v̇c = 0), will have a constant
velocity equal to its initial value. Similarly, if we take the relative velocity between the two masses
vr = v1 − v2, its dynamics is

v̇r = v̇1 − v̇2 = − µ

m1
(v1 − v2) +

1

m1
f − µ

m2
(v1 − v2) = −µ

(
1

m1
+

1

m2

)
vr +

1

m1
f

and therefore, if no force is applied, the two velocities v1 and v2 tend to be equal asymptotically since
their difference goes to 0 asymptotically.

Typical errors:

• wrong dynamic equations (this is similar to the 2-mass system done during the course);

• wrong choice of the state: it was explicitly stated to choose the absolute velocities of each mass as
state so the state vector derivative, in the model, is the vector of the absolute accelerations;

• one of the most important error has been justifying the values of the eigenvalues (correct or not) by
how the system would behave in the presence of an applied force; the eigenvalues fully characterize
the zero-input state response (or state free response);

• similarly, obtaining an unstable eigenvalue should have risen some questions.

2) Draw two possible positive root loci for F (s) and use the Routh criterion to determine the correct
one.

F (s) = K
s(s2 + 1)

(s2 + 2)(s2 + 3)

Sol. 2 Two possible positive root locus, shown in Fig. 2, differ from being, for any K > 0, asymptotically
stable (Left) or unstable (Right).
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(b) Correct positive and negative root locus

Figure 2: Ex. 2 – Root locus.

The closed loop system has the following pole polynomial

p(s,K) = (s2 + 2)(s2 + 3) +Ks(s2 + 1) = s4 +Ks3 + 5s2 +Ks+ 6

with the Routh table
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1 5 6

K K

4 6

−K
6

Recall that we can multiply an entire row by a positive number without altering the Routh criterion (here
the penultimate row). The closed loop system will never be asymptotically stable for K ≥ 0 (two changes
of sign for K > 0 and therefore two poles with positive real part) and therefore the correct positive root
locus is the one on the right in Fig. 2. Also recall that in a regular point (for example the open loop
poles and zeros on the imaginary axis) the tangent of the positive and negative root locus is the same (at
a given point) so the negative root locus cannot go along the imaginary axis. There were other similar
possible positive root locus plots.

Typical errors:

• wrong poles and zeros (as incredible this could be, some got the solutions for example of s2 + 1 = 0
wrong, ... students of a Master degree in engineering);

• drawing a positive root locus which would necessarily create intersections, outside the multiple open
loop poles and zeros (which here were not present), with the negative root locus;

• creating intersections between branches of the positive root locus (complex singular points) brings
conflicting directions of the branches;

• creating a branch along the imaginary axis (for example from the pole j
√

2 to the zero j) means
that a complex pole (and its conjugate) remains always with real part equal to zero and this is not
compatible with the Routh table;

• drawing branches which are not symmetric w.r.t. the real axis (if a complex pole (or zero) exists,
then also its conjugate is a pole (or zero));

• some have tried to stabilize the plant by introducing a pole/zero pair. This was not required and
out of scope. Stick to the questions, no need to show you know how to solve a different problem.

3) Let an interconnected system be composed as the series of S1 with the parallel of S2 and S3. In the
series, the output of S1 is the input of the parallel. Each system Si, with i = 1, ..., 3, has ui and yi as
input and output and xi as state,

ẋ1 = −2x1 − u1, y1 = x1 + u1, ẋ2 = −x2 + 2u2, y2 = x2, ẋ3 = −x3 − u3, y3 = x3 + u3,

• Find the state space representation of the interconnected system and study controllability and
observability (decide if it is really necessary to do the corresponding decompositions).

• Compute the overall transfer function (from u = u1 to y = y2 + y3) and discuss if the result is a
direct consequence of the previous analysis.

3



Sol. 3 The interconnection equations are

u = u1, y = y2 + y3, u2 = u3 = y1

and therefore the interconnected system isẋ1ẋ2
ẋ3

 =

−2x1 − u1
−x2 + 2u2
−x3 − u3

 =

 −2x1 − u
−x2 + 2x1 + 2u
−x3 − x1 − u

 =

−2 0 0
2 −1 0
−1 0 −1

x1x2
x3

+

−1
2
−1

u

with output
y =

(
1 1 1

)
x+ u

Note the presence od the feedthrough term D = 1. So we have

A =

−2 0 0
2 −1 0
−1 0 −1

 , B =

−1
2
−1

 , C =
(
1 1 1

)
, D = 1

From the triangular structure of the dynamic matrix, the eigenvalues are clearly λ1 = λ2 = −1 and
λ3 = −2.

There are several different possible approaches, the main difficulty lies in the presence of a repeated
eigenvalue. Note that if the PBH test, in the presence of a repeated eigenvalue λi, gives full rank then
one can say that the eigenvalue is controllable (or observable) while if the rank condition fails it just
indicates that not all the λi are controllable (or observable) but not how many are or are not.

We first compute the controllability and observability matrices which both have rank 1

R =

−1 2 −4
2 −4 8
−1 2 −4

 , O =

 1 1 1
−1 −1 −1
1 1 1


which means the system has a 2-dimensional uncontrollable subsystem and also a 2-dimensional un-
observable subsystem. Doing the decomposition will show which eigenvalues are unobservable and/or
uncontrollable.

For completeness we do both decompositions. First w.r.t. controllability, we choose1

T−1R =

−1 0 1
2 1 0
−1 0 0

 , TR =

0 0 −1
0 1 2
1 0 −1

 , ⇒ AR =

−2 0 1
0 −1 0
0 0 −1

 , BR =

1
0
0


while w.r.t. observability

T−1O =

1 1 1
0 −1 0
0 0 −1

 , TO = T−1O , ⇒ AO =

−1 0 0
−2 −3 −2
1 1 0

 , CO =
(
1 0 0

)
1Another typical choice

T−1
R =

−1 0 0
2 1 0
−1 0 1

 ⇒ AR =

−2 0 0
0 −1 0
0 0 −1

 , BR =

1
0
0
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We note that the eigenvalue λ3 = −2 is the only one controllable but is not observable and therefore no
eigenvalue will become a pole.

In this specific example, if we do the PBH test for λ3 = −2 it turns out that this eigenvalue is
controllable and therefore the other two (rank of R is 1, dimension of the controllable subspace is 1) are
uncontrollable. Checking observability through the PBH test, it turns out that λ3 = −2 is unobservable
so at the end no eigenvalue will be both controllable and observable.

To compute the overall transfer function, one could proceed following the definition (being a 3-
dimensional system, this means long computations prone to errors)

F (s) = C(sI −A)−1B +D

or proceed by computing the interconnection of the single systems represented by their transfer function
Fi(s). Transfer function of parallel of S2 and S3 is

F2(s) =
2

s+ 1
, F3(s) =

s

s+ 1
, ⇒ F‖(s) = F2(s) + F3(s) =

s+ 2

s+ 1

while in state space (this is not necessary, it’s just if one follows the interconnection by step procedure
also in the state space)(

ẋ2
ẋ3

)
=

(
−x2 + 2u2
−x3 − u3

)
=

(
−1 0
0 −1

)(
x2
x3

)
+

(
2
−1

)
u, y =

(
1 1

)(x2
x3

)
+ u

and therefore

R‖ =

(
2 −2
−1 1

)
, O‖ =

(
1 1
−1 −1

)
that is, noticing that one eigenvalue in −1 has become a pole, the other eigenvalue in −1 is both uncon-
trollable and unobservable (this was known from the theory). Finally, being

F1(s) =
−1

s+ 2
+ 1 =

s+ 1

s+ 2

the series interconnection gives

F (s) = F‖(s)F1(s) =
s+ 2

s+ 1

s+ 1

s+ 2
= 1

This is confirmed by noticing that taking the series of S1 with S‖ a cancellation of the zero in −1 of
S1 with the pole of S‖ occurs thus leading to a loss of controllability of −1 (or the creation of extra
uncontrollable dynamics characterized by the eigenvalue −1) while the cancellation of the pole in −2 of
S1 with the zero of S‖ leads to the creation of extra unobservable hidden dynamics characterized by the
eigenvalue −2. The final interconnected system does not have controllable and observable dynamics and
therefore C(sI −A)−1B = 0 but since D = 1 the overall transfer function is

F (s) = C(sI −A)−1B +D = 1

One could have jumped directly to this conclusion using these last motivations.

Typical errors:
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• not being able to deal with systems interconnection (for example some have kept the three inputs
as inputs of the overall system);

• forgetting the D term in F1(s) and F3(s);

• not being able to use the available information derived from PBH or Kalman decomposition, too
many computations without trying to figure out if there is a better way;

• computing the transfer function of the interconnection of two systems, for example S2 and S3, and
deriving a state space realization from it. First if the interconnected system has less poles than
eigenvalues then there is clearly the creation of hidden dynamics and therefore the realization is
not representative of the original interconnection; even if one does not cancel the common term in
the numerator and denominator (corresponding to the common term) one cannot do a realization
since the numerator and denominator are not coprime.

4) For the plant P (s), design a controller and a control scheme (draw it) such that

P (s) =
s− 1

s+ 1

• the tracking error at steady state is not greater than 0.1 (in absolute value) w.r.t. r(t) = tδ−1(t)

• a constant disturbance at the plant’s input has no effect at steady state on the controlled output

• the crossover frequency is as close as possible to 1 rad/s with a phase margin of at least 30◦.

Sol. 4 Standard loop shaping exercise. The first and second specification require the presence of a pole
in s = 0 in the controller; moreover, to obtain a steady state error smaller that the required amount the
loop gain has to be

1

|KL|
=

1

|KcKp|
≤ 0.1, Kp = −1, ⇒ Kc ≤ −10

From the Bode plots of the modified plant −10P (s)/s, we note that in ω∗c = 1 rad/s the magnitude has to
be attenuated by 20 dB while the phase needs to be increased by at least 30◦. Classic lead/lag function
choice.

Typical errors:

• most common error has been not seeing the negative gain of the plant or not considering it, leading
to choosing Kc ≥ 10. When drawing the modified plant Bode plots, the phase would have a −π
extra lag;

• some have solved the inequality arriving to 0 < Kc ≤ 10 (wrong) and thus having the possibility
to attenuate using the controller gain;

• looking at the phase at the actual crossover frequency rather than at the desired one;

• wrong Bode plots (pole and zero have equal 1/|τ | but opposite sign of τ).
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Figure 3: Ex. 5 – The automatic steering control scheme (Left) and the chosen signals (Right)

5) The automatic steering control scheme for ships shown in Fig. 3 has been introduced first by N.
Minorsky around 1930. Find the transfer function from the desired ship’s course r to the actual course y.
You can omit the dependence from s in the transfer functions and the Laplace transform of the signals.

Sol. 5 We can proceed, using the Laplace transforms of the signals in Fig. 3 (Right), by writing the
relations

a = K(r − y), b = a− (H1 +H2)e, d =
G1

1 +G1H2
b, e = G2d, y =

1

s
e

and obtaining the relation between r and y as

y(s)

r(s)
=

G1(s)G2(s)K(s)

G1(s)G2(s)K(s) + s(1 +G1(s)H2(s) + (H1(s) +H3(s))G1(s)G2(s))

Otherwise one could first close the inner loop and use the series

e(s)

b(s)
=

G1(s)

1 +G1(s)H2(s)
G2(s),

note that the double feedback is equivalent to a feedback with the parallel of H1(s) and H3(s) so that

e(s)

a(s)
=

G1(s)
1+G1(s)H2(s)

G2(s)

1 + (H1(s) +H3(s)) G1(s)
1+G1(s)H2(s)

G2(s)
=

G1G2

1 +G1H2 + (H1 +H3)G1G2

then the series
G1G2

(1 +G1H2 + (H1 +H3)G1G2)

K

s

and the final outer unit feedback confirms the previous result

y(s)

r(s)
=

G1G2

(1+G1H2+(H1+H3)G1G2)
K
s

1 + G1G2

(1+G1H2+(H1+H3)G1G2)
K
s

=
G1G2K

G1G2K + s(1 +G1H2 + (H1 +H3)G1G2)

Leaving the implicit expression using the intermediate transfer functions does not give the full clear
solution.

Typical errors:

• in most cases it was a question of computation errors (or forgetting terms);

• however some saw a parallel between H1 and H3 (this is correct) and the forward path (this is
wrong) formed by the transfer function from b to e in Fig. 3.

7


