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Outline

• root locus definition

• main rules for hand plotting

• root locus as a design tool

• other use of the root locus

• pole assignment
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Root locus
Question: how do the closed-loop poles vary

when a (real) gain in the open loop changes? k
N(s)

D(s)

Hypothesis on N (s) and D (s) 
• monic polynomials
• coprime
• m < n  (excess of the number of poles w.r.t. zeros in the loop function L (s) )

loop function zero/pole representation

closed-loop system

L(s) = k
N(s)

D(s)
= k

mY

i=1

(s� zi)

nY

j=1

(s� pj)

zeros = zeros of open loop (if we consider the complementary sensitivity)

poles of the closed-loop system are the roots of the closed loop
         characteristic polynomial

root locus = location of the closed-loop poles in the s-plane as k varies from - ∞ to + ∞
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the poles of the closed-loop system are the roots of 1 + L (s) = 0 which can be rewritten as

Considering, for example, the complementary sensitivity function T (s)

Root locus

T (s) =
y(s)

r(s)
=

L(s)

1 + L(s)
=

k
N(s)

D(s)

1 + k
N(s)

D(s)

1 + k
N(s)

D(s)
= 0 , D(s) + kN(s) = 0

(if k 6= 0)
N(s)

D(s)
= �1

k
, N(s) +

1

k
D(s) = 0

root locus
equation

the root locus equation D (s) + kN (s) = 0 is usually denoted as p (s,k) = 0

• since N (s) and D (s) are coprime, any closed loop transfer function will have the poles given 
by the root locus equation

• since the root locus equation p (s,k) = 0 is a polynomial of the same order than D (s) then 
the closed-loop system will have as many poles as the open-loop one, that is n.

the zeros of the closed-loop system T (s) coincide with those of the open loop L (s)
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Let us define
m zeroes

n poles
with m < nL(s) = k

mY

i=1

(s� zi)

nY

j=1

(s� pj)

nX

j=1

\(s� pj)�
mX

i=1

\(s� zi) =

⇢
(2h+ 1)� for k � 0

2h� for k  0

|k| =

nY

j=1

|s� pj |

mY

i=1

|s� zi|

nX

j=1

\(s� pj)�
mX

i=1

\(s� zi) = � + \k + 2h� h 2 Z

phase 
condition

nY

j=1

(s� pj) = �k
mY

i=1

(s� zi) complex
numbers

magnitude 
condition

p(s, k) =
nY

j=1

(s� pj) + k
mY

i=1

(s� zi) = 0

Formal way to plot the root locus (we will use some simplified rules)
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positive locus (k positive)

negative locus (k negative)

1 + k
N(s)

D(s)
= 0

phase condition

from

k\
✓
N(s)

D(s)

◆
= \ (�1) = (2h+ 1)�

|k|\
✓
N(s)

D(s)

◆
= \ (1) = 2h�

the phase condition is used to draw the locus of the roots: we do not need to solve for the 
high-order polynomial roots, we just need to verify if a given point of the complex plane 
satisfies the phase condition and therefore corresponds to a root of 1 + k N (s)/D (s) = 0 
for some real value of k (this value is found by using the magnitude condition)

there are however some guidelines for drawing rapidly, by hand, a sketch of the root locus 

Since the closed-loop system has the same number n of poles as the open-loop, each of n   the 
closed-loop poles will move along a branch of the root locus as k varies from 0 to + ∞ 
(similarly for the negative locus as k varies from - ∞ to 0)

the positive root locus has n branches (same for negative locus)

the root locus is symmetric w.r.t. the real axis 

The coefficients of the root locus equation are real
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we have to learn to visualize how all 
the poles move simultaneously in 
the complex plane as k increases

see the animation (not available in 
the PDF file) for the positive root 
locus of

a point s* belongs to the root locus p (s,k) = 0 (or equivalently s* is a pole of the closed-loop 
system for some value of k = k*) if and only if there exists a real value k* such that 

p (s*, k*) = 0

1 + k
N(s)

D(s)
= 1 + k

1

s(s+ 1)
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Rule 1 (positive locus) 
The n branches of the positive locus start at the open-loop poles and, when k tends to + ∞, 

m branches tend to the finite m open-loop zeros while (n - m) tend to infinity along (n - m) 
asymptotes 

Rule 1bis (negative locus) 
For the n branches of the negative locus, as k varies from - ∞ to 0, m branches start from the m 

finite open-loop zeros while the other (n - m) branches come from infinity along (n - m) 
asymptotes. All branches end, for k = 0 in the open-loop poles 

open
loop
zero

open
loop
pole

F (s) =
s+ 3

s(s+ 2)Re

Im

Re

Im

k = - ∞ k = - ∞k = 0 k = 0

k = 0k = 0k = + ∞ k = + ∞

negative locus

positive locus open
loop
pole

open
loop
zero

open
loop
pole

open
loop
pole
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Rule 2 
Every point on the real axis belongs to either the positive or negative locus. 
A point on the real axis that leaves on its right an odd number of poles and zeros counted with 

their multiplicity belongs to the positive locus.
All the other points belong to the negative locus.

Re

Im

01356 # of open-loop
poles/zeros left 
on the right

negative locus

positive locus k
s+ 4

s(s+ 0.5 + j)(s+ 0.5� j)(s+ 2)2

from the magnitude condition, if
s = r is real then k = — D(r)/N(r)

with N(s) & D(s) having real 
coefficients, then k real so there 
alwats exists a k real which gives 
the closed loop pole s = r

example

2 poles
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Rule 3 
The (n - m) asymptotes are centered in a center of asymptotes

s0 =

nX

j=1

pj �
mX

i=1

zi

n�m

and form angles of

example

n - m = 3

h = 1, 2, ..., n - m

h = 1

h = 2

h = 3

3 ¼/3

5 ¼/3

7 ¼/3

Pos

2 ¼/3

4 ¼/3

6 ¼/3

Neg

8
>><

>>:

(2h+ 1)�

n�m
for positive locus

2h�

n�m
for negative locus

h = 1

h = 2

h = 3h = 1

h = 3

h = 2

s0

center of asymptotes
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we have the following cases

s0 s0 s0 s0

n - m = 1 n - m = 2 n - m = 3 n - m = 4

s0 s0 s0 s0

positive
locus

negative
locus

N.B. the asymptotes are not necessarily branches of the root locus
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K(s+ 5)

(s+ 1)(s+ 3)(s+ 9)
<latexit sha1_base64="IZ+7nd7qu+KWFAxpoYafZonYT+s=">AAACCnicbVDLSgMxFM3UVx1foy7dRIvQIpQZa7HuCm4ENxXsA9pSMmmmDc1khiQjlGHWbvwVNy4UcesXuPNvzLSz0NYDuTmccy/JPW7IqFS2/W3kVlbX1jfym+bW9s7unrV/0JJBJDBp4oAFouMiSRjlpKmoYqQTCoJ8l5G2O7lO/fYDEZIG/F5NQ9L30YhTj2KktDSwjs2eJxCOb4vyrFpKYn05JV0qabkqJaY5sAp22Z4BLhMnIwWQoTGwvnrDAEc+4QozJGXXsUPVj5FQFDOSmL1IkhDhCRqRrqYc+UT249kqCTzVyhB6gdCHKzhTf0/EyJdy6ru600dqLBe9VPzP60bKq/VjysNIEY7nD3kRgyqAaS5wSAXBik01QVhQ/VeIx0hHo3R6aQjO4srLpHVedirl6t1FoV7L4siDI3ACisABl6AObkADNAEGj+AZvII348l4Md6Nj3lrzshmDsEfGJ8/Wg6W0Q==</latexit>

K

(s+ 1)(s+ 3)
<latexit sha1_base64="c3ssRPVTEi0L1XhKgq+GemWR8JY=">AAACAHicbVDLSsNAFL3xWeMr6sKFm2ARWoSSWMUuC24ENxXsA9pSJtNJO3QyCTMToYRs/BU3LhRx62e482+ctFlo64F7OZxzLzP3eBGjUjnOt7Gyura+sVnYMrd3dvf2rYPDlgxjgUkThywUHQ9JwignTUUVI51IEBR4jLS9yU3mtx+JkDTkD2oakX6ARpz6FCOlpYF1bPZ8gXBylyYlee6WdauWU9McWEWn4sxgLxM3J0XI0R hYX71hiOOAcIUZkrLrOpHqJ0goihlJzV4sSYTwBI1IV1OOAiL7yeyA1D7TytD2Q6GLK3um/t5IUCDlNPD0ZIDUWC56mfif142VX+snlEexIhzPH/JjZqvQztKwh1QQrNhUE4QF1X+18RjpQJTOLAvBXTx5mbQuKm61cnV/WazX8jgKcAKnUAIXrqEOt9CAJmBI4Rle4c14Ml6Md+NjPrpi5DtH8AfG5w8fHZQh</latexit>
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the points of the locus are either 

• regular points (solutions of  p (s,k) = 0) or 

• singular points (or breakaway/break-in points) solutions of 

8
<

:

p(s, k) = 0

�p(s, k)

�s
= 0

8
>>>><

>>>>:

nY

j=1

(s� pj) + k
mY

i=1

(s� zi) = 0

�

�s

nY

j=1

(s� pj) + k
�

�s

mY

i=1

(s� zi) = 0

k = �

nY

j=1

(s� pj)

mY

i=1

(s� zi)

being from locus equation, substituted in the second gives

mY

i=1

(s� zi)
�

�s

nY

j=1

(s� pj)�
nY

j=1

(s� pj)
�

�s

mY

i=1

(s� zi) = 0

equation of order n + m - 1 for the candidates singular points (we may have solutions 
corresponding to complex k which are  therefore not points of the root locus)
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a candidate singular s* point is a true singular point if the corresponding value k* is real

k⇤ = �

nY

j=1

(s⇤ � pj)

mY

i=1

(s⇤ � zi)

the singular point s* will be a solution of the locus equation p (s*,k*) = 0 with multiplicity µ  
greater equal to 2

p(s, k⇤) = (s� s⇤)µ p0(s, k⇤) µ � 2

every open-loop pole/zero with multiplicity greater than 1 is a singular point of the root locus

Proof: from the candidate singular points equation

There are some situations where finding singular points is easier

clearly candidate singular points which are real valued are for sure singular point
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Rule 4 
Let s* be a singular point with multiplicity µ, then:
• 2 µ branches merge in the singular point and are alternatively convergent and divergent. 
• these branches divide the plane in equal parts.
• if the singular point is a multiple pole or zero of the open-loop system, then the branches also 

alternate as positive and negative branches.

F (s) =
s+ 3

s(s+ 2)example
+ -

r e

k F (s)

y

p(s, k) = s(s+ 2) + k(s+ 3) = s2 + (2 + k)s+ 3k

�

�s
p(s, k) = 2s+ (2 + k)

(s+ 3)
�

�s
s(s+ 2)� s(s+ 2)

�

�s
(s+ 3) = s2 + 6s+ 6

s1* = -4.73

s2* = -1.27

candidates

real values real values of k* singular 
points
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was it necessary to compute the singular points?

zero pole pole

Re

Im

zero pole pole

Re

Im

after the real axis rule we have

one pole needs 
to go to infinity 
along the 
asymptote

one pole goes 
to the zero

two poles get out of 
the open-loop poles

there must be 
a singular point

µ  = 2 µ  = 2

at these singular points of multiplicity µ  = 2 the entire round 
angle is divided into 2 x µ = 4 equal angles of 90° each
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alternative formula to determine the candidates breakaway/break-in (singular) points

nX

j=1

1

s� pj
�

mX

i=1

1

s� zi
= 0

• this formula will not give us the singular points corresponding to repeated poles or 
zeros of the open-loop (obvious singular points)

• repeated poles and zeros in this formula need to be taken into account in the sum with 
their multiplicity

F (s) =
(s+ 1)2

(s+ 2)4
example

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
xi

s

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

4

s+ 2
� 2

s+ 1
=

2s

(s+ 2)(s+ 1)

s* = 0

since it belongs to the
real axis it is for sure 
a singular point
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In order to determine stability (all the poles should be, for the same interval of values of k, in 
the open left half plane) it may be important to establish for which values of k some branches 
cross the imaginary axis. This can be achieved by determining for which values of k the 
elements of the first column of the Routh table become 0 since this is when a first column 
term changes sign and therefore a pole crosses the imaginary axis (remember that, when the 
table can be built from the basic definition, the number of sign changes in the first column is 
equal to the number of roots with positive real part).

F (s) =
s+ 1

s(s� 2)(s+ 4)
p(s, k) = s(s� 2)(s+ 4) + k(s+ 1) = s3 + 2s2 + (k � 8)s+ k

characteristic equation of the closed-loop system

1 k � 8

2 k

k � 16

k

−5 −4 −3 −2 −1 0 1 2 3
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Root Locus
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for k = 16

p(s, 16) = (s+ p)(s2 + �2)

p = 2

!2 = 8

Routh table
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RL as a design tool
the basic idea is based on the positive root locus behavior for high values of the gain k 

• (n - m) branches tend at infinity along (n - m) asymptotes

• the remaining m branches tend to the m open loop zeros

therefore if the zeros are in the open left half-plane (i.e. have negative real part) and the 

asymptotes (for the positive root locus) always stay to the left of the imaginary axis then for 

sufficiently high values of the gain all the poles will be to the left of the imaginary axis that is 

a high gain will stabilize the system

the asymptotes and the open-loop zeros attract the positive branches

A system with 
• all its zeros, if any, in the open left half-plane or equivalently
• having no zeros with positive or null real part

is said to be minimum phase
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• we can have either n - m = 1 asymptote (positive locus)

s0

s0

• or n - m = 2 asymptotes (positive locus)

center of asymptotes is not 
important since we look at 
the high-gain behavior

center of asymptotes has to 
be negative

if the open-loop system is minimum phase and has (relative degree) n - m = 2 with a 
negative center of asymptotes then in the positive locus for sufficiently high values of k 
positive the closed-loop system is for sure asymptotically stable

if the open-loop system is minimum phase and has (relative degree) n - m = 1 then for 
sufficiently high values of k the closed-loop system is for sure asymptotically stable
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example

F (s) =
(s+ 1)2

(s� 1)3

Nyquist Diagram
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positive root locus Nyquist plot for KC = 1
passes through point (-1,0)

nF+ = 3
3 poles with 
positive real part

A controller C (s) = KC with 
sufficiently high values of the gain KC 
will certainly stabilize the closed loop 
system

critical values of KC
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KCF (s) will give in closed loop the pole polynomial p(s,KC)

example (cont’d)

p(s,KC) = (s� 1)3 +KC(s+ 1)2 = s3 + s2(KC � 3) + s(2KC + 3) +KC � 1
<latexit sha1_base64="IzqrQbAvih/UxHslyGMBu7c59Wc="></latexit>

the necessary condition leads to KC > 1 while the Routh table

1 2KC + 3

KC - 3 KC - 1

2(K2
C � 2KC � 4)

KC � 3
<latexit sha1_base64="cC9TUyLCXBgQARQcV8Qh3Z9x8Gs=">AAACB3icbVDLSsNAFJ3UV42vqEtBgkWoi5YkrdhloRvBTQX7gDaGyXTSDp08mJkIJWTnxl9x40IRt/6CO//GSZuFth4Y7uGce7lzjxtRwoVhfCuFtfWNza3itrqzu7d/oB0edXkYM4Q7KKQh67uQY0oC3BFEUNyPGIa+S3HPnbYyv/eAGSdhcCdmEbZ9OA6IRxAUUnK0U3XoMYgSq3zjtO6tiiVLpX6RJlmtpY5WMqrGHPoqMXNSAjnajvY1HIUo9nEgEIWcD0wjEnYCmSCI4lQdxhxHEE3hGA8kDaCPuZ3M70j1c6mMdC9k8gVCn6u/JxLocz7zXdnpQzHhy14m/ucNYuE17IQEUSxwgBaLvJjqItSzUPQRYRgJOpMEIkbkX3U0gTIXIaNTZQjm8smrpGtVzVr18rZeajbyOIrgBJyBMjDBFWiCa9AGHYDAI3gGr+BNeVJelHflY9FaUPKZY/AHyucP4r2WwA==</latexit>

KC - 1

gives the necessary & sufficient condition  
KC > 3.2361 -4 -3 -2 -1 0 1 2 3 4

-4
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0
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3

4
Nyquist plot for KC = 4
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for KC > 3.2361  we have  Ncc = nF+ = 3

Nyquist stability criterion verified (here KC = 4)
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example

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
xi

s

−12 −10 −8 −6 −4 −2 0 2
−50

−40

−30

−20

−10

0

10

20

30

40

50

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
xi

s

F (s) =
(s+ 1)2

(s� 1)2(s+ 10)2

Nyquist plot of 100 F (s)
passes through the point (-1,0)

for KC > 100  we have  Ncc = nF+ = 2

Nyquist stability criterion verified

gain KC = 100 corresponds to the 
Imaginary axis crossing
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what if n - m = 2 but the center of asymptotes is non-negative?

Let us assume we have F (s) with n - m = 2 and center of asymptotes s0 (non-negative) and see 
the effect of adding a zero/pole pair (za,  pa) both negative 

s� za
s� pa

F (s) the new center of asymptotes is given by (with n - m = 2)

old center
of asymptotes

new center
of asymptotes

center
of asymptotes

variation

since n - m remains 2, we can choose the additional negative pole pa and zero za such 
that the new center of asymptotes becomes negative

s00 =

nX

j=1

pj + pa �
mX

i=1

zi � za

n�m
= s0 +

pa � za
n�m

za < 0

pa < 0

once we have made the center of asymptotes negative with the addition of a pole and a 
zero, everything we said before applies

NB for the variation to be negative the pole needs to be to the left of the zero

we cannot just add a zero to obtain n - m = 1 since the controller would be 
improper; moreover a positive zero is not allowed to exploit this technique
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s� za
s� pa

note that

with pa < za < 0

can be rewritten as
s� za
s� pa

=
za � s

pa � s
=

za
pa

(1� s/za)

(1� s/pa)

and therefore, being the cut-off frequency of the zero smaller than the one of the pole, the 
particular pole/zero pair is equivalent to

0 <
za
pa

< 1

a positive gain 
smaller than 1

x a lead
compensator

but the final controller will require also the choice of a sufficiently high gain k* > kcrit  so the 
controller will be 

C (s) = Gain x Lead compensator
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case n - m = 2 : variations

• the controller has already some poles (for example in s = 0) 
deriving from some steady-state specification and the modified 
plant has n - m = 2. Then we can add a negative zero and move 
from the case n - m = 2 to 1 and the corresponding 
considerations apply.

• when adding a zero/pole (i.e. maintaining n - m = 2), one may choose 
to place the zero so to cancel a stable pole of the plant. This is 
possible if there are no further restrictions on the closed-loop 
eigenvalues (e.g., belonging to some specific region), however note 
that canceling a negative pole makes the center of asymptote increase 
(or even become positive).

example:

P (s) =
1

s� 1
<latexit sha1_base64="J1XvxqcHII7Di0TX/CpD9M0fITI=">AAACAHicbVDLSsNAFL2prxpfURcu3AwWoS4siQ/sRii4cVnBPqANZTKdtEMnD2YmQgnZ+CtuXCji1s9w5984abPQ6oELh3Pu5d57vJgzqWz7yygtLa+srpXXzY3Nre0da3evLaNEENoiEY9E18OSchbSlmKK024sKA48Tjve5Cb3Ow9USBaF92oaUzfAo5D5jGClpYF1YDar8gRdo74vMEmdLJWnTmaaA6ti1+wZ0F/iFKQCBZoD67M/jEgS0FARjqXsOXas3BQLxQinmdlPJI0xmeAR7Wka4oBKN509kKFjrQyRHwldoUIz9edEigMpp4GnOwOsxnLRy8X/vF6i/LqbsjBOFA3JfJGfcKQilKeBhkxQovhUE0wE07ciMsY6CaUzy0NwFl/+S9pnNee8dnl3UWnUizjKcAhHUAUHrqABt9CEFhDI4Ale4NV4NJ6NN+N93loyipl9+AXj4xscdJQn</latexit>

C(s) =
K

s
<latexit sha1_base64="kO6V6jplJCwGfGrk2smOK7RJQhc=">AAAB/nicbVDLSsNAFL2prxpfUXHlZrAIdVMSH9iNUOhGcFPBPqAtZTKdtEMnD2YmQgkBf8WNC0Xc+h3u/BsnbRbaeuDC4Zx7ufceN+JMKtv+Ngorq2vrG8VNc2t7Z3fP2j9oyTAWhDZJyEPRcbGknAW0qZjitBMJin2X07Y7qWd++5EKycLgQU0j2vfxKGAeI1hpaWAdmfWyPEM3qOcJTJK7NJGpaQ6skl2xZ0DLxMlJCXI0BtZXbxiS2KeBIhxL2XXsSPUTLBQjnKZmL5Y0wmSCR7SraYB9KvvJ7PwUnWpliLxQ6AoUmqm/JxLsSzn1Xd3pYzWWi14m/ud1Y+VV+wkLoljRgMwXeTFHKkRZFmjIBCWKTzXBRDB9KyJjrHNQOrEsBGfx5WXSOq84F5Wr+8tSrZrHUYRjOIEyOHANNbiFBjSBQALP8ApvxpPxYrwbH/PWgpHPHMIfGJ8/SlOTwg==</latexit>

P̂ (s) =
K

s(s� 1)
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C(s) =
K(s+ 5)

s
<latexit sha1_base64="aK/vMnkvVSW4tjuBHLALOZffMGM=">AAACA3icbVDLSsNAFJ3UV42vqDvdDBahRSiJWuxGKHQjuKlgH9CGMplO2qGTSZiZCCUU3Pgrblwo4tafcOffOGmz0NYDFw7n3Mu993gRo1LZ9reRW1ldW9/Ib5pb2zu7e9b+QUuGscCkiUMWio6HJGGUk6aiipFOJAgKPEba3rie+u0HIiQN+b2aRMQN0JBTn2KktNS3jsx6UZbgNez5AuHktijPKqVpIqem2bcKdtmeAS4TJyMFkKHRt756gxDHAeEKMyRl17Ej5SZIKIoZmZq9WJII4TEakq6mHAVEusnshyk81coA+qHQxRWcqb8nEhRIOQk83RkgNZKLXir+53Vj5VfdhPIoVoTj+SI/ZlCFMA0EDqggWLGJJggLqm+FeIR0GErHlobgLL68TFrnZeeiXLm7LNSqWRx5cAxOQBE44ArUwA1ogCbA4BE8g1fwZjwZL8a78TFvzRnZzCH4A+PzB93ElRg=</latexit>

type 1
requirement:

modified
plant

final controller: 
type 1 and stabilizing for K > 1

C(s) = K
s+ 2

s+ p
<latexit sha1_base64="ZNcknFWcNFEA7+6HtoiIv7gUYUQ=">AAACA3icbVDLSsNAFJ3UV42vqDvdDBahIpSkKnYjFLoR3FSwD2hDmUwn7dDJJMxMhBICbvwVNy4UcetPuPNvnLRZaPXAvRzOuZeZe7yIUals+8soLC2vrK4V182Nza3tHWt3ry3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb9LI/M49EZKG/E5NI+IGaMSpTzFSWhpYB2ajLE/gFbzp+wLhRJ5WU92i1DQHVsmu2DPAv8TJSQnkaA6sz/4wxHFAuMIMSdlz7Ei5CRKKYkZSsx9LEiE8QSPS05SjgEg3md2QwmOtDKEfCl1cwZn6cyNBgZTTwNOTAVJjuehl4n9eL1Z+zU0oj2JFOJ4/5McMqhBmgcAhFQQrNtUEYUH1XyEeI52F0rFlITiLJ/8l7WrFOatc3J6X6rU8jiI4BEegDBxwCergGjRBC2DwAJ7AC3g1Ho1n4814n48WjHxnH/yC8fENS8WVXw==</latexit>

example:

-20 -15 -10 -5 0 5
-6

-4

-2

0

2

4

6
Root Locus

Real Axis (seconds-1)

Im
ag

in
ar

y 
Ax

is
 (s

ec
on

ds
-1

)

makes the center of asymptotes negative for p > 4
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root locus with p = 6
<latexit sha1_base64="8gug0b3M4Px4OPDK6ZEAeZs4e4E=">AAACB3icbVDLSsNAFJ3UV62vqEtBBouQUixJLdqNUHDjsoJ9QBvKZDqpQyeTMDMRSsjOjb/ixoUibv0Fd/6N0zYLbT1w4XDOvdx7jxcxKpVtfxu5ldW19Y38ZmFre2d3z9w/aMswFpi0cMhC0fWQJIxy0lJUMdKNBEGBx0jHG19P/c4DEZKG/E5NIuIGaMSpTzFSWhqYx01LluAV7PsC4USWz9NEWvLMKVmyXC2lA7NoV+wZ4DJxMlIEGZoD86s/DHEcEK4wQ1L2HDtSboKEopiRtNCPJYkQHqMR6WnKUUCkm8z+SOGpVobQD4UuruBM/T2RoEDKSeDpzgCpe7noTcX/vF6s/LqbUB7FinA8X+THDKoQTkOBQyoIVmyiCcKC6lshvkc6EaWjK+gQnMWXl0m7WnEuKrXbWrFRz+LIgyNwAizggEvQADegCVoAg0fwDF7Bm/FkvBjvxse8NWdkM4fgD4zPHwNcltY=</latexit>

P (s) =
s+ 3

s(s� 1)(s+ 2)
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what if n - m > 2 and the system is minimum phase?

The idea is:

• turn the n - m > 2 case into a n - m = 2 one by adding zeros (s - zk) to the controller

• solve the stabilization problem: if necessary move the center of asymptotes and choose K

• if necessary introduce high frequency dynamics (1 + ¿h s) to make the controller at least 

proper (note that we get back to the n - m > 2 case but now the gain has been chosen). 

The following result guarantees that, if properly chosen, these dynamics do not alter the 

closed-loop stability

Th.
Consider an open-loop system F (s) which results in an asymptotically stable unit feedback 

closed-loop system. Then there exists a sufficiently small ¿h > 0 such that the closed-loop 

system having as open-loop

remains asymptotically stable.

✓
1

1 + �hs

◆
F (s)
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if the closed-loop system

is asymptotically stable

+
-

F (s)

then the closed-loop system

1

1 + �hs

+
-

F (s)

is also asymptotically stable provided ¿h > 0 
is sufficiently small

note that 1/(1 + ¿h s)

• does not change the gain of the open-loop

• represents some high-frequency dynamics

informal
proof:

1

1 + �hs

alters the 
Bode plots 
only at high
frequency

alters the 
Nyquist plot 
only at high
frequency

! =  0+

! =  0-

Im

Re! =  + ∞ 

! =  - ∞ 

-1

high frequency
modification 

due to
1/(1 + ¿h s)

no effect on closed-loop stability

The previous theorem states that:

Nyquist plot example here for F with no Re[ pi ] > 0 poles,
but the result is general. 
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Case n - m = 3 & minimum-phase system: possible algorithm

1) add a negative zero (s - zk) so to obtain n - m = 2. 

a) if s0 < 0 then choose k* > kcrit  to guarantee asymptotic stability of the closed-

loop system. Go to point 2)

b)  if s0 > 0 then choose a pole/zero pair pa < za < 0 to make the new center of the 

asymptotes s0’ negative. Go to case a)

2) if the resulting controller is improper, add a high-frequency dynamics term (1 + ¿h s) 

where the time constant ¿h  can be chosen applying the Routh criterion in order to 

guarantee that the overall closed-loop system is asymptotically stable

Note that step 2) may not be necessary since we may apply this result once the static 

specifications have been met, i.e., we may just need to stabilize the extended plant    

and therefore the controller may already have an excess of poles w.r.t. the number of 

zeros so that adding the extra zero (s - zk) would not make the controller improper

P̂ (s)
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other use of the RL

Example Mass-Spring-Damper: we want to explore the influence of some parameters on the 

system’s dynamics represented by the following characteristic polynomial ms2 + µs+ k

• varying the spring stiffness k 2 [0,+1) p(s, k) = (ms+ µ)s+ k = D(s) + kN(s)

Re

Im

- µ/m 

k = 0 no spring, poles in (0, -µ/m)   

0 
singular point 

s* = -µ/2m
�p(s, k)

�s
= 2ms+ µ = 0

at k⇤ = �(ms⇤ + µ)s⇤ =
µ2

4m
µ = 2

p
k⇤mi.e. 

as k increases (spring more and more stiff)

poles are complex with constant real part 

while imaginary part becomes larger
0 5 10 0 5 10

k2 > k1 k1

step response - normalized plots 
(the steady-state value changes with k)

The root locus can be applied to any polynomial with a single parameter k entering linearly
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• varying the damping

same singular point as before

µ 2 [0,+1) p(s, µ) = ms2 + k + µs = D(s) + µN(s)

µ
N(s)

D(s)
= µ

s

ms2 + k

the MSD poles move, as µ increases, 

as the positive root locus of

µ = 0 no damper, pure imaginary poles 

Root locus

Real axis
I
m
a
g
i
n
a
r
y
 
a
x
i
s

Bode

frequency (rad/sec)

m
a
g
n
i
t
u
d
e
 
(
d
B
)

Step fucntion

time

a
m
p
l
i
t
u
d
e

note how, as µ increases and the poles 

become real, how a dominant (slow) 

dynamics arises
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Pole assignment

+
-

r (t) y (t)

P (s)C (s)

P (s) =
NP (s)

DP (s)
=

bmsm + bm�1sm�1 + · · ·+ b1s+ b0
sn + an�1sn�1 + · · ·+ a1s+ a0

C(s) =
NC(s)

DC(s)
=

drsr + dr�1sr�1 + · · ·+ d1s+ d0
sr + cr�1sr�1 + · · ·+ c1s+ c0

plant

controller as a 
function of unknowns 
parameters to be 
determined

monic (coefficient = 1)

monic

strictly
proper
m < n

proper

{dr, dr�1, . . . , d1, d0, cr�1, . . . , c1, c0} unknown 
coefficients

r+1 r

2r+1
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closed-loop characteristic polynomial

dCL(s) = DP (s)DC(s) +NP (s)NC(s)

n rdegree m r

degree

n + r

also monic

| {z }

we want to assign all the closed-loop poles to be 
�
p⇤1, p

⇤
2, . . . , p

⇤
n+r

 desired 
closed-loop 

poles

which can be seen as the solutions of an n + r order polynomial

d⇤CL(s) = (s� p⇤1)(s� p⇤2) . . . (s� p⇤n+r)

The problem can be stated as: 
we need to determine the 2r + 1 unknowns ci and dj (i = 1, ..., r + 1; j = 1, ..., r) such that

Diophantine equation

DP (s)DC(s) +NP (s)NC(s) = d⇤CL(s)
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if NP (s) and DP (s) are coprime

and r = n - 1
we can always solve and have a unique solution

we can arbitrarily assign the 2n - 1 

closed-loop poles

Result

Remarks

closed-loop system zeros:

• the zeros depend upon where we consider the input entering in the control system and 

which output we decide to monitor. For example in a unit feedback system, the output 

disturbance to controlled output transfer function S (s) and the reference to controlled 

output one T (s) will have the same poles (if there are no hidden dynamics in the open-loop 

system) but different zeros

• the closed-loop zeros of T (s) coincide with the open-loop ones when the open-loop 

system has no hidden dynamics

T (s) =
NT (s)

DT (s)
=

F (s)

1 + F (s)
=

NF (s)

DF (s) +NF (s)

NF (s) = NC(s)NP (s)



Lanari: CS - Root Locus 34

• since the choice of the controller C (s) is uniquely determined by the previous algorithm, 

the controller zeros are a consequence of the pole assignment technique and so are the 

closed-loop zeros

• note that if we choose as desired closed-loop poles some open loop zeros (necessarily of 

the plant since the controller has not been chosen yet) then at closed loop we have a 

cancellation (being the closed loop zeros equal to the open loop ones). Moreover a closed 

loop cancellation (for finite values of the open loop gain) can be originated only by an open 

loop cancellation, which being NP (s) and DP (s) coprime, is generated by the series 

interconnection plant/controller. Therefore if we  choose as desired closed loop poles some 

open loop zeros, these will necessarily be also poles of the controller

• from the above comment it is clear that we are not going to choose a desired closed-loop 

pole coincident with a non-minimum phase zero of the open-loop.
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example

plant P (s) =
(s� 1)

s(s� 2)

C(s) =
14s� 1

s� 9
= 14

(s� 1
14 )

(s� 9)

T (s) =
C(s)P (s)

1 + C(s)P (s)
=

14(s� 1)(s� 1
14 )

(s+ 1)3

desired closed-loop poles: 3 in -1

n = 2 C(s) =
as+ b

s+ c

8
<

:

a+ c� 2 = 3
�a+ b� 2c = 3

�b = 1

8
<

:

a = 14
b = �1
c = �9

dCL(s) = s(s� 2)(s+ c)+ (s� 1)(as+ b) = s3 +(c� 2+ a)s2 +(b� a� 2c)s� b

d⇤CL(s) = (s+ 1)3 = s3 + 3s2 + 3s+ 1

equating

closed-loop complementary sensitivity
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• the plant has a real positive pole so the open-loop loop shaping technique cannot be used

• the plant has a real positive zero (so it is non-minimum phase) and therefore the high-gain 

principle seen in the root locus cannot be applied

• the resulting controller, in this example, is unstable and non-minimum phase: we have no 

control over the final structure of the fixed dimensional (r = n - 1) controller

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
xi

s

root locus of

for k = 14 we obtain the 
three closed-loop poles at 
the desired location

F (s) = k
(s� 1

14 )

(s� 9)

(s� 1)

s(s� 2)
<latexit sha1_base64="HLHm9OTz/PpaLq/xmSC08O89Cwc=">AAACKXicbVBbS8MwGE3nbdZb1UdfgkPYQEc7J84HYSCIjxPcBdYx0izdwtILSSqM0r/ji3/FFwVFffWPmG5FdPNAyOGc85F8xwkZFdI0P7Tc0vLK6lp+Xd/Y3NreMXb3WiKIOCZNHLCAdxwkCKM+aUoqGemEnCDPYaTtjK9Sv31PuKCBfycnIel5aOhTl2IkldQ36vp1UZTgJRzbLkc4LoqTGbGS2KompSRVLkqJfQx/ApZShborpUTX+0bBLJtTwEViZaQAMjT6xos9CHDkEV9ihoToWmYoezHikmJGEt2OBAkRHqMh6SrqI4+IXjzdNIFHShlAN+Dq+BJO1d8TMfKEmHiOSnpIjsS8l4r/ed1IurVeTP0wksTHs4fciEEZwLQ2OKCcYMkmiiDMqforxCOkCpGq3LQEa37lRdKqlK3T8tlttVCvZXXkwQE4BEVggXNQBzegAZoAgwfwBF7Bm/aoPWvv2ucsmtOymX3wB9rXN2DjowE=</latexit>

note that
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note that using the basic tracing rules we can also have the following compatible positive 

root locus

Re

Im

Re

Im

not compatible, however, with the 
extra knowledge that the closed-
loop system is asymptotically stable

closed-loop system stable for some 
values of the gain but not compatible 
with the extra knowledge that the 
closed loop system has all three poles 
in -1 for some value of k
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Vocabulary

English Italiano

root locus luogo delle radici

singular point
(breakaway/break-in) punto singolare

locus branch ramo del luogo

minimum phase a fase minima

center of asymptotes centro degli asintoti


