
Communication-based and Communication-less approaches for Robust
Cooperative Planning in Construction with a Team of UAVs

Elena Umili1, Marco Tognon3,2, Dario Sanalitro2, Giuseppe Oriolo1, Antonio Franchi4,2

Abstract— In this paper, we analyze the coordination problem
of groups of aerial robots for assembly applications. With
the enhancement of aerial physical interaction, construction
applications are becoming more and more popular. In this
domain, the multi-robot solution is very interesting to reduce
the execution time. However, new methods to coordinate teams
of aerial robots for the construction of complex structures are
required. In this work, we propose an assembly planner that
considers both assembly and geometric constraints imposed
by the particular desired structure and employed robots,
respectively. An efficient graph representation of the task depen-
dencies is employed. Based on this framework, we design two
assembly planning algorithms that are robust to robot failures.
The first is centralized and communication-based. The second is
distributed and communication-less. The latter is a solution for
scenarios in which the communication network is not reliable.
Both methods are validated by numerical simulations based on
the assembly scenario of Challenge 2 of the robotic competition
MBZIRC2020.

I. INTRODUCTION

In the last decades, Unmanned Aerial Vehicles (UAVs)
become extremely popular in a wide range of applications.
Recently, the advance of aerial physical interaction led to
new applications ranging from contact-based inspection [1]
to transportation [2] and assembly. In the fields of manipu-
lation of large objects and assembly of structures, the use of
a multi-robot system is becoming very popular [3]. It allows
to increase the overall payload and manipulation capabilities,
and from the other side, as well as to perform multiple tasks
in parallel, minimizing the execution time.

In this work, we focus on the second aspect, i.e., multi-
robot assembly tasks. In particular, we consider a group
of UAVs that have to cooperatively assemble a structure
composed of several elements, sharing the tasks, the re-
sources, and the working environment. The robots must
autonomously find the best assembly plan that optimizes the
available resources and minimizes the assembly time. We

1Sapienza University of Rome, Rome, Italy, umili@diag.uniroma1.it,
oriolo@diag.uniroma1.it

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
dario.sanalitro@laas.fr, antonio.franchi@laas.fr,

3Autonomous Systems Lab, Department of Mechanical and Process Engi-
neering, ETH Zurich, 8092 Zürich, Switzerland, mtognon@ethz.ch

4Robotics and Mechatronics lab, Faculty of Electrical Engineering, Mathe-
matics & Computer Science, University of Twente, Enschede, The Nether-
lands a.franchi@utwente.nl

This work was partially funded by: a grant of the Mohamed Bin
Zayed International Robotics Challenge (MBZIRC) with the LAAS-CNRS,
Toulouse, France; the ANR, Project ANR-17-CE33-0007 MuRoPhen; the
European Union’s Horizon 2020 research and innovation programme under
grant agreement ID: 871479 AERIAL-CORE; and the European Research
Council under the European Union’s Horizon 2020 Programme through the
ERC Advanced Grant WhiteMech (No. 834228)

aim at conceiving a task planning algorithm for the group
of UAVs under assembly constraints imposed by the specific
structure, and geometric constraints due to the sharing of the
work-space and resources.

Assembly planning is the process of finding a valid se-
quence of operations to assemble a product made by different
parts. The problem is a NP (Non-deterministic Polynomial
time) complete problem [5]. Many algorithms have been
proposed to solve assembly planning problems [6], [7], [8],
[9]. However, most of the proposed solutions do not embed
in the problem formulation geometric constraints imposed
by the characteristics of the specific robots. Different robots
have different embodiment and feasible movements that
imply specific constraints during the interaction with the
environment. Additionally to geometric constraints, assembly
constraints should be considered as well. These are imposed
by the particular envisioned construction and ensure at every
step of the assembly process its correctness and solidity.
Nevertheless, assembly constraints alone do not grant the
feasibility of the task considering the available agents.

In most of the previous works, the two types of con-
straints are treated separately: first, a high-level assembly
plan is computed considering assembly constraints only.
Subsequently, robot actions and movements are planned con-
sidering geometric constraints only [10], [11]. This approach
implicitly assumes that for any given assembly plan, it is
possible to find a set of feasible robot motions. Though,
this is difficult to be met in practice. Some works attempted
to combine assembly and geometric planning. In [12], [13]
the two aspects are treated separately, but the two planners
are implemented in a loop-like framework. The low-level
(motion) planner can influence the decisions of the assembly
planner at the higher-level.

In this paper, we aim at designing an assembly planner
for a group of UAVs assembling a wall-like construction
made by blocks. Assembly and geometric constraints are
considered at the same planning level. In particular, we shall
show that the application of these constraints results in a
directed acyclic graph [14], here called “assembly graph”,
which encodes both assembly and geometric dependencies
between tasks.

Aiming at real applications, we assume that robots may
fail actions and be temporarily (or permanently) inoperative.
This requires the system to be adaptive with respect to the
number of available robots [15]. We design the proposed
approach such that to be robust to changes in the number
of operative robots. This makes the execution time highly
variable, stressing the need for fine coordination and re-

2020 International Conference on Unmanned Aircraft Systems (ICUAS)
Athens, Greece. September 1-4, 2020

978-1-7281-4277-7/20/$31.00 ©2020 IEEE 279

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

allocation mechanisms. If needed, the proposed online plan-
ner can explore other feasible assembly plans in real-time
without a global re-planning, making the approach more
flexible to unforeseen events.

Our objective is to optimize the use of available robots
minimizing the construction time. With this aim, we im-
plement an online assembly planner that, at each iteration,
decides the task to be executed according to the current and
close future system state (robots and construction).

Similarly to self-triggered control [16], the state prediction
is used to check assembly constraints in advance and allocate
tasks before they become feasible. Early task allocations
yield more efficient cooperation, at the cost of higher un-
certainty.

Another important point in multi-agent applications is
the possibility to exploit inter-robots communication to en-
hance the agent’s cognitive capabilities. Nevertheless, unsta-
ble communication networks could dramatically impact the
performances of communication-based strategies for multi-
robot coordination. In these conditions, distributed strategies
that are robust to communication failures are advisable [17],
[18].

To face these two communication scenarios, we design two
algorithms. The first assumes an ideal error-free communi-
cation network. Under this assumption, tasks are allocated to
the robots by a central decision entity which, relying on the
communication with the robots, has complete knowledge of
the system. The central planner performs assembly planning,
task allocation, fault detection, and task re-allocation.

In the second scenario, we assume that robots cannot
communicate. Under this assumption, the usual paradigm
is swarm intelligence [19], i.e., single agents are able to
coordinate with each other in a distributed way, relying
on local information only. However, distributed paradigms
have been used for construction applications in only a few
cases [21], [22], [23]. In the proposed approach, every agent
a plans and executes its tasks in an online fashion, without
communicating its own plan to the others. Nevertheless, the
actions of a have consequences on the construction state. The
other agents can sense and estimate the construction state,
exploiting it to coordinate their plan with that of a and to
reallocate tasks if needed. The designed reallocation mech-
anism guarantees the resilience of the system. Additionally,
we employ an initial task allocation optimized to equally
share the tasks between the agents and to minimize the need
for coordination during execution.

The two proposed methods are validated by numerical
simulations based on the assembly scenario of Challenge 2
of the robotic competition Mohamed Bin Zayed International
Robotic Competition 2020 (MBZIRC2020)1. A video of the
simulation results is available at https://youtu.be/
s3zizrCBuuc.

The rest of the paper is organized as follows. In section
II we formulate the assembly and geometric constraints,
describing the representation of dependencies between tasks

1https://www.mbzirc.com/

and the current construction state. In section III we define the
single atomic actions composing a task. The communication-
based and the communication-less planning algorithms are
described in section IV and V, respectively. In section VI
simulation results are presented. Section VII concludes the
paper.

II. ASSEMBLY PLANNING

General assembly planning is the problem of finding a
valid sequence of operations to assemble a product made by
different parts. It has been shown that it is a complete NP
problem [5]. It requires specific data structures to encode
temporal constraints between different parts and to represent
all possible object states during the assembly process [24].

In this paper, we focus on block-based constructions (like
walls), namely objects that can be assembled adding parts to
one sub-assembly. This kind of construction includes a wide
variety of objects. Rather than using AND/OR graphs [25]
(complete but memory inefficient data structure), we rep-
resent the assembly problem with a directed acyclic graph
(DAG) of dependencies between the blocks:

G = (V,E), (1)

where V is the set of vertexes and E is the set of edges.
Each vertex of the graph is a block, while edges between
blocks represent assembly constraints. In particular, an edge
e = (bi, bj) belongs to E if block bi must be placed after
block bj , or, in other words, if bi depends on bj .

We call C(t) the assembly state at time t, which is
the set containing all the blocks already assembled in the
construction at time t. Given the assembly graph G and the
assembly state C(t), the block b ∈ V is considered feasible if
the outgoing neighborhood of b, denoted as NG(b) = {bj ∈
V | e = (b, bj) ∈ E}, is contained in C(t). We denote with
Vfeasible(t) the set of feasible blocks at time t, such that:

Vfeasible = {b ∈ V |NG(b) ⊆ C(t)}. (2)

The problem of computing a sequence of assembly op-
erations respecting all the dependencies in E is equivalent
to find a topological ordering of the graph vertexes. This
operation can be performed offline in linear time with known
algorithms, e.g., Kahn’s algorithm [26].

Notice that G may not contain a Hamiltonian path, i.e.,
a tour in G that visits each vertex exactly once. As a
consequence, more than one topological ordering can be
found. Furthermore, the execution times of the tasks are
non-deterministic and the scheduled sequence of assembly
operations may not be respected due to unexpected events.
For these reasons, our approach runs online, deciding at every
iteration the next task allocation among the feasible ones.

A. Example

Our approach has been evaluated on an L-shaped wall
made of bricks of different sizes (see Fig. 1). This model of
example is similar to the target construction of Challenge 2
in the robotic competition MBZIRC2020.

280

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Example of construction: a 3D wall made of bricks
of different size.

Fig. 2: Assembly and geometric constraints: on the left the
accepted configurations, on the right the forbidden ones.
Colored in pink the bricks already placed on the wall, in
yellow the new one to be placed, in dashed line the brick that
is impossible to place in the future due to control inaccuracy
or robot embodiment. In particular, case B violates the first
constraint only, case C violates constraints 1 and 2, and
case E and F violate constraint 2 and 3, respectively, while
respecting the others.

The set E contains all brick dependencies which are
defined by the following assembly and geometric constraints:

1) Each brick can be placed only if it lies on the ground or
entirely on other bricks previously placed on the wall;

2) Each brick can be placed in an empty row if it is the
central brick of that row, or if the row is not empty and
the brick is adjacent to another one already placed;

3) Each brick can be placed if the difference in height
with the bricks already placed at the left and at right is
shorter than the length of the UAV gripper.

Constraint 1) ensures wall stability during the construction.
Notice that it doesn’t depend on the robot performing the
task. On the other hand, the following constraints are UAV-
specific geometric constraints. Constraint 2) is set to avoid
the creation of ‘holes’ in one line of bricks. Filling the hole
requires a perfect brick positioning, which is hard to achieve
using current flying robots. Constraint 3) is imposed by the
robot embodiment. It is set to ensure that the UAVs are
always able to reach the missing brick positions from above
without colliding with the bricks already assembled. Figure 2
shows some allowed and forbidden bricks configurations.
Finally, Figure 3 graphically shows G resulting from the
application of the constraints to the considered wall model.

We remark that these assembly constraints are specific for
the construction of the wall here considered using UAVs.
In general, assembly constraints must be carefully set by
problem experts. They are necessary to avoid unstable con-

Fig. 3: Assembly graph for the wall. Each block (brick)
corresponds to a vertex in V. The blue arrows represent the
directed edges in E.

figurations of the construction, as well as deadlocks and
assembly sequences with low chances of success.

III. TASK DEFINITION

Each part of the construction is considered as a single
task that is individually assignable to one robot using the
assembly graph defined in the previous section. At every
time t, a generic task can be:
• Closed: the task is completed;
• Assigned: a robot is executing the task;
• Open: the task is not completed and not yet assigned.

Notice that C(t) results in the set of closed tasks. Addition-
ally, we denote as A(t) and O(t) the set of assigned and open
tasks, respectively. It results that V = C(t) ∪̇A(t) ∪̇ O(t).

We call pick-and-place the complete macro-action which
can be decomposed in a sequence of 4 atomic actions:

1) fly-to the position in the map where the brick is stored,
2) pick the brick using the gripper,
3) fly-to a safe point close to the wall,
4) place the brick on the wall.
We assume that a low-level motion planner and posi-

tion/force controller are provided to allow the robot to
execute each action. In this work, we do not focus on
these low-level aspects. Nevertheless, the atomic actions 2)
and 4) are considered non-deterministic, i.e., we suppose
that they may fail with a constant probability p. The two
atomic actions must be then repeated until they succeed;
eventually, they will succeed with probability 1. Furthermore,
we consider that a robot may stop working at any time (e.g.,
because of malfunctioning sensors or of a crash). The robot
will not complete the task which must be re-assigned to
another agent.

IV. COMMUNICATION-BASED TASK ALLOCATION

Assuming an error-free communication network, the task
allocation can be performed using a classical centralized
approach. A single decision entity, called the planner, is
responsible for the task allocation and re-allocation. The
planner can run in one of the robots or on a remote computer.

We remark that, at every time instant t, the planner should
know the assembly graph, G, and the current assembly state,
C(t), A(t) and O(t). Each UAV communicates with the
planner in order to request and receive a new task defined
by bnext. After completing bnext, it notifies the planner of the
success or failure of the tasks. In the following, we detail
the algorithm from both the planner and the robot points of
view.

281

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Notice that if the planner cannot directly sense the assem-
bly state, the latter can be inferred collecting the robots’
notifications (we assume that false notifications are not
possible).

A. Planner Side

Algorithm 1: online task allocation
Input: new task request from robot ri
Output: message
tr: current time;
C(tr): current construction state;
V : goal construction state;
if C(tr) = V then

message.type ← go-home;
else

S(tr) = feasibleBricks(C(tr)−A(tr)) ;
if S(tr) = ∅ then

R(tr, ri) = collectRiskyTasks(ri);
if R(tr, ri) = ∅ then

message.type ← wait;
else

bnext ← bestHeuristicValueBrick(R(tr, ri));
message.type ← task;
message.task ← bnext;
message.risky = true;

else
bnext ← bestHeuristicValueBrick(S(tr));
message.type ← task;
message.task ← bnext;
message.risky = false;

recordAssignmentTime(bnext);
sendMessage(message)

Algorithm 1 shows the pseudo-code of the task allocation
method. This process is triggered by the request message of
a new task by a robot ri at time tr. At each request, the
algorithm performs the following activities:

1) task classification: open tasks are classified to compute a
set of next allocation candidates: Candidates ⊆ O(tr);

2) decision making: if Candidates is not empty a task
bnext ∈ Candidates is selected;

3) communication: the planner allocates bnext to ri sending
all the information about the task to ri. In case bnext is
not available, the planner sends a special message to ri.

This sequence of activities is maintained also in the
communication-less algorithm.

In the following, the criteria used in the task classification,
as well as the policies used in the decision-making activities
are explained in detail.

Task classification: The planner partitions the set of open
tasks O(tr) into three categories:

O(tr) = S(tr) ∪̇ R(tr, ri) ∪̇ U(tr). (3)

Fig. 4: The current wall is composed of the colored bricks,
that are the closed tasks. The grey brick is assigned but not
yet closed and it is expected to be closed at time 20 seconds.
The white bricks are open and not assigned tasks. In this
configuration the planner finds two candidates allocation: one
safe and one risky task (the time expected to close this task
is higher than 20 seconds).

• S(tr) is the set of candidates for safe allocation, i.e.,
open tasks that are feasible according to the assembly
state at time tr, and in particular to C(tr):

S(tr) = {b ∈ O(tr)|NG(b) ⊆ C(tr)}. (4)

Allocating a task in S(tr) guarantees that the brick will
be placed respecting the assembly constraints. All the
task dependencies are satisfied even before the robot
starts the task execution.
However, the chances of finding a safe allocation de-
crease with the number n of robots composing the team.
This motivates the search also for “risky” allocations.

• R(tr, ri) is the set of candidates for a risky allocation,
i.e., the bricks whose dependencies are not closed at
the current time tr, and that are likely to be closed soon
according to the planner estimate based on the available
information. In particular, R(tr, ri) contains all the open
tasks whose dependencies are closed or are assigned
to other robots that will complete their task before ri
will attempt to execute the place action. Notice that to
compute R(tr, ri), the planner must be able to build
beliefs about the completion time ct(r, b) of any task
b assigned to robot r. These beliefs can be also used
to estimate if a robot failed and the corresponding task
must be reassigned.

• U(tr) is the set of unfeasible tasks. It contains all the
bricks not classified in other categories. They will not
be considered for an allocation.

The next brick to allocate, bnext, is chosen among safe or
risky candidates:

Candidates = S(tr) ∪̇ R(tr, ri). (5)

An example of task classification for the wall model in a
particular assembly state is shown in Fig. 4.

Algorithm 2 shows how to infer R(tr, ri), i.e., the set of
risky task candidates. Let us define N(tr) as the set of open
bricks depending on closed tasks and at least one assigned
task at time tr, then

N(tr) = {b ∈ O(tr)|NG(b) ⊆ (C(tr) ∪A(tr))} − S(tr).
(6)

The bricks in N(tr) can populate R(tr, ri). For each brick
b in N(tr), the time tplc(ri, b) at which robot ri will execute
the place action is predicted. The assembly state estimated

282

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: collect risky tasks
Input: new task request from robot ri and S(tr) = ∅,
Output: R(tr, ri)
tr: current time;
O(tr): set of open tasks at time tr;
A(tr): set of tasks assigned at time tr;
S(tr): set of safe allocations at time tr;
R(tr, ri) = ∅;
N(tr) = feasibleBricks(C(tr) ∪A(tr))− S(tr);
for brick bn in N(tr) do

tplc(ri, bn) = predictPlaceTime(ri, bn);
C(tplc(ri, bn)) = C(t);
for brick b in A(tr) do

if b.tplace < tplc(ri, bn) then
C(tplc(ri, bn)) = C(tplc(ri, bn)) ∪ b;

feasible = checkBrickFeasibility(C(tplc(ri, bn)),
bn);

if feasible then
R(tr, ri)← R(tr, ri) ∪ bn;

return R(tr, ri);

Fig. 5: Robot life cycle in the communication-based scenario.
Operations in solid line boxes are atomic actions, while the
ones in dashed line boxes are complex macro-action.

at time tplc(ri, b) is C(tplc(ri, b)). If the brick b is feasible
according to the estimated assembly state, b is a possible
risky allocation.

Decision making: it is the process of selecting a brick
bnext among the candidates sets S(tr) or R(tr, ri) computed
in the previous step. In the proposed communication-based
algorithm, safe allocations are always preferred to risky ones.
The planner tries to allocate a safe task. Only if S(t) is empty
(no possible safe allocations), R(t) is computed and one task
in it is chosen. This kind of cautious policy can represent
a non-optimal choice in the general case. We shall show in
the next section this is true for the communication-less case.

Finally, the algorithm chooses one brick in the selected
class using a heuristic defined by the user. The heuristic
choice will prefer some particular assembly plans over other
possible ones, influencing the final construction time. In
Sec. VI some heuristics for a specific case are compared and
discussed. In particular, the tested heuristics were designed
to always have non-empty candidates set. In this way, the
planner is always able to assign a task to each request.

Fig. 6: Pick-and-place: task execution control flow

B. Robot Side

Next, we describe the algorithms from the robot side. Each
robot cannot decide its task, it only executes what the planner
commands. Figure 5 illustrates their simple behavior. The
generic robot sends a message to request a new task and
warn the planner in case of changes of the construction state.
The planner replies using one of the following messages:
• Task message: it contains the description of the new

task the robot must execute;
• Wait message: the robot must wait because the planner

did not find a task allocation candidate. The robot waits
for a fixed amount of time and repeats the request;

• Go-home message: the construction is complete achiev-
ing the goal, and the robot can terminate the mission.

Robots ri continuously demand tasks until the go-home
message is received. This mechanism ensures reliability even
in scenarios where no more than one robot can accomplish
the assignment due to possible robot failures. Figure 6 shows
the pick-and-place control flow.

After the start signal, the robot flies over the bricks stock
(fly-to action) and try to pick it (pick action). Action fly-to is
always considered executed with success. On the other hand,
the pick and place actions are repeated in a loop until their
fulfillment. Once the pick is executed and the robot is over
the wall ready for the place, it has to first check the task status
(if closed or not) and feasibility (if assembly dependencies
are satisfied). In the best-case scenario, the robot will place
the brick. However, it could happen that its given task has
been already closed by another robot or that the task was
a risky one and all the dependencies are not yet satisfied.
The first case happens when a pick-and-place operation takes
more time than expected. Because of the wrong estimation
of the pick-and-place time, the planner re-assigns the task
considering that the corresponding robot failed. In the second
case, when a robot receives a risky task, it might be not
feasible at the moment of the place. The robot must wait
until all the dependencies are fulfilled and the task becomes
feasible.

Notice that the over and underestimation of the execution
time causes the lack of candidates and inopportune re-
allocations, respectively. This implies the waste of resources
and delays in total execution time. It is then advisable to

283

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

embed an online prediction mechanism for the task execution
time.

V. COMMUNICATION-LESS TASK ALLOCATION

Here we present a communication-less algorithm for task
allocation and re-allocation. The robots operate in the same
world domain described so far, but without communications
among them nor with a remote decision entity. Therefore, it is
not possible to allocate tasks one by one during the execution
as in the previous case. Conversely, tasks have to be assigned
to the robots offline, before the execution starts. Nevertheless,
we do not force robots following the precomputed plan.
We rather designed an on-line re-allocation strategy that,
during the construction process, can change the order of
tasks and execute new ones not originally included in their
plan to face unforeseen events. This stigmergy mechanism
is suitable for treating possible failures since each agent
is uniquely responsible for a subset of tasks. At the same
time, the proposed strategy can handle unexpected events.
We highlight that without the presence of a communication
network, the use of some onboard sensors is necessary to
estimate the construction state and react accordingly.

A. Initial task allocation

Defining n the number of agents and considering 0 <
i ≤ n, we partition the set of tasks V into n subsets, Ai,
containing the tasks initially assigned to robot i such that:

V =
⋃̇n

i=1
Ai. (7)

Tasks must be assigned in order to minimize possible
dependencies between tasks belonging to different robots.
This reduces possible waiting periods necessary for a task
to become feasible. Our offline task allocation approach
aims at minimizing and maximizing the inter- and intra-
dependencies, respectively. The firsts are dependencies con-
necting tasks assigned to different agents, while the seconds
are dependencies between tasks assigned to the same agent.

Let us consider u and v vertices of a graph G. They are
connected if there exists a path of any length connecting u to
v. Let us define with connG(u) the set of vertices connected
with u through a directed path in G, and with connG(A),
where A ⊆ V , the set of vertices connected in G with at
least one vertex in A. In other words:

connG(u) = {v ∈ V | ∃ a path from u to v} (8)

connG(A) =
⋃
u∈A

connG(u). (9)

Let us define a cluster as a set of bricks densely connected
with each other and poorly connected with the rest of the
bricks. Each robot will be assigned a cluster Ai. Then, the
aim is to minimize the following function:

n∑
i=1

|connG(Ai) ∩ (V −Ai)|, (10)

where |? | is the cardinality of any generic set ?. To evaluate
a task allocation, we need to consider the number of:

Fig. 7: three examples of task allocation for n = 3 robots.
The brick colour indicates the robot the brick is assigned
to. Case A is an example of sparse allocation, it is not a
good allocation because it has a big number of direct inter-
dependencies. Case B has a small number of direct inter-
dependencies but a lot of indirect intra-dependencies. Case
C has few direct and indirect inter-dependencies, and it’s
therefore the best allocation among the three.

• direct inter-dependencies: bricks assigned to different
robots connected by a path with length 1 (called arc);

• indirect inter-dependencies: bricks assigned to different
robots connected by a path with a length greater than
1.

The reason is to account for the transitivity of assembly
constraints. In fact, there are temporal constraints whereby
if brick A has to be placed after brick B and brick B after
brick C, it follows that brick A has to be assembled after
brick C.

Figure 7 shows different allocations for a wall with n = 3.

• Case A is an example of sparse allocation where there
are many direct inter-dependencies.

• Cases B (like Case C) shows sets composed by ad-
jacent bricks, therefore direct inter-dependencies are
minimized. However, Case B shows many indirect
inter-dependencies. Indeed, connG(A2) ⊇ A1 and
connG(A3) ⊇ A2 ∪ A1. In this example, robots’
operations can run in parallel only in a minimal part.
In fact, robot 1 can start immediately, while robot 2 is
obliged to wait that robot 1 has almost completed its
tasks before starting, and robot 3 has to wait until robot
2 has almost completed its tasks before starting.

• Case C has a small number of direct inter-dependencies
and not many indirect inter-dependencies representing
the best allocation shown until now. However, even
in case C, inter-dependencies cannot be completely
avoided because the graph of the considered wall is
connected (there are not disconnected parts).

B. Robot life cycle

Hereafter, we present the algorithm concerning each aerial
vehicle (see Fig. 8). At the beginning of each new task, the
robot detects the construction state by means of its sensors.
This operation is necessary to decide future actions. If the
construction is complete the robot can terminate its mission.
Otherwise, it has to first close the tasks composing its cluster
and then, if the construction is still incomplete, it has to

284

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Robot algorithm in the communication-less scenario.

Algorithm 3: choose next task
Output: bnext – next task to execute
Si(t) = feasibleBricks(C(t)) ∩Ai;
Ĉi(t)← C(t);
taskList = topologicalOrder(V);
for b in taskList do

if b in O(t) ∩Aj , j6=i then
if checkBrickFeasibility(Ĉi(t), b) then

Ĉi(t)← Ĉi(t) ∪ b;

Ri(t) = feasibleBricks(Ĉi(t))− Si(t);
bestSafeBrick = bestHeuristicValueBrick(Si(t));
bestRiskyBrick = bestHeuristicValueBrick(Ri(t));
bnext = decisionMaking(bestSafeBrick, bestRiskyBrick);
if bnext ∈ Si(t) then

return bnext;

tempt ← 0;
feasible ← false;
while not feasible and tempt< threshold do

C(t) = observeConstructionState();
feasible = checkBrickFeasibility(C(t),bnext);
if feasible then

return bnext;
else

tempt ← tempt+ 1;

if bestSafeBrick not null then
return bestSafeBrick;

return shortestPathReallocation(C(t), bnext)

extend its cluster boundaries taking care of the other tasks
not yet closed by other robots.

The proposed algorithm for selecting bnext is illustrated in
Algorithm 3. After the estimation of the future construction
state, the proposed approach performs a task classification
which is followed by a decision making phase and an
emergent task reallocation.

1) Future construction state estimation: The first step
consists in estimating the construction state in the near future.
In this scenario, each robot ri decides its task relying on the
perceived state C(t), without any knowledge regarding other
robots, e.g., their state nor which task they are executing. On

the contrary, robot ri can sense C(t) and make a hypothesis
on the future construction state, called Ĉi(t). In particular, ri
will add to the hypothetical construction all the bricks pre-
assigned to other agents that can be assembled to the current
construction. If we define the set of the open bricks O(t) as
the bricks not yet placed in the construction, we have that:

O(t) = V − C(t). (11)

Ĉi(t) contains both closed bricks and all the open bricks
assigned to the other robots that do not have dependencies
with open bricks assigned to ri:

Ĉi(t) = C(t) ∪ (Aj 6=i ∩ (V − connG(Oi(t))) , (12)

where Aj 6=i =
⋃n

j=1,j 6=i Aj , and Oi(t) = Ai∩O(t). Figure 9
shows an example of how each robot computes Ĉi(t).

2) Task classification: At this stage, ri tags all the open
tasks, in its subset Ai, in safe, risky and unfeasible, according
to the current construction state C(t) and the future construc-
tion state Ĉi(t). The classification follows the same principle
described for the communication-based planner algorithm:

Ai ∩O(t) = Si(t) ∪̇ Ri(t) ∪̇ Ui(t), (13)

where
• Si(t) contains safe tasks depending on closed tasks only

Si(t) = {b ∈ (Ai ∩O(t))|NG(b) ⊆ C(t)}. (14)

• Ri(t) is the set of risky tasks, namely the ones depend-
ing on at least one brick contained in Ĉi(t) and not in
C(t)

Ri(t) = {b ∈ (Ai ∩O(t)− Si(t))|NG(b) ⊆ Ĉi(t)}.
(15)

• Ui(t) is the set of unfeasible tasks, containing the rest
of open tasks of ri

Ui(t) = Ai ∩O(t)− Si(t)−Ri(t). (16)

In Fig. 9 an example of future wall estimation and task
classification for a certain wall state and a particular initial
task allocation is shown.

3) Decision making: Once bricks are classified, the robot
has to choose one target brick in the set of risky or safe
candidates.

candidatesi(t) = Si(t) ∪̇ Ri(t) (17)

If in the communication-based approach the best policy was
to choose safe options, in this case, the cautious policy is
not the most effective. Indeed, the cautious policy pushes
the agents to place bricks within the boundaries of their sub-
construction as long as they can and to place the bricks on the
borders only when no other choices are possible. In general,
this makes tasks that depend on other robots to be postponed,
resulting in a non-optimal cooperative behavior. In case G
cannot be divided into n disconnected parts, bricks located
on the border of a sub-construction Ai are connected with

285

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Wall estimation and task classification in the
communication-less scenario. The current wall state C(t) is
composed by the coloured green and orange bricks only, the
wall estimated by the robots are Ĉ1(t), Ĉ2(t) and Ĉ3(t).
They contain the closed tasks (green and orange bricks) plus
the bricks that others can place in the best hypothesis (grey
bricks). According to the estimation, each robot classifies its
open tasks in safe, risky or unfeasible.

at least another subset Aj . This means that ri might wait
for a brick assigned to robot rj or vice versa. Placing bricks
at the border can potentially be the riskiest task. But, at the
same time, they are the most necessary to let other agents
continue their tasks.

4) Emergent task reallocation: After the decision making
process, if the task selected is safe the robot can start the
execution, otherwise, if it is risky, the robot needs to wait
until the task becomes feasible or to take actions to make
the task feasible. In particular, when robot ri selects a risky
option br, it remains in an observation state for a while.
During this time it monitors the construction state and, as
soon as br becomes feasible, it starts the execution.

In case br depends on a task assigned to a robot that
failed, ri will indefinitely stay in the observation state. For
this reason, a threshold-based reallocation mechanism is
implemented. If br is still unfeasible after a certain maximum
time, ri decides to allocate to itself one of the bricks needed
to make br feasible. Indirectly, it assumes that the robot
originally responsible for these bricks failed. We remark that
the reallocated brick, breall, is a feasible brick among the
direct or indirect dependencies of br, accordingly to C(t):

breall ∈ {b ∈ connG(br) ∩O(t)|NG(b) ⊆ C(t)}. (18)

In particular, breall is chosen among the brick connected with
br by the shortest path.

VI. SIMULATION RESULTS

The two task allocation algorithms were tested in sim-
ulation, using a framework based on the Robotic Opera-
tive System (ROS) and the Gazebo robotic simulator. The
simulated environment resembles the scenario of Challenge

Fig. 10: On the left the MBZIRC –challenge 2– environment.
On the right the simulated environment used to test our task
allocation algorithms

2 of the MBZIRC competition (see Fig. 10). The target
construction used for testing is the wall depicted in Fig. 1.
A video of the simulation results is available at https:
//youtu.be/s3zizrCBuuc.

The probability of atomic actions to fail was set to 0.25.
We evaluate the task allocation methods according to the
global execution time and the average active ratio, defined
by ar as:

ar =
1

n

n∑
i=0

ai
wi

, (19)

where ai and wi are the time robot i spent in an ac-
tive and waiting states, respectively. For the decentralized
communication-less algorithm we recorded also the total
number of dropped bricks, caused by a small re-allocation
threshold, as well as the total number of emergent realloca-
tions.

A. Communication-based task allocation results

The centralized communication-based task allocation was
first tested with different heuristics for selecting the target
task among several candidates without exploiting the possible
risky allocations. The best heuristic was then used with also
risky allocations to achieve the final result. The heuristics
used for the wall model are hereafter explained:
h0) Random choice: first we tested the algorithm without us-

ing any heuristics, the decision-making module simply
chooses one random task among the class of candidates
(S(t) or R(t)). The results are used as a baseline;

h1) Distance from the base middle point: here the candidate
bricks are evaluated according to their position in the
wall. In particular, the selected brick is the closest to the
middle point of the wall. Given the assembly constraints
explained in section II, constructing the wall starting
from the center increases the number of feasible tasks
in the next steps;

h2) Distance from the central vertical line: the selected
brick is the closest to the vertical line located in the
center of the wall;

h3) Position in the wall and brick length: this heuristic
combines the position in the wall and the brick dimen-
sion. Longer bricks closer to the central vertical line are
selected first. If the bricks are considerably different in
dimensions, like in our test example, placing first the
longest ones increases the number of feasible options
in the next steps.

286

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

Heuristic Risky allocations Execution time Active ratio

h0 No 267 s 60%
h1 No 263 s 62%
h2 No 262 s 62%
h3 No 249 s 66%
h3 Yes 169 s 88%

TABLE I: Results of the centralized communication-base
task allocation method.

As it is clear from Tab. I, h3) is the best heuristics and the
performance further improves with the use of the risky allo-
cation strategy. Nevertheless, we remark that heuristics are
strongly linked to this particular scenario. Other heuristics
could be investigated in different scenarios.

B. Communication-less task allocation results

The decentralized communication-less task allocation al-
gorithm was tested in the same scenario, using the offline task
allocation (Case C) shown in Fig. 7. For the decision making
of Algorithm 3, a random policy with uniform probability has
been employed. In Fig. 11 the results obtained varying the
re-allocation threshold between 1 and 10 seconds are shown.
For each value, the statistical results over 100 simulations
are represented through a box and whisker plot. The red line
indicates the median value, while the box extends from the
lower to upper quartile values of the data. The whiskers show
the range of the non-outliers data and flier are outliers data.

One can notice that the execution time grows with bigger
threshold values, while the active ratio decreases otherwise.
On the other hand, the total number of reallocation is higher
with low threshold values. Notice that the number of dropped
bricks is minimum with a re-allocation threshold between 4
and 5. These values provide the best performance, namely
the maximum active ratio, the minimum execution time, and
the minimum number of re-allocations.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this paper proposes two task allocation
algorithms for the construction of structures made by blocks,
using a group of cooperative UAVs. Both are based on
directed acyclic graph, here simply called assembly graph,
to encode the temporal constraints between the tasks. This is
also used to plan and execute feasible sequences of assembly
operations.

The first method is a centralized algorithm based on ideal
communication conditions. In this scenario, tasks are allo-
cated to the robots in real-time through messages exchanged
with the planner. The latter implements the decisional part of
the algorithm, while the robots actuate performs the tasks. To
improve the performances, the planner exploits an estimation
of the future construction state to allocate tasks that are not
yet feasible but that will be in the near future. The planner
is also responsible for detecting robot failures and for the
reallocation of tasks. This algorithm achieves the best results
in terms of global execution time and average active ratio.

Fig. 11: Box and whisker plots showing results obtained
with the decentralized communication-less task allocation,
using different fault threshold values. Each box shows the
statistical distribution of the global execution time, average
active ration, emergent reallocations, and dropped bricks,
respectively, over 100 simulations.

However, it requires robots-planner communication which
results in a single point of failure for the method.

The second is a distributed algorithm which uses none
communication between agents. A preliminary ideal plan
is computed offline to minimize the direct and indirect
dependencies between tasks allocated to different agents.
However, if inter-dependencies cannot be avoided, the robots
must coordinate each other exploiting only the observation of
the environment. Each robot autonomously decides the order
of tasks execution and when to re-allocate tasks in order to
cover possible fails of another robots. This approach is more
robust to communication-failures, but at the expense of lower
performance. Nevertheless, results can be enhanced tuning
the system parameters, e.g., the reallocation threshold.

A possible future work is to suitably blend the
communication-based and less approaches in order to have
a strategy that exploits communication as much as possible,
but, at the same time, is robust to the failure of the communi-
cation network. Other improvements of the heuristics could
be obtained by the use of learning-based methods, such as
genetic algorithms or reinforcement learning.

REFERENCES

[1] M. Tognon, H. A. Tello Chávez, E. Gasparin, Q. Sablé, D. Bicego,
A. Mallet, M. Lany, G. Santi, B. Revaz, J. Cortés, and A. Franchi,
“A truly redundant aerial manipulator system with application to
push-and-slide inspection in industrial plants,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1846–1851, 2019.

[2] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous
transportation and deployment with aerial robots for search and rescue
missions,” Journal of Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.

[3] D. Sanalitro, H. J. Savino, M. Tognon, J. Cortés, and A. Franchi, “Full-
pose manipulation control of a cable-suspended load with multiple
UAVs under uncertainties,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 2185–2191, 2020.

287

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

[4] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. M.
andJ. S. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The
flight assembled architecture installation: Cooperative construction
with flying machines,” IEEE Control Systems Magazine, vol. 34, no. 4,
pp. 46–64, 2014.

[5] L. Kavraki, J. Latombe, and R. H. Wilson, “On the complexity of
assembly partitioning,” Information Processing Letters, vol. 48, no. 5,
pp. 229–235, 1993.

[6] R. H. Wilson and J. Latombe, “Geometric reasoning about mechanical
assembly,” Artificial Intelligence, vol. 71, no. 2, pp. 371–396, 1994.

[7] D. Halperin, J. Latombe, and R. H. Wilson, “A general framework
for assembly planning: The motion space approach,” Algorithmica,
vol. 26, no. 3-4, pp. 577–601, 2000.

[8] J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning for
complex articulated objects,” IEEE Transactions on Robotics, vol. 24,
no. 2, pp. 475–481, 2008.

[9] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot:
An autonomous multi-robot coordinated furniture assembly system,”
in 2013 IEEE Int. Conf. on Robotics and Automation, Karlsruhe,
Germany, Oct. 2013, pp. 855–862.

[10] M. Dogar, A. Spielberg, S. Baker, and D. Rus, “Multi-robot grasp
planning for sequential assembly operations,” Autonomous Robots,
vol. 43, no. 3, pp. 649–664, 2019.

[11] H. Mosemann and F. M. Wahl, “Automatic decomposition of planned
assembly sequences into skill primitives,” IEEE transactions on
Robotics and Automation, vol. 17, no. 5, pp. 709–718, 2001.

[12] R. Lallement, J. Cortés, M. Gharbi, A. Boeuf, R. Alami, C. J.
Fernandez-Agüera, and I. Maza, “Combining assembly planning and
geometric task planning,” in Aerial Robotic Manipulation. Springer,
2019, pp. 299–316.

[13] J. Munoz-Morera, F. Alarcon, I. Maza, and A. Ollero, “Combining a
hierarchical task network planner with a constraint satisfaction solver
for assembly operations involving routing problems in a multi-robot
context,” International Journal of Advanced Robotic Systems, vol. 15,
no. 3, 2018.

[14] K. Thulasiraman and M. N. S. Swamy, Graphs: theory and algorithms.
John Wiley & Sons, 2011.

[15] L. E. Parker, “Alliance: An architecture for fault tolerant multirobot
cooperation,” IEEE transactions on robotics and automation, vol. 14,
no. 2, pp. 220–240, 1998.

[16] C. Nowzari, “Self-triggered optimal servicing in dynamic environ-
ments with acyclic structure,” IEEE Transactions on Automatic Con-
trol, vol. 58, pp. 1236–1249, 05 2013.

[17] L. E. Parker, “Distributed intelligence: Overview of the field and
its application in multi-robot systems.” in AAAI Fall Symposium:
Regarding the Intelligence in Distributed Intelligent Systems, 2007,
pp. 1–6.

[18] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, “Aerial co-
manipulation with cables: The role of internal force for equilibria,
stability, and passivity,” IEEE Robotics and Automation Letters, Spe-
cial Issue on Aerial Manipulation, vol. 3, no. 3, pp. 2577 – 2583,
2018.

[19] J. Kennedy, “Swarm intelligence,” in Handbook of nature-inspired and
innovative computing. Springer, 2006, pp. 187–219.

[20] F. Heylighen, “Stigmergy as a universal coordination mechanism i:
Definition and components,” Cognitive Systems Research, vol. 38, pp.
4–13, 2016.

[21] S. Yun, M. Schwager, and D. Rus, “Coordinating construction of
truss structures using distributed equal-mass partitioning,” in Robotics
Research. Springer, 2011, pp. 607–623.

[22] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343, no.
6172, pp. 754–758, 2014.

[23] ——, “Distributed multi-robot algorithms for the termes 3d collec-
tive construction system,” in Proceedings of Robotics: Science and
Systems. Institute of Electrical and Electronics Engineers, 2011.

[24] P. Jiménez, “Survey on assembly sequencing: a combinatorial and ge-
ometrical perspective,” Journal of Intelligent Manufacturing, vol. 24,
no. 2, pp. 235–250, 2013.

[25] R. A. Knepper, D. Ahuja, G. Lalonde, and D. Rus, “Distributed
assembly with and/or graphs,” in Workshop on AI Robotics at the
Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[26] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

288

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on October 22,2020 at 11:22:03 UTC from IEEE Xplore. Restrictions apply.

