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Abstract

We outline a general approach for the stabilization of
robots with passive joints, an interesting example of
mechanical systems that may not be controllable in
the first approrimation. The proposed method is based
on a recently introduced ilerative steering paradigm,
which prescribes the repeated application of a contract-
ing open-loop control law. In order to compute effi-
ciently such a law, the dynamic equations of the robot
are put in a sustable form via partial feedback lineariza-
tion and approrimate nilpotentization. The design pro-
cedure s illustrated for a 2R robot moving n the hori-
zontal plane with a single actuator at the base. Experi-
mental results are presented for a laboratory prototype.

1 Introduction

Underactuated robotic systems (i.e., with less con-
trol inputs than generalized coordinates) are attract-
ing quite a large interest, consistently with the min-
tmalistic trend in the field [1]. Mechanisms that can
perform complex tasks with a small number of actu-
ators and/or sensors are desirable in view of their re-
duced cost and weight. On the other hand, innovative
approaches are often required in order to synthesize
effective control strategies.

In general, underactuated mechanical systems may
be controllable via either kinematic or dynamic cou-
pling. Typical examples of the first class are provided
by first-order nonholonomic systems, such as wheeled
mobile robots and dextrous robotic hands (e.g., see [2]
and the references therein). The equations of these
systems are nonlinear and driftless when generalized
velocities are taken as control inputs. As a conse-
quence, smooth time-invariant stabilization is not pos-
sible [3]. The feedback stabilization problem for such
systems has been solved using either time-varying [4]
and/or discontinuous feedback [5, 6].

The second class includes, among others, overhead
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cranes (7], manipulators with flexible elements [8] and
gymnast robots, e.g., the Acrobot [9]. The correspond-
ing system equations are again nonlinear but a drift
term accounting for gravitational or elastic forces is
now present. Therefore, all the above systems are
smoothly—in particular, linearly—stabilizable.

However, some mechanisms that are controllable via
dynamic coupling inherit the limitations of kinematic
nonholonomic systems, and in particular the lack of
smooth stabilizability. This situation arises whenever
the drift term tends to zero when the generalized ve-
locities do. An example is provided by underactuated
manipulators (i.e., with some passive joints) in the ab-
sence of gravity [10]. The same is true for redundant
manipulators driven only through end-effector gener-
alized forces [11]. The aforementioned control tech-
niques for first-order nonholonomic systems cannot be
applied in these cases, on account of the presence of a
nontrivial drift.

In particular, we address here the stabilization
problem for underactuated manipulators in the ab-
sence of gravity (e.g., moving in the horizontal plane).
Control methods for special instances of this class have
been presented in [12], based on a Poincaré map analy-
sis, and in [13], through a suitable trajectory synthesis.
Our solution relies on the following general scheme:
devise an open-loop control which can steer the system
state closer to the desired equilibrium point in finite
time, and apply it in an iterative fashion (i.e., from the
state attained at the end of the previous iteration).
Under appropriate hypotheses, such a strategy pro-
vides robust exponential stabilization for a wide class
of controllable systems [14]. To simplify the computa-
tion of the open-loop control, one can approximate the
system equations by a nilpotent form [15], which can
be easily integrated and, at the same time, preserves
the controllability properties of the original system.
Approximate nilpotentization has been used for non-
holonomic motion planning in [16].
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The paper is organized as follows. In the next sec-
tion, we outline the main steps of our approach to the
control of underactuated manipulators, which includes
a partial feedback linearization, a nilpotent approx-
imation and an iterative stabilization procedure. In
Sect. 3, we apply the proposed approach to a 2R pla-
nar robot equipped with a single actuator at the base
and present simulation as well as experimental results.

2 The control problem

Consider a manipulator with n joints, of which only m
are actuated. Denote by ¢ € IR™ the joint coordinates
vector, and by 7 € IR™ the vector of generalized forces.

2.1 Partial feedback linearization

Partition vector q as (qa, qs), being q, € IR™ the active
joints and ¢, € IR"™™ the passive joints. Following
the Lagrangian approach, the dynamic model of the
system can be written as

ERINEOEH
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with the corresponding partitions of the n x n inertia
matrix B(q) and of the n-vector h(gq, ¢), which collects
centrifugal, Coriolis and possibly gravitational terms.
Note that the last n — m equations directly provide a
second-order differential constraint which is satisfied

by the robot during its motion.
Choosing the generalized forces 7 as

7= (Baa — Bas B! BL) u+ he — BapBythe, (1)
with « € R™ an auxiliary input vector, one obtains

&a = u, (2)
Go = —Bg'hy — By'BTu = fi(q,d) + Ge(q)u. (3)

It is easy to verify that, in the absence of gravity,
the linear approximation of system (2-3) around any
equilibrium point is not controllable. Besides, due to
the presence of the drift term f,(q, ¢), the accessibil-
ity property—which may be tested via the Lie algebra
rank condition [17]—would not imply controllability.
Therefore, the only systematic way to check control-
lability is to apply the sufficient conditions for small-
time local controllability (STLC) given in [18], and
subsequently refined in [19]. In 11, Prop. 3] a STLC
test is given for systems in the form (2-3); however,
being based on sufficient conditions, such test may not
be conclusive. In general, controllability must be es-
tablished constructively.

2.2 Approximate nilpotentization

Nilpotent approximations [15] of control systems are
an example of higher-order approximation that prove
useful when linearization does not preserve the origi-
nal controllability properties. In particular, in [16] a
systematic approximate nilpotentization procedure is
proposed, which can be applied to any system of the
form

m
¢=f@)+) _ gi(a)m, zeRR", (4)
i=1
provided that the accessibility property is satisfied.

The nilpotentization procedure is based on the ex-
istence of a suitable set of privileged coordinates 2, lo-
cally defined around any point z° where the system is
accessible. With the system in these coordinates, the
nilpotent approximation is obtained by expanding the
components of the system vector fields in Taylor series
and truncating them at a proper order. As a conse-
quence, the approximating vector fields f, Gls. s 0m
are polynomial. Moreover, they generate a nilpotent
Lie algebra which is full rank around z9, so that also
the approximating system is locally accessible.

In particular, the i-th component (i = 1,...,n)
of the vector fields f, g1, .-+, Gm depends at most on
Z1,...,%i—1. Hence, the approximating polynomial
system has the triangular form

m
'éi = fi+E§j¢uj, i=1,...,l/, (5)
=1

m

B = folz,nmeo) ) 0a (2 o1y,
=
k=v+1,...,n, (6)

being v the dimension of span{f,gi,...,9m} at z°,
and fi,gl,., .+.y0m; constant values, fori=1,...,v.

It can be proven that, if the original system (4) is
partially decoupled and linearized, the decoupled dy-
namics (e.g., eq. (2)) is exactly recovered by the nilpo-
tent approximation (5-6). This suggests to perform
the partial feedback linearization of Sect. 2.1 before
proceeding with the nilpotentization.

2.3 Stabilization

We now address the problem of determining a feed-
back controller that transfers the system from an ini-
tial equilibrium point z° = (¢%,0) = (¢g,4J,0) to a
desired equilibrium point z¢ = (¢¢,0) = (¢¢, ¢¢,0). As
shown in [10], a limitation to be taken into account
is that underactuated manipulators moving in the ab-
sence of gravity are not smoothly stabilizable via time-
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invariant feedback—a consequence of Brockett’s theo-
rem [3]. Therefore, one must resort to time-varying
and/or discontinuous feedback. However, while sys-
tematic approaches to the design of such control laws
exist for driftless systems—e.g., see [4, 5, 20]—the case
of systems with drift has received much less attention;
existing work includes [21].

Our method for stabilizing an underactuated robot
in the partially linearized form (2-3) prescribes the
execution of two phases:

I. Drive in finite time Tj the active joint variables
go to their desired values ¢g2. At the end of this
phase it will be ¢4(7}) = ¢¢ and ¢,(T1) = 0. Cor-
respondingly, ¢(T1) = g5 and go(T1) = ¢{, being
in general g} # ¢f and ¢ # 0.

II. Obtain asymptotic convergence of the passive
joint variables g, to their desired values g¢ while
guaranteeing that g, returns to 2.

The first phase, which we shall refer to as alignment,
can be performed in feedback using a standard termi-
nal controller (e.g., see [22]) for the decoupled chains
of double integrators represented by eq. (2).

For the second phase, called contraction, we adopt
the iterative state steering approach [14]. The main
tool is a contracting open-loop control, that steers the
system closer to the desired equilibrium z¢ in a fi-
nite time T'. If such a control can be computed, its
iterated application (i.e., from the state attained at
the end of the previous iteration) renders z° expo-
nentially stable, provided that T is bounded and that
the open-loop control is continuous with respect to the
initial conditions. Moreover, non-persistent perturba-
tions are rejected, while ultimate boundedness of the
error is guaranteed in the presence of persistent pertur-
bations. The overall control is given by a time-varying
law whose expression depends on a sampled feedback
action.

In order to apply the above technique, we must com-
pute for system (2-3) a contracting open-loop control
law. One way to achieve contraction is to perform a
cyclic motion of duration 7% on the g, variables (i.e.,
a motion such that ¢ = ¢,(Ty + Tz) = ¢.(T}) and
gl = ¢,(Ty + Tz) = 0) while giving a final position
gl = @(T1 + T) for the passive joints that is closer
to q{)‘ than the initial condition ¢f, with final velocity
¢i! smaller in norm than ¢f. If such cycle can be pro-
duced by a control law that is continuous with respect
to the initial conditions, the position g3(¢) of the pas-
sive joints is guaranteed to converge over the iterations
to its desired value qg’ for all ¢, i.e., the state trajectory
is arbitrarily bounded. Therefore, (¢¢,0) is Lyapunov
stable.

The search for a suitable control « may be con-
veniently performed within a parameterized class of
inputs. In some cases (e.g., when the system can be
put in second-order triangular or Caplygin form [11]),
the computation of the parameters identifying « in the
chosen class can be directly performed by forward inte-
gration of the passive joints equation (3). In general,
however, one can resort to the nilpotent approxima-
tion (5-6) of the dynamic equations, which is polyno-
mial and hence always integrable.

3 Application to a planar 2R robot

Consider the planar robot of Fig. 1, having two rev-
olute joints and a single actuator at the base. We
assume that neither gravity nor friction is present at
the joints. The same mechanism was considered also
by Suzuki et al. [12].

After the partial feedback linearization of Sect. 2.1,
and with the state vector = = (qi, g, 41, §2) € IR?, the
dynamic model of the robot becomes

i 0

i=| o0+l ] |u=f@+e@n @
~Ks24? -1-Kcy

with s = singg, ¢g = cosqy, and K > 0

a constant depending on geometric and inertial
properties of the robot. Since the vector fields
{9, (£ 9], 19, [f, 9}, [f, [g, [f, g]1]} span IR* at any z such
that g2 # kn/2, k = 0,1..., the system is accessible.
However, one may verify that the sufficient condition
given in [11] for STLC is not satisfied.

Assume now that we wish to steer the 2R robot
from ¢° = (¢?,43) to ¢¢ = (qf,4¢$), with initial and
final zero velocity. We apply the stabilization strategy
proposed in Sect. 2.3, with ¢, = q; and g, = ¢q3. In
order to devise a contracting open-loop controller to
be applied iteratively after of the alignment phase, we
need to compute the nilpotent approximation of the
system at states such that ¢{ = 0 and 44 # 0.

Figure 1: A 2R planar robot with a single actuator at
the base
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3.1 Nilpotent approximation

The nilpotent approximation technique of [16] has
been applied to eq. (7), using the vector fields
{£,9,15,9}lo, |f, 1]} to span R* at the points of in-
terest (see [23] for details). The change of coordinates
z = z(z) required to transform the system in privi-
leged coordinates is

qQ = Q{ — 23,

2 = a5 + 421 + Bezs, )
q = 23,

g0 = G4 — Bza+yzs — 624 + 2129,

with 8=1+Kcosq}, v = K¢ising}, 5§ = K?sin2¢qi,
and the vector fields of the nilpotent approxima-
tion (5-6) are

1 0
0 1
f: —z9 ) g: 0 . (9)
- — @) . B
2KC2 2 4K82 1 2KC2 z

As expected, the dynamics of ¢; and ¢; (which corre-
spond to z3 and zg, respectively) is exactly recovered,
thanks to the partial feedback linearization. Instead,
the use of the nilpotent dynamics for g, and ¢2 will in-
duce an approximation error whose magnitude, how-
ever, can be made arbitrarily small by reducing T5.
Therefore, by enforcing sufficient contraction on the
approximate system, one can guarantee that the con-
traction property is also preserved for the original one.

3.2 Control design

The above nilpotent approximation is now used to
compute a contracting control law u. To simplify the
notation, we reset time so that ¢ = 0 at the beginning
of the contraction phase. For any u cyclic on (q1,41)
with period T3, eqgs. (8) give

2(Ty) =0,
z3(Ty) = 0.

g =q =
Hence,
Agy = gl — ¢} = @G2(Ta) = T3, (10)

since z1(t) =t from eq. (9). This shows that the vari-
ation Agy of the passive joint position along the cycle
does not depend on the particular control input, but
only on its period and on the initial velocity ¢5. As
for the passive joint velocity, we have

Ady = ¢ — 43 = —b24(T).

Figure 2: The profile of the cyclic open-loop control u
in each iteration of the contraction phase

Simple computations yield

Tz T2
Ady = K2kl / 2(t) dt — Keb(dd)? / wa(t) dt.
(1] o}
(11)

The sign of the first term in the above expression does
not depend on the choice of the specific cyclic input,
but only on ¢, while the second term is o((¢4)?).
Hence, it appears that the STLC property does not
hold for the approximating system at equilibrium
points. Nevertheless, the system is controllable, as
will be shown constructively.

At this point, we choose a class of cyclic control
inputs as

u(t) = —Acosdnt/Ts, t €[0,13/2),
- Acosdn(t ~ T2/2)/T2, te [T2/2,T2],
(12)
with duration T, and amplitude A (see Fig. 2). From
egs. (9) and (12) we get

T, Ty po pp
/ z;;(t)dt:—/ //u(t)dtdpdazo
0 0 0 JO
and
T, e 2 T3 42
ztdt=/ (/u d)da=—A,
[ dwd= [ [wode) ar=

so that eq. (11) implies

K sfe] o

8m? ’
This shows that, at each iteration, we can obtain only
Agy of the same sign of sin 2¢4, i.e., positive for ¢j in
the first and third quadrant and negative in the second
and the fourth (see Fig. 3).

In order to meet the iterative steering paradigm, we
must guarantee that the error contracts, i.e.,

Ir

g% — | < mleg —dil, (14)
1 < malddl, (15)

Ag = (13)
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Agy>0 Agy<0

Figure 3: The sign of the achievable velocity variation
Agq depends on the second link posture

with 71, 72 € [0,1). In view of egs. (10) and (13),
the above conditions can be directly satisfied only in
particular situations—again, a consequence of the lack
of STLC.

For example, assume that ¢§ belongs to the first
quadrant @, and

% €Q1, @ >di, &<0. (16)

Using egs. (10) and (13), it may be easily verified that
one way to satisfy the error contraction conditions (14—
15) is to use the open-loop control (12) with

I _.d
T, = (1+m)q2|.,"2, (17)

_4m (gl =)
A - KT2 TzSiI‘l?(bI ) (18)

Continuity of the resulting control law » with respect
to the initial conditions is guaranteed under assump-
tion (16). Moreover, boundedness of T is ensured by
letting m1 < 7, so that the fraction in eq. (17) admits
a finite limit as ¢4 tends to zero. These two properties
imply that the contraction phase produces exponential
convergence to the desired equilibrium point (g4, 0).
If any of the conditions in eq. (16) does not
hold, it is not possible to satisfy continuatively both
egs. (14-15) while approaching the desired configura-
tion. Therefore, it is necessary to attain a modified
initial condition (g4, ¢f) that satisfies eq. (16) before
switching to the contraction phase. This transition
phase can be executed in finite time as follows: if the
initial velocity of the second joint is negative, keep it
constant until ¢z enters Q;, else keep it constant until
g2 enters Qy or Q4, where ¢, can be made negative.

2

-]

Errors onq1, @2 (deg)
3

(=]

: N 1
E’E',t';r”{ﬂ‘."ﬁ‘l?f\’v L

-20

s
time (s)

Figure 4: Simulation results: Errors on ¢; (dashed)

and ¢y (solid)

Note that in order to keep ¢o constant one simply sets
u = 0 in eq. (7}, resulting also in zero motion for the
first joint.

Similarly, one may devise simple transition and con-
traction phases for the other cases ¢ € Qa, Q3 or Q4.
As a result, the convergence domain of the proposed
control strategy can be made global.

3.3 Simulation results

To illustrate the performance of the proposed method,
we present below a simulation for a 2R robot with
K = 0.5. We assume that, at the end of the alignment
phase, it is g8 = 22.5° and ¢} = 13.2°/s, while the
desired configuration of the passive joint is ¢ = 45°.

Being ¢¢ € Q; but ¢5 > 0, the control strategy of
Sect. 3.2 prescribes the execution of a transition phase,
in which gg is kept constant until ¢y enters Qs, where
go can be made negative. When g returns in Qj, the
contraction phase takes over. By properly tuning the
contraction factors 5y and 1y, it has been possible to
use a constant duration T3 = 1 s for all iterations.

The time history of the errors on both joint posi-
tions during transition and contraction is reported in
Fig. 4. Note the constant velocity of the second joint
during the transition phase and the exponential con-
vergence rate during the contraction phase. The long
time needed to complete the reconfiguration is due to
the fact that motion of the passive joint is not damped
by friction in the simulated model.

3.4 Experimental results

We have applied the proposed stabilization method
to the FLEXARM, a lightweight 2R planar manipula-
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tor available in our laboratory [24]. The second link,
which is flexible, has been stiffened for our purposes
by appropriately bonding the forearm. As a nomi-
nal model after partial feedback linearization, we have
used eq. (7) with K = 0.4643.

It should be emphasized that the accuracy of the
resulting model is quite poor, due to unmodeled dy-
namic effects such as dry and viscous friction on both
joints, the residual elasticity of the second link, and
the presence of a bound on the first joint torque (to
avoid saturation of the actuator). Besides, no direct
measure is available for the joint velocity, which is re-
constructed by numeric filtering.

The following remarks are in order with reference
to the implementation of the method.

¢ To avoid chattering, the alignment phase was per-
formed by using a simple PD control law on the
first joint position. Although the convergence is
only asymptotic, the error can be made arbitrarily
small in finite time.

During the contraction phase, in view of the
model inaccuracy, the first link was controlled via
high-gain PD feedback in place of the partially
linearizing feedback (1). The position reference
signal is obtained by integrating twice the accel-
eration profile (12).

¢ Due to the various system perturbations, the first
joint may not perform exactly a cyclic motion
during the iterations of the contraction phase—
a small displacement may occur. To prevent the
first link to drift away from its desired position,
each iteration actually consists of a re-alignment
phase followed by a contraction phase.

Figures 5-6 show the results of a typical experiment.
Here, the arm is required to move from ¢f = 74°, ¢ =
91° to ¢ = 0°, ¢§ = 45°. During each alignment
phase, a PD control law on the first joint position was
used with gains KL = 20 and K}, = 0.3. Instead, we
have set K ;’,’ = 70 and K¥ = 2 for the contraction
phases, whose period is always T5 = 1 s.

The evolution of the joint errors and of the joint
torque 7, are shown respectively in Fig. 5 and Fig. 6.
For the sake of clarity, each contraction phase is
marked in bold on the time axis. A comparison with
Fig. 4 shows that, due to the presence of friction, sta-
bilization of the robot is obtained in practice in a
much smaller time. Note that 71 saturates during the
first alignment phase, and that no transition phase is
needed in this case.

80 T T T T T T T T
70,
6oF
w g
£ .
9
T X
§
§ 20
w
10
o H x:\ : : : * i
PEOUCOULY” SRS A UDURTTC JUUSPRS SUPUUTUNIN- SPUTUUIRF ST ) - -
1 /\U :\__4. ! ! v \?
-20 .
-] 1 2 7 8 9
time {s)

Figure 5: Experimental results: Errors on ¢ (dashed)
and ¢, (solid)

o

time (s)

Figure 6: Experimental results: Torque 7

4 Conclusions

We have presented a solution method for the stabi-
lization of underactuated manipulators. Such systems
are not smoothly stabilizable in the absence of gravity.
Moreover, the presence of a drift term in the dynamic
equations complicates remarkably the control synthe-
sis. The stabilization strategy consists of three phases,
namely (i) alignment, in which the active joints are
brought to their desired position, (¢%) transition, where
simple maneuvers are executed to obtain the correct
initial condition for () contraction, based on the it-
erative application of a suitable open-loop control de-
signed on a nilpotent approximation of the system.
The proposed approach has been illustrated with
reference to a planar 2R robot with a single actua-
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tor at the base. The presented simulation and exper-
imental results show the satisfactory performance of
the method. In principle, the method is applicable to
most underactuated mechanical systems of interest in
robotic applications.

Acknowledgments

This work was supported by MURST under 40%
funds.

References

[1] Minimalism in Robot Manipulation (A. Bicchi and
K. Goldberg, Orgs.), Workshop at the 1996 IEEE Int.
Conf. on Robotics and Automation, 1996.

[2] R. M. Murray, Z. Li, and S. S. Sastry, A Mathemati-
cal Introduction to Robotic Manipulation, CRC Press,
1994.

[3] R. W. Brockett, “Asymptotic stability and feedback
stabilization,” in Differential Geometric Control The-
ory (R. W. Brockett, R. S. Millman, and H. J. Suss-
mann, Eds.), pp. 181-191, Birkhiuser, 1983.

[4] C. Samson, “Control of chained systems. Application
to path following and time-varying point-stabilization
of mobile robots,” IEEE Trans. on Automatic Con-
trol, vol. 40, no. 1, pp. 64-77, 1995,

[5] O. J. Sgrdalen and O. Egeland, “Exponential sta-
bilization of nonholonomic chained systems,” IEEFE
Trans. on Automatic Control, vol. 40, no. 1, pp. 35—
49, 1995.

(6] I. V. Kolmanovsky, M. Reyhanoglu, and N. H. Mc-
Clamroch, “Discontinuous feedback stabilization of
nonholonomic systems in extended power form,” 33rd
IEEE Conf. on Decision and Control, pp. 3469-3474,
1994.

[7] B. d’Andréa-Novel, F. Boustany, F. Conrad, and
B. P. Rao, “Feedback stabilization of a hybrid PDE-
ODE system: Application to an overhead crane,”
Mathematics of Control, Signals, and Systems, vol. 7,
pp. 1-22, 1994,

[8] D. Seto and J. Baillieul, “Control problems in super-
articulated mechanical systems,” IEEFE Trans. on Au-
tomatic Control, vol. 39, no. 12, pp. 2442-2453, 1994.

[9] M. W. Spong, “The swing up control problem for
the Acrobot,” IEEE Control Systems, vol. 15, no. 1,
pp. 49-55, 1995.

[10] G. Oriolo and Y. Nakamura, “Control of mechanical
systems with second-order nonholonomic constraints:
Underactuated manipulators,” 30th IEEE Conf. on
Decision and Control, pp. 2398-2403, 1991.

[11] A. De Luca, R. Mattone, and G. Oriolo, “Dynamic
mobility of redundant robots using end-effector com-
mands,” 1996 IEEE Int. Conf. on Robotics and Au-
tomation, pp. 1760-1767, 1996.

3280

[12] T. Suzuki, M. Koinuma, and Y. Nakamura, “Chaos
and nonlinear control of a nonholonomic free-joint
manipulator,” 1996 IEEE Int. Conf. on Robotics and
Automation, pp. 2668-2675, 1996.

[13] H. Arai, “Controllability of a 3-DOF manipulator
with a passive joint under a nonholonomic con-
straint,” 1996 IEEE Int. Conf. on Robotics and Au-
tomation, pp. 3707-3713, 1996.

[14] P. Lucibello and G. Oriolo, “Stabilization via itera-
tive state steering with application to chained-form
systems,” 35th IEEE Conf. on Decision and Control,
pp. 2614-2619, 1996.

[15] H. Hermes, “Nilpotent and high-order approxima-
tions of vector field systems,” SIAM Review, vol. 33,
no. 2, pp. 238-264, 1991.

[16] A. Bellaiche, J.-P. Laumond, and M. Chyba, “Canoni-
cal nilpotent approximation of control system: Appli-
cation to nonholonomic motion planning,” 32nd IEEE
Conf. on Decision and Control, pp. 2694-2699, 1993.

[17} A. Isidori, Nonlinear Control Systems, 3rd Edition,
Springer-Verlag, 1995.

[18] H. J. Sussmann, “A general theorem on local con-
trollability,” SIAM J. on Conirol and Optimization,
vol. 25, pp. 158-194, 1987.

[19] R. M. Bianchini and G. Stefani, “Controllability along
a trajectory: A variational approach,” SIAM J. on
Control and Optimization, vol. 31, no. 4, pp. 900-927,
1993.

[20] R. M. Murray and R. T. M’Closkey, “Converting
smooth, time-varying, asymptotic stabilizers for drift-
less systems to homogeneous, exponential stabilizers,”
3rd European Control Conf., pp. 2620-2625, 1995.

[21] P. Morin and C. Samson, “Time-varying exponential
stabilization of the attitude of a rigid spacecraft with
two controls,” 34th IEEE Conf. on Decision and Con-
trol, pp. 3988-3093, 1995.

[22] A. E. Bryson, Jr., and Y.-C. Ho, Applied Optimal
Control, John Wiley & Sons, 1975.

[23] A. De Luca, R. Mattone, and G. Oriolo, “Control
of underactuated mechanical systems: Application to
the planar 2R robot,” Nonlinear Control and Robotics
Preprints, DIS, Universitd di Roma “La Sapienza”,
Mar. 1996.

[24] A. De Luca, L. Lanari, P. Lucibello, S. Panzieri, and
G. Ulivi, “Control experiments on a two-link robot
with a flexible forearm,” 29th IEEE Conf. on Decision
and Control, pp. 520-527, 1990.



