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Abstract— A model predictive controller is developed for
following the position of a human dancer in robot ballroom
dancing. The control design uses a dynamic model of a dancer,
based on a variant of the so-called 3D Linear Inverted Pendu-
lum Mode that includes also the swing foot. This model serves
as a basis for a Kalman predictor of the human motion during
the single-support phase, while a simpler kinematic technique
is used during the double-support phase. The output of the
prediction filter enables to design a Model Predictive Control
(MPC) law, by recursively solving on line and within a preview
window a convex linear-quadratic optimization problem, con-
strained by differential kinematic bounds on robot commands.
Two different control strategies, either at the velocity or at the
acceleration level, are proposed and compared in simulations
and in actual experiments. Accurate and reactive behaviors are
obtained by the ballroom robot follower, confirming the benefit
of the predictive/filtering nature of a MPC approach to handle
uncertainty of human intentions and noisy signals.

I. INTRODUCTION

There is a growing interest in handling situations of
physical Human-Robot Interaction (pHRI) where the human
motion intention needs to be monitored and the robot has
to react on line in order to achieve natural and successful
collaboration. Recently, waltz dancing has been considered
as a mean for studying pHRI in leader-follower modality. In
waltz, the roles of the two dancers are clearly defined: the
robot partner acts as a follower and should track the leading
human dancer. During ballroom dancing, the movements and
transitions of steps are particularly smooth, which makes the
control problem simpler. In addition, several constraints are
imposed on the posture of the leader and this may simplify
the modeling effort. For instance, the upper body has to be
rigid, straight, and vertical, and the swing foot should never
be raised too much from the ground.

The problem of pHRI during waltz was first addressed
in [1]–[3]. In these papers, the human dynamics in the
sagittal plane during the single-support phase was studied by
approximating it with a linear inverted pendulum model, as
introduced in [4] for biped locomotion. The dance robot was
instructed to emulate a similar dynamics, while interaction
forces between the two dancers were modeled by a virtual
spring-damper connection. The coupled dynamics of the
resulting system was then used to design the robot motion
controller.
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These previous works were mainly focused on the transla-
tional control of the dance robot along a line. In this paper,
we extend the study and consider a more complete motion
of the Partner Ballroom Dance Robot (PBDR), including
both translation and rotation on the floor plane. In our
modeling, we conveniently resort to the 3D Linear Inverted
Pendulum Mode (3D-LIPM) for biped dynamics [5], with
the addition of a swing foot, as introduced by [6], and
considering a simplifying assumption. The resulting dynamic
model takes the more handy form of a bilinear system [7],
with only products of states and inputs. Using this model,
we can obtain a prediction of the planar pose of the human
dancer over a suitable time window. After discretization, the
problem of following accurately the human dancer is for-
mulated as a constrained linear-quadratic (LQ) optimization
problem, under velocity, acceleration, and jerk bounds on the
commands.

The availability of a nominal future motion of the human
leader, according to the smooth sequence of waltz steps
and as predicted by the approximate model, and the need
for compensating actual motion uncertainties/deviations and
noisy sensor measurements, both suggest the use of a Model
Predictive Control (MPC) framework for the design of a
controller that will let the PBDR follow the human planar
pose —an original application of MPC in this context. An
extensive review of the existing approaches and perspectives
for MPC can be found in [8], [9].

After detailing the model of a human dancer during a
single-support phase and its discretization (Sect. II), the re-
lated estimation/prediction structure of an Extended Kalman
Filter (EKF) is presented in Sect. III. Two MPC strategies, at
the velocity or at the acceleration control level, are proposed
in Sect. IV. Sections V and VI compare the obtained perfor-
mance, respectively in simulations and in actual experiments
on the Tohoku PBDR.

II. DANCER MODELING

A. 3D LIPM with swing foot

The dynamic model of a biped robot during a single-
support phase presented in [6] consists of a 3D-LIPM with
the addition of a swing foot. This model was originally
intended for controlling a humanoid in the execution of quick
turning maneuvers. Our claim is that this model is accurate
enough to be used also for estimating the state of a human
dancer and predicting his/her next movements. The original
model is further simplified by making a simple consideration
regarding the waltz dance: since the swing foot should never
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be raised too much in this case, the height zs of the swing
foot is considered here to be constant (and equal to zero).

ZCoP

Zw

Fig. 1. The 3D-LIPM with swing foot, where pCoM = (x y z)T is the
position of the center of mass, ps = (xs ys zs)T is the position of the swing
foot, and θ is the absolute orientation of the human dancer. Vectors are
expressed relative to the reference frame RFCoP.

We define the system state vector as

xT =
(

x1 x2 x3 x4 x5 x6
)

=
(

x ẋ y ẏ θ θ̇
)
, (1)

where x and y are the coordinates of the position of the center
of mass (CoM) relative to the center of pressure (CoP), and θ

is the absolute orientation of the human dancer. The global
reference frame RFW is parallel to RFCoP, i.e., the frame
attached to the CoP. The resulting dynamic model is

ẋ1 = x2

ẋ2 = g
zc

x1 + g
zc

ms
m xs + Fx

m
ẋ3 = x4

ẋ4 = g
zc

x3 + g
zc

ms
m ys + Fy

m
ẋ5 = x6
ẋ6 = g

zc
ms
I xsx3− g

zc
ms
I ysx1 + ms

I αs + τz
I ,

(2)

where
• m and I are the main body mass and inertia
• zc is the constant value of the CoM height
• ms is the swing foot mass
• xs and ys are the swing foot coordinates (zs = 0)
• g is the gravity acceleration
• Fx, Fy, and τz are the interaction forces and torque
• αs = (ysẍs− xÿs).

The xs and ys coordinates are measured using laser range
finders (LRFs) placed on the PBDR. Derivation of the model
employed can be found in [6]. Simulations have shown that,
in waltz, αs in (2) can (and will) be neglected. All other
parameters are constant and should be chosen so to represent
the actual human dancer. As a result, the human dynamics
in SSP can be expressed as a bilinear system of the form

ẋ = A(m)x+Bm m = A(ps)x+Bps + B̄ f

mT =
(

xs ys | Fx Fy τz
)

=
(

pT
s | f T ) , (3)

in which a product of state x and input m appears as the
only nonlinearity in the equations. Since a measurement of
interaction force/torque was not used, we have set f = 0 in
simulations and experiments (only the input matrix B will
be used in the following). Indeed, if the robot follows the
human dancer well, the interaction forces between the two
partners should remain negligible.

B. Discretization of the model

In order to implement a Kalman estimator and a predictor,
a discretized version of the continuous system (3) is required.
The input vector m is assumed to be constant during each
sampling interval ∆t, and so matrix A(m) becomes constant
over this interval. This allows resorting to standard tools for
the exact discretization of linear systems also in the case of
the bilinear system (3). After discretization, we obtain

xk+1 = g(xk,mk) = Ad(ps,k)xk +Bd(ps,k)ps,k, (4)

with

Ad =


ch a1sh 0 0 0 0

sh/a1 ch 0 0 0 0
0 0 ch a1sh 0 0
0 0 sh/a1 ch 0 0

a2ys,k a3ys,k −a2xs,k −a3xs,k 1 ∆t
a4ys,k a2ys,k −a4xs,k −a2xs,k 0 1



Bd =


b1 0
b2 0
0 b1
0 b2

b3ys,k −b3xs,k
−b4ys,k b4xs,k


and where

sh = sinh
(

∆t
a1

)
, ch = cosh

(
∆t
a1

)
a1 =

√
zc
g , a2 = ms(1−sh)

I , a3 = ms(∆t−a1sh)
I , a4 =−mssh

a1I

b1 = ms(ch−1)
m , b2 = ms sh

ma1

b3 = m2
s

mI (
∆t2

2a2
1
+1− ch), b4 = gm2

s
zcIm (sh a1−∆t).

We remark that the resulting discretized system (4) is no
longer linear in the input. Moreover, since everything is
expressed in the human CoP coordinate frame, when using
this model one needs to perform a conversion from the global
frame to the local one and vice versa.

III. ESTIMATION AND PREDICTION

We develop an estimator and a predictor of the state of the
human dancer. A Kalman estimator will work only during the
single-support phase (SSP), while during the double-support
phase (DSP) a simpler low-pass filtering of measured data
will be performed. Similarly, the predictor will operate in
two different modalities: model (4) will be used during a
SSP, while a model-free prediction is made during a DSP.

A. Estimator

For state estimation, a standard Extended Kalman Filter
(EKF) has been chosen. From (4), we compute the state
transition matrix and the observation matrix associated with
the EKF (see, e.g., [10]) respectively as

Gk =
∂g(xk,ps,k)

∂xk
= Ad(ps,k), Hk = I6×6. (5)

The process noise (diagonal) covariance matrix was obtained
numerically using motion capture (MoCap) data. MoCap
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data were recorded from a continuous run of human dancer,
sampled every ∆t = 10 ms. These data were considered as
the ground truth and used at each time step for predicting the
next state by (4) during SSP. The computed RMS errors were
then taken as standard deviations of the state components of
this noisy process, as reported in Tab. I.

TABLE I
STANDARD DEVIATION OF THE STATE

σx [m] σẋ [m/s] σy [m] σẏ [m/s] σθ [deg] σ
θ̇

[deg/s]
0.0040 0.0216 0.0016 0.0198 4.1196 10.3591

B. Predictor

Given x and ∆t, the goal of this module is to predict the
human state for a suitable number N of time samples ahead
(prediction interval). During a SSP, two assumptions were
made:

1) The human dancer will remains in single-support phase
during the prediction interval.

2) The swing foot velocity remains constant in the pre-
diction interval.

The prediction is then obtained simply by the repeated appli-
cation for N times of eq. (4). When designing the predictor,
the most critical quantity is the size of the prediction time
window T = N ·∆t. The tradeoff is between a large enough
window to make the prediction meaningful and an excessive
size that will result in a loss of accuracy at instants that are
further away in time.

TABLE II
RMSE OF THE PREDICTION FOR DIFFERENT TIME WINDOWS

T = 0.1 s T = 0.2 s T = 0.3 s
Position [m] 0.0101 0.0416 0.0994

Orientation [deg] 1.5413 6.0275 13.688
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Fig. 2. Performance of the predictor during SSP for T = 0.1 s. Prediction
errors [left] and comparison of ground truth and estimated values [right].
The discontinuities in the plots represent DSP intervals.

Table II shows how the root mean squared errors (RMSE)
of the prediction increases with the size T of the prediction
window along a typical test trajectory. The errors are still
comparable to the process noise for T = 0.1 s, and get worse
for larger time windows. After a number of trial-and-error
simulations, we found that in our case a value T = 0.1 s is
the most convenient one. Performance of the predictor during
SSP along the same test trajectory is shown in Fig. 2.

During DSP, a simpler prediction approach is followed.
The linear and angular velocities of the human are computed
using the sensor data obtained from the LRFs, and are
assumed to be constant during the whole prediction window.
Thus, the predicted planar pose of the human dancer at the
j-th sampling instant in the future is obtained by simply
applying these velocities to the current human pose for a
time j∆t.

IV. MODEL PREDICTIVE CONTROL

The basic idea of MPC is to compute, at each sampling
instant, a full sequence of inputs so as to minimize a
performance measure over a given time window. However,
only the first element of this input sequence is applied, and
then the whole computation is repeated at the next iteration in
time. Comparing this to a purely reactive controller, a MPC
take actions that may well be not instantaneously/locally
optimal, but that will perform certainly better in the long
run. Moreover, kinematic constraints are easily taken into
account in MPC and the information provided by model-
based predictions can be fully exploited.

In the following, we characterize the robot configuration
as a planar frame, directly controlled by its linear and angular
velocity or acceleration (the wheeled mobile base of the
Tohoku PBDR is in fact omnidirectional). The control goal
is to track a frame placed at a given distance d in front of the
human dancer, and having his/her same orientation. Define:
• pr,k = (xr,k , yr,k , θr,k)T , the robot pose at instant k;
• ph,k = (xh,k , yh,k , θh,k)T , the planar pose of the tracked

frame in front of the human dancer at instant k;
• uk = (ux,k , uy,k , uθ ,k)T , the control input at instant k;
• N, the number of samples in the preview horizon.

A. Problem formulation

At the k-th time instant, with a preview of N steps, the
goal is to minimize the cost function

Jk(ū) =
1
2

N

∑
j=1

eT
k+ j(ū) Wj ek+ j(ū), (6)

where ū = (uT
k , . . . , uT

k+N−1)
T ∈R3N is the input command

and ek = ph,k−pr,k is the error vector, subject to maximum
velocity and acceleration constraints. The weights Wj are
3×3 positive definite matrices.

In general, ph,k+ j, for j = 1, . . . ,N, will be obtained by the
predictor. The robot pose pr,k+1 can be expressed as:

pr,k+ j = pr,k + f (uk, . . . , uk+ j−1). (7)
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Defining the two vectors p̄h = (pT
h,k+1, . . . , pT

h,k+N)T ∈R3N

and p̄r(ū) = (pT
r,k+1, . . . , pT

r,k+N)T ∈ R3N , as well as the
matrix W = blockdiag{W1, . . . ,WN} ∈ R3N×3N , the problem
is reduced to:

min
ū∈U

1
2

(p̄h− p̄r(ū))T W (p̄h− p̄r(ū)) (8)

where U is the admissible set of the control input variables.
We will show in the following how it is possible to reduce 8)
to a standard LQ optimization problem, respectively using
velocity or acceleration control inputs. From now on, depen-
dency from ū will be omitted for notation simplicity.

B. Velocity-level control design

In this case, the discretized robot dynamics is

pr,k+1 = pr,k +uk ∆t. (9)

Thus, the dependency of the robot pose at time instant k + i
from the previous inputs is

pr,k+i = pr,k +
i−1

∑
j=1

ur,k+ j ∆t, (10)

for 1≤ i≤ N. We can write

p̄r =
(
pT

r,k, . . . , pT
r,k
)T +Cū, (11)

where

C = ∆t

 I3×3
...

. . .
I3×3 . . . I3×3

 ∈ R3N×3N . (12)

Thus, defining

r = p̄h−
(
pT

r,k, . . . , pT
r,k
)T

(13)

and replacing (11) and (13) in (8), we obtain

min
ū∈U

1
2

(r−Cū)T W (r−Cū) , (14)

which can be expressed as the quadratic criterion

min
ū∈U

hT ū+
1
2

ūTW̃ ū (15)

where h =−CTWr and W̃ = CTWC.
To complete the LQ formulation, we introduce the bounds

on kinematic quantities, leading to linear constraints on the
commands1:
• velocity bounds

∀i ∈ [0,N−1], |uk+i| ≤ vmax; (16)

• acceleration bounds

∀i ∈ [0,N−1], |uk+i−uk+i−1| ≤ amax ∆t. (17)

In order to avoid excessive acceleration oscillations, also jerk
bounds can be added, given by:

∀i ∈ [0,N−1] |uk+i−2uk+i−1 +uk+i−2| ≤ jmax ∆t2. (18)

1In the following, for a vector u, we denote by |u| its component-wise
absolute value. Similarly, with a ≤ b, where both a and b are vectors, we
denote an inequality which should hold component-wise.

All these constraints can be easily expressed in matrix
form as Aū ≤ b. Note also that the formulated problem is
always strictly convex. This is because (16), (17), and (18)
constitute a convex polytope and W̃ = CTWC is always
positive definite.

C. Acceleration-level control design

In this case, the discretized robot dynamics is

pr,k+1 = pr,k +vr,k ∆t + 1
2 uk ∆t2

vr,k+1 = vr,k +uk ∆t
(19)

where vr,k is the linear and angular velocity vector of the
robot, and is part of its state at time instant k. This leads to

pr,k+i = pr,k +vr,k i∆t +
i−1

∑
j=0

(
i− j− 1

2

)
uk+ j ∆t2, (20)

for 1≤ i≤ N. We can write

p̄r =
(

pT
r,k, pT

r,k, . . . , pT
r,k

)T

+
(

vT
r,k, 2vT

r,k, . . . , N vT
r,k

)T
∆t +Cū.

(21)

In this case, matrix C preserves a block lower triangular
structure, in which the 3×3 block Ci j at the i-th block row
and j-th block column has the expression

Ci j = I3×3 ·
(

i− j +
1
2

)
∆t2. (22)

Vector r is now defined as

r = p̄h−
(

pT
r,k, pT

r,k, . . . , pT
r,k

)T

−
(

vT
r,k, 2 vT

r,k, . . . , N vT
r,k

)T
∆t.

(23)

In this way, the problem can still be expressed as

min
ū∈U

hT ū+
1
2

ūTW̃ ū (24)

which is formally identical to (15), now with h and W̃ built
using the newly defined C and r in (22) and (23). As in the
velocity control case, we have two main types of constraints:
• velocity bounds

∀i ∈ [1,N], |vr,k +
i−1

∑
j=0

uk+ j∆t| ≤ vmax; (25)

• acceleration bounds

∀i ∈ [0,N−1], |uk+i| ≤ amax. (26)

For limiting acceleration oscillations, jerk bounds can also
be added:

∀i ∈ [0,N−1] |uk+i−uk+i−1| ≤ jmax∆t (27)

As before, all constraints can be converted to a linear
inequality form Aū ≤ b. The same previous considerations
about problem convexity hold true.
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V. SIMULATION RESULTS

In simulation, the controller was given a human waltz step
trajectory, recorded by MoCap, as reference motion input
for execution. Single-support phases were distinguished from
(typically short) double-support phases with the aid of an
algorithm based on velocity thresholds. The parameters used
in the simulations are given in Tabs. III–IV. In order to
solve the minimization problem, any generic LQ solver can
be used. In our implementation, we employed an interior-
point algorithm for convex LQ problems [11]. The weighting
matrices in (6) were chosen as Wj =

(
20/2 j

)
· I3×3. In all

plots, the control action begins at the dotted (green) vertical
line. Kinematic bounds are represented by horizontal dotted
(black) lines.

TABLE III
PREDICTOR PARAMETERS

m [Kg] ms [Kg] I [Kg ·m2] d [m] N ∆t [s] zc [m]
55 10 2.5 0.3 10 0.01 0.9

TABLE IV
MPC PARAMETERS

vT
max([m/s][m/s][deg/s]) aT

max([m/s2][m/s2][deg/s2]) jT
max([m/s3][m/s3][deg/s3])

(1.5 , 1.5 , 180) (3 , 3 , 360) (105 , 105 , 25200)

A. Velocity MPC

Figures 3–4 show the results obtained with the velocity
controller when including the jerk constraints. The robot
follows the desired trajectory very well, quickly reducing the
position error norm (to less than 1 cm in about 2 seconds) and
then keeping it down to zero. After some oscillations, also the
orientation error goes to zero. The input velocity commands
and their first derivative stay always within the given bounds.
In particular, the velocity is kept away from its limits and
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Fig. 3. Simulation results under velocity-level MPC. [Left] Norm of the
position error, time diagram of the support phases, and orientation error.
[Right] Position and orientation variables for the human and the robot.
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Fig. 4. Simulation results under velocity-level MPC. [Left] Velocity
input commands. [Right] Input accelerations, as evaluated by numerical
differentiation.

never saturates. Overall, the velocity control inputs have
reasonably smooth profiles, albeit the accelerations undergo
abrupt changes. In the absence of jerk bounds, this behavior
was brought to an extreme situation, with the accelerations
being almost always in saturation and bouncing between their
upper and lower bounds also within a single time step.

B. Acceleration MPC

For comparison, the same human trajectory was tracked
using a MPC law designed at the acceleration level with jerk
constraints. The results in Figs. 5–6 show that the evolution
of the tracking errors are very similar to the previous case,
although the velocity-level controller performs slightly better,
especially in terms of position error. In the present control
formulation, it is possible to provide an explanation of why
the accelerations may change so abruptly and often saturate.
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Fig. 5. Simulation results under acceleration-level MPC. [Left] Norm of
the position error, time diagram of the support phases, and orientation error.
[Right] Position and orientation variables for the human and the robot.
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Fig. 6. Simulation results under acceleration-level MPC. [Left] Robot
velocities. [Right] Acceleration input commands.

With reference to problem (24), the resulting matrix W̃
becomes almost negligible when compared to h, specifically
is of order o(∆t2). This transforms the cost function, and
thus the whole problem, into an almost linear one. In linear
programming, solutions are always found on the vertices of
the admissible region, and in the acceleration-level control
solution these vertices correspond to saturated acceleration
or jerk values. In the velocity-level control case, a similar
mechanism may also come into play, but we found that the
W̃ matrix in (15) is no longer negligible.

VI. EXPERIMENTAL RESULTS

Experiments were performed on the PBDR device avail-
able at Tohoku. Measurements for the human waist were
obtained through ellipse-fitting from data provided by 2
LRFs installed on the robot, while 2 other LRFs provided
measurements for the swing foot using the same method
together with a clustering algorithm to distinguish between
the two feet [12]. The measurement apparatus works at
an output frequency of 28 ms. Thus, we have set ∆t =
0.028 s and N = 4, so that the preview window is kept to
T = N ·∆t ≈ 0.1 s, just as in simulations. Moreover, d was set
to 45 cm, in order to have a larger distance from the dancer.
Implementation of the MPC controller was fast enough to
run online, with no particular code optimization.

A. Velocity MPC

For the velocity-level MPC, bounds on velocity, accelera-
tion, and jerk have been set to:

vmax = (0.6 [m/s] 0.6 [m/s] 90 [deg/s])T

amax = (1.5 [m/s2] 1.5 [m/s2] 180 [deg/s2])T

jmax = (50 [m/s3] 50 [m/s3] 5730 [deg/s3])T .

The results are reported in Figs. 7–8. The tracking error
obtained in the experiments is slightly larger than in the
simulations. This is mainly due to the tighter kinematic
bounds imposed on the robot motion, which were chosen
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Fig. 7. Experimental results under velocity-level MPC. [Left] Norm of the
position error, time diagram of the support phases, and orientation error.
[Right] Position and orientation variables for the human and the robot.
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Fig. 8. Experimental results under velocity-level MPC. [Left] Velocity
input commands. [Right] Acceleration inputs, as evaluated by numerical
differentiation of the velocity commands.

for safety reasons. We also remark that the precision of the
sensing system is lower when compared to the MoCap, and
that the captured data are in general more noisy than those
used for simulation. Nonetheless, the performance of the
controller is still acceptable, with a maximum position error
of 19.81 cm (with mean value 6.71 cm) and a maximum an-
gular error of 13.78◦ (with mean value 5.08◦). Note that the
acceleration occasionally exceeds the nominal bounds used
for optimization (see Fig. 8). This can be explained by taking
into account the imperfect following of the commanded
velocity by the low-level servo loops. The accompanying
video clip shows an experimental trial with this controller.

B. Acceleration MPC

For the acceleration-level MPC, the commanded accelera-
tion is converted by integration into a velocity reference input
to low-level servo loops running at 1 KHz. A different set
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Fig. 9. Experimental results under acceleration-level MPC. [Left] Norm of
the position error, time diagram of the support phases, and orientation error.
[Right] Position and orientation variables for the human and the robot.
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Fig. 10. Experimental results under acceleration-level MPC. [Left] Velocity
inputs, as obtained by numerical integration of the acceleration commands.
[Right] Computed acceleration commands.

of kinematic bounds has been imposed, indeed more strict
than those used in the velocity-level control experiment:

vmax = (0.2 [m/s] 0.2 [m/s] 23 [deg/s])T

amax = (0.7 [m/s2] 0.7 [m/s2] 46 [deg/s2])T

jmax = (35 [m/s3] 35 [m/s3] 2005 [deg/s3])T .

The results are reported in Figs. 9–10. It is apparent that the
human is now moving quite slowly, in order to enable good
tracking by the PBDR. The choice of restrictive bounds was
rather a necessity, since the robot under acceleration-level
MPC control was found to be less stable in the experiments
(as opposed to simulations). This may be due to the excessive
amount of kinetic energy stored by the robot under acceler-
ation control. Moreover, the controller operates at a higher
level of derivation and is thus less reactive; commanding a
system via acceleration inputs usually requires a much higher
control frequency than when using velocity inputs.

VII. CONCLUSIONS

A Model Predictive Control approach was used to let
a ballroom partner robot follow naturally and accurately
a human leader dancing waltz. Prediction of human mo-
tion during single-support phase was obtained using an
Extended Kalman Filter applied to a simplified dynamic
model consisting of a 3D Linear Inverted Pendulum and a
low swinging foot. While intended for humanoid control, this
model was found to provide reliable short-term predictions
of the human behavior during waltz. Two different MPC
controllers were designed and tested, solving on line an
LQ problem with bounds on the robot differential kinematic
variables and assuming velocity or acceleration as control
input. The velocity-level MPC law was the most effective in
experiments, producing fast and accurate reactive motion.

Among the possible extensions of this work, we plan to
improve the design of the acceleration-level MPC law. In
order to smooth further the command profiles, one could
include a cost term in the objective function, proportional to
the squared norm of the acceleration. Leader-follower inter-
action forces may also be taken into account, by introducing
a human arm force model or, in a simpler form, via a virtual
connection by a damped spring. The interaction forces could
then be optimized within the MPC formulation.
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