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Abstract

An experimental study is presented on vision-based
feedback control methods for the mnonholononomic
wheeled mobile robot SuperMARIO. The robot posture
is measured via a camera fized on the ceiling of an in-
door environment. To this end, a simple localization
algorithm has been developed. Performance on trajec-
tory following and parking tasks is compared under dif-
ferent controllers and using either odometric or visual
feedback. The improvement with the latter is obtained
at the expense of a limited increase in sampling time.

1 Introduction

Many feedback controllers have been proposed in the
last decade for nonholonomic Wheeled Mobile Robots
(WMRs) [1], addressing the basic motion tasks in a
free indoor environment, i.e., following a desired carte-
sian trajectory or parking at a given configuration.

Control methods for stable trajectory tracking in-
clude linear control based on tangent linearization,
nonlinear control based on Lyapunov techniques [2, 3],
and dynamic feedback linearization [4, 5]. The search
for stabilizing controllers in parking tasks has led to
novel solutions, based on time-varying (6] and/or dis-
continuous nonlinear feedback [7], which overcome the
well-known obstruction to the existence of smooth sta-
bilizing controllers for first-order nonholonomic sys-
tems. Other control designs include the use of a
polar coordinate transformation [8] or, again, of dy-
namic feedback linearization [9]. A detailed compar-
ison of the actual performance of these techniques
has been made in simulated environments, both for
a unicycle-type vehicle [10] and a car-like vehicle [11],
and through real experiments on a two-wheel differen-
tially driven mobile robot [12].

Most of the performed experimental works assume
the availability of the full current state of a WMR. The
robot state, e.g., the position (z,y) and orientation 8
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of a unicycle robot, is often reconstructed on the basis
of proprioceptive sensors, e.g., incremental encoders
mounted on the motor axes (dead reckoning). How-
ever, these odometric estimates are subject to random
and systematic errors, due to wheel slippage during
maneuvers and to non-idealities of mechanical parts
(e.g., different wheel radius), as well as to possible nu-
merical drift over time (integration process).

Exteroceptive sensing (ultrasonic, laser, vision)
may provide instead an absolute measure of the robot
state (localization). In particular, the information
gathered by a vision system —the richest among ex-
teroceptive sensors— about the environment makes it
possible to detect natural landmarks, navigate among
unknown obstacles, and achieve a reactive robot be-
havior. Vision-based sensing has also some drawbacks,
such as the need to recognize and extract a number of
characteristic features from the image, an increased
computational burden, and a critical dependence on
lightning conditions of the environment.

There are basically two ways of using exterocep-
tive information within a motion control loop: i) map
measures back to the robot state space and then use
state-based control; i) close the feedback directly in
the sensor space, thus realizing an output feedback
strategy. In vision-based control, the two approaches
are often referred to as (position-based) visual feed-
back and (feature-based) visual servoing, respectively.
The first requires accurate calibration of the external
sensors, but it allows a common ground for the fusion
of heterogeneous sensor measures. The second relaxes
the need for precise mechanics and is advantageous
in less structured environments, but requires to deal
with kinematic transformations and a redefinition of
conventional, position-based control laws.

In this paper, we present experimental results on
the use of visual information within a real-time mo-
tion control loop for a nonholonomic WMR. Previous
work in this area includes, e.g., [13] for visual feedback
and [14, 15, 16] for visual servoing. In particular, using
the mobile robot SuperMARIO as a testbed, we have



compared visual feedback control laws for trajectory
following and parking tasks, reconstructing the robot
state from images obtained by a camera fixed on the
ceiling of an indoor environment. A discussion of the
results achievable using odometric versus visual feed-
back will be given. We shall also illustrate how system
constraints given by a common PC-based architecture
affect the control design and the robot performance.

2 Experimental setup

The wheeled mobile robot is our prototype Super-
MARIOQ, a two-wheel differentially-driven vehicle. The
driving wheels have radius 7 = 9.93 cm and are at a
distance of d = 29 cm along their axle, while a small
passive off-centered wheel (castor) is placed near the
vehicle front.- The weight of the robot (including four
12 V batteries) is about 20 kg, with center of mass
located slightly in front of the main axle so as to limit
disturbances caused by the castor.

Each wheel is driven by a DC servomotor, supplied
at 24 V and equipped with an incremental encoder
counting 200 pulses/turn (multiplied by four through
on-board electronics). Two 8-bit ST6265 microcon-
trollers implement a digital velocity PID on the left
and right wheel, with a low-level cycle time of 5. ms,
realizing the wheel angular velocity commands wy,
and wg generated by the high-level robot controller.
SuperMARIO communicates via radiomodem with a
300 Mhz PC Pentium II, where a library of C*+ con-
trol algorithms is installed.

2.1 Kinematic model

The kinematic model of the nonholonomic WMR, Su-
perMARIO is equivalent to that of a unicycle:

z cosfd 0
g |=|sind |v+| 0 |w (1)
0 0 1

where (z,y) is the cartesian position of the wheel axle
midpoint, @ is the vehicle orientation w.r.t. an arbi-
trary z-axis, while v and w are, respectively, the linear
and angular robot velocity. The actual input com-
mands (wr,wgr) are one-to-one related to (v,w), by
means of

WR + WL,
2 b

2.2 Odometric feedback

WR — WL,
=7r—

=r 22 @

One possible reconstruction of the current robot state
is based on incremental encoder data (odometry). Let
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Figure 1: A camera-image of SuperMARIO

A¢dgr and A¢y, be the angular wheel displacement mea-
sured by the encoders during a sampling time T,. From
eq. (2), the robot linear and angular displacements are

As = -12: (Adr+ A¢L), Al = s (Adr — AdL).

The posture estimated at time tx = kT, is then

Tk cos?k 0 As
G=| U | =Qq%-1+ | sinbr 0 [ AD ], (3)
01 0 1
where AB
B =0Ok_1 + -

The localization of SuperMARIO using the odometric
prediction (3) is quite accurate whenever wheel slip-
page does not occur and a small number of backup
maneuvers is executed. Controllers based on odo-
metric state reconstruction run with a sampling time
T, = 50 ms (including reference motion generation).

2.3 Visual feedback

To provide visual feedback of the robot state, we have
used a digital 1/2” camera with 768 x 576 pixels, fixed
on the laboratory ceiling. The camera has been cal-
ibrated using Tsai’s algorithm {17]. The workspace
(i.e., the vision area) dimensions are 2.90 x 2.10 m, set
by the height of the camera from the floor and by its
focal distance. As a result, 1 pixel = 3.7 mm. The
camera output is a RGB or CCIR signal sent to a Ma-
trox Meteor frame-grabber on the PC, with a 25 Hz
frame rate in CCIR mode.
For reconstructing the robot posture by means of .

the camera, we have mounted on SuperMARIO a black



surface with three leds, located at the vertices of an
isosceles triangle pointing in the forward direction (see
Fig. 1). The upper vertex position is taken as the (z,y)
reference point of the robot. '

In order to localize the triangle in the image, we
proceed as follows. A binary image is created first
from a 256-level grayscale image, by using a threshold
of 240. Using a dilation operator (see [18]), a more
significant image is obtained from which a list of light
blobs (in the range of 30-120 pixels each) is extracted.
Unfortunately, reflections from the floor and the robot
chassis (especially the wheels) are also marked as light
blobs. A preliminary step to discard false reflections
is to put upper and lower bounds to the blob areal.
Next, an appropriate algorithm based on relative dis-
tances deletes from the list all the blobs that cannot be
candidate vertices (within some tolerance), and builds
with the remaining blobs all isosceles triangles with
consistent side length. The localization routine fails
if everything but a single triangle is returned (an ex-
tremely rare event in our experiments).

Once a single triangle is detected, let (zy,vu),
(z1,91), and (z,, y-) be the coordinates of, respectively,
the upper, lower-left, and lower-right vertex. The es-
timate of the robot reference point is simply Z = z,,
¥ = yu. The center (z.,y.) of the triangle and its
base midpoint (&, ym) are then computed from the
three vertices. The estimate § (at time t;) of the robot
orientation is finally computed as

guc + oum + ocm

3 b
with 8;; = ATAN2 {y; — y;, z; — z;}, 4,5 € {u,c,m}.
We found out that this simple averaging strategy,
which maximizes the use of measured data, is already
effective in reducing the effects of image noise, that is
particularly crucial in the reconstruction of 6.

When using visual feedback, the control sampling
time grows to T, = 55 ms, including frame acquisition,
elaboration and robot-server communication. The in-
crease in sampling time has been limited by making
frame acquisition asynchronous from other control rou-
tines and by restricting the above triangle search to a
300 x 300 window centered around the previous robot
state estimate. A full window search would have led
to a sampling time of 80 ms.

§=

2.4 Motion constraints

The achievable precision of SuperMARIO is limited
by the finite resolution of the digital low-level control

1This is done using the MIL Libraries that allow blob detec-
tion and fast analysis of basic blob features, such as center of
mass, area, etc.
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layer. In particular, the minimum linear displacement
is Asmin = 0.0039 cm, while the minimum increment
of linear velocity is 0.78 cm/s.

The motor dynamics imposes bounds on the maxi-
mum angular velocity and acceleration of the wheels.
The robot may reach a maximum speed of about
2 m/s. However, in order to prevent as much as pos-
sible. wheel slippage and robot rearing (especially at
start), we have imposed conservative constraints on
the linear velocity and acceleration of the wheels at
their contact with ground:

[vi} < Vmax = 0.35m/s, |ai] < @max = 0.83m/s?,
with i € L, R.

When reaching one of these saturation levels, it is
necessary to perform a suitable command input scal-
ing so as to preserve the curvature radius of the actual
commanded motion. This is achieved by scaling in se-
quence first acceleration (if needed) and then velocity
commands. For a given set of acceleration commands
(ar,ar), define :

,1} .

We modify then the original commands as follows:

T
Omax @max

ar = sign(ar) max, ar =% ifo = |ar|/amax
ar, =sign(ar) amax;, @R =42 ifo = |ap|/amax

aR, ar, not modified ifo=1.

From the obtained accelerations, left and right wheel
velocities are computed at time t; as vg41 = a T, + vy
and then scaled in a similar way using the velocity
bound v,

3 Control laws

We briefly recall the five feedback control laws com-
pared in our experiments, two for trajectory following
and two for parking tasks.

3.1 Trajectory following

Let (z4(t), y4(t)) be the reference cartesian trajectory
on the workspace plane. The associated robot orienta-
tion is 84(t) = ATAN2{y4(t), 24(t)} and the nominal
feedforward commands are

va(t) = =4/23(t) +93(¢)
wa(t) = Ya®)a(t) ~ Za(t)ga(t)

£3(t) + y3(¢)



Nonlinear time-invariant control (NTI) [3]
The tracking controller is the outcome of a Lyapunov-
based design:

v = v3c08(8q —0) + k1 [(zg — ) cos 8 + (y4 — y) sind)
w = wat kpua 0O [y, — y)coss

—(xg — ) sin 6] + k3(84 — 6).
An usual choice for the control gains is
k1 = ks = 2¢4/wi(t) + bv2(t),
with damping coefficient ¢ € (0, 1) and b > 0.
Dynamic feedback linearization (DFL) [4, 5]
Exact linearization of eq. (1) can be achieved by in-

creasing the dimension of the robot state, i.e., adding
an integrator on the linear velocity input

v=¢§ E =a, 4)
and defining the new input (a,w) as
cosd siné
e = _sinf cos@ [ v (5)
v e g L

Feedback stabilization is obtained on the linear side by
choosing .

uy id+Kp1(IEd—1‘) +Kd1(.’id—i')

Dynamic feedback linearization (DFL) [9] The
DFL tracking controller (4-6) can be used also for sta-
bilization to the origin, by setting &4 = yg = £q =
g = 0 in eq. (6). Avoidance of the singularity that
may occur when the robot comes to a stop is obtained
by suitable choice of the PD gains and of the initial-

~ ization & (see [9)).

(6)

il

ug = g+ Kp2(ya ~ y) + Kao(¥a — 9),

with Kp; > 0, Kg; > 0 (¢ = 1,2). The initial state of
the integrator in eq. (4) should be &y # 0 and the de-
sired trajectory should be persistent in order to avoid
the singularity in eq. (5).

3.2 Parking

Let the desired configuration be, w.l.0.g., the origin of
the robot state space.

Polar coordinate control (POL) [8] Using the
polar coordinate transformation, singular at the origin,

VzZ+y2?

'ly) = ATAN2{y,z} -0+~
6 v +6,
the control law is defined as
v = kypcosy
W o= kyy+k SRTESY (ks

with kq, ko, and k3 all positive. This feedback law,
once rewritten in the original state variables, is dis-
continuous at the origin.
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4 Experimental results

In both types of motion tasks (trajectory following and
parking), the initial position and orientation of Super-
MARIO is acquired through the vision system. We
have implemented two operation modes, depending on
whether the robot state is measured by odometry or
by visual information. In the latter case, whenever the
visual localization routine fails (see Sect. 2.3), odome-
try is used until vision-based estimation recovers.

4.1 Trajectory following

The reference trajectory is an eight-shaped path
(see Fig. 2), with an associated rest-to-rest trape-
zoidal velocity profile lasting 32 s. The trajectory
starts at (1,0.8,30), while the robot is initially at
(1.7,0.3,90) [m,m,deg). Figure 2 shows that, under vi-
sual feedback, DFL control has a faster transient than
NTI control. Although a stable tracking is obtained,
visual noise affects as expected the imposed velocities;
in Fig. 3, the angular velocity command w obtained
with odometric feedback is smoother than with visual
feedback. An independent measure of the cartesian
error is shown in Fig. 4 for odometric and visual feed-
back under DFL control. In this case, the robot traces
approximately twice the eight-shaped path (60 s).

4.2 Parking

The robot starts at (1.1,1.2,135) [m,m,deg], with the
origin as the desired parking goal. In Fig. 5, the robot
reaches the goal in forward motion with POL con-
trol and moving only backwards with DFL control.
Figure 6 shows that DFL control is faster than POL
control in reducing the error to zero. Odometric and
visual feedback are compared under DFL control in
Fig. 7 and under POL control in Fig. 8. The per-
formance is similar, although a final residual error is
found using odometric feedback. This cartesian error
is larger with POL control, essentially due to the pres-
ence of one backup maneuver, while it remains small
{(about 1 cm) with DFL control.
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Figure 2: Trajectory following: DFL (- -) and NTI
(- --) control using visual feedback

Figure 3: Trajectory following: Angular velocity w
with odometric (above) and visual (below) feedback
under DFL control
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Figure 4: Trajectory following: Norm of cartesian er-
ror (in m) under DFL control using odometric (—-)
and visual (—) feedback
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Figure 5: Parking: Cartesian path executed with DFL
(—-) and POL (—) control using visual feedback
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Figure 6: Parking: Norm of cartesian (top) and ori-
entation (bottom) error with DFL (—-) and POL (—)
control using visual feedback

5 Conclusions

We have presented experimental results on visual-
based motion control of the nonholonomic mobile
robot SuperMARIO. Both trajectory following and
parking tasks have been executed using two different
feedback controllers for each case, comparing the per-
formance obtained with odometry or visual data. The
reconstruction of the robot state from visual informa-
tion is based on a simple but efficient algorithm using
a three-light triangle mounted on the top of the vehi-
cle. For all controllers and motion tasks, the expected
performance improvement when using visual feedback
is obtained at the expense of a slight (5 ms) increase of
the sampling time with respect to odometric feedback.
This work could be improved by implementing a
noise reduction algorithm within the low-level image
processing and performing fusion of odometric and vi-
sual information in the EKF framework. Our final
objective is to achieve visual acquisition and nonholo-
nomic motion planning in the presence of obstacles.



Figure 7: Parking: Norm of cartesian error under DFL
control using visual (—) and odometric (—-) feedback
(with a zoom of the final approach)

—— visual feedback

Figure 8: Parking: Norm of cartesian error under POL
control using visual (—) and odometric (—-) feedback
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