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Abstract

We consider the stabilization problem for an underac-
tuated prismatic-rotational (PR) robot with the second
joint passive and moving on the horizontal plane. Af-
ter a controllability analysis, a nilpotent approxima-
tion of the system is derived and used for designing an
open-loop polynomial command that reduces the state
error in finite time. Under suitable hypotheses, the
iterative application of this command, computed as a
Sfunction of the state at the end of each iteration, leads
to exponential convergence to the desired equilibrium
configuration. Simulation results are reported, also in
the presence of unmodeled viscous friction.

1 Introduction

Underactuated robots are mechanical systems with a
number m of control inputs lower than the number n of
generalized coordinates. A relevant case is represented
by manipulators with passive joints, whose study is
mainly motivated by the desire of controlling motion
in the presence of actuation failures.

Planning and control of underactuated robots with
passive joints are very challenging problems [1], due to
the following specific features:

e The dynamics of passive joints is a second-order
differential constraint that limits the set of feasi-
ble motion trajectories.

e Motion planning between two admissible config-
urations is an open problem for underactuated
robots with only m = 1 control input.

e Stabilization by smooth static feedback is not pos-
sible, due to the violation of the necessary condi-
tion of Brockett [2]. In particular, the lineariza-
tion at an equilibrium is not controllable in the
absence of gravity (e.g., on a horizontal plane).
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Existing solutions to planning and control problems
exploit specific control properties (see, e.g., [3]) such as
accessibility (strictly related to the integrability of the
second-order differential constraints [4]), small-time lo-
cal controllability (the lack of STLC suggests the need
of maneuvers even for small reconfigurations), and dy-
namic feedback linearizability (which allow a viable
solution to motion planning and trajectory tracking
problems). As a matter of fact, there are no general
results for underactuated robots and research advances
on a case-by-case basis with ad-hoc solutions.

We review the literature in the no gravity case —
the most difficult. The stabilization to a desired rest
configuration of a 2R planar robot with passive sec-
ond joint (n = 2, m = 1) has been studied in [5],
using a periodic input and Poincaré map analysis, and
in [6], using the repeated application of open-loop com-
mands (iterative state steering). A 3R planar manip-
ulator with the last rotational joint passive (n = 3,
m = 2) has been considered in [7]. This system is
shown to be STLC and a rest-to-rest motion planner
is designed using a sequence of elementary translations
and rotations around the center of percussion (CP) of
the third link. In [8], the position of the CP for the
same robot (actually for an XXR arm, with any com-
bination of prismatic or rotational actuated joints) is
shown to be a linearizing output: using dynamic feed-
back linearization, smooth state-to-state trajectories
can be planned and an exponentially stabilizing track-
ing controller is easily designed on the linear side of
the problem. These works can be extended to the case
of m planar bodies with the last n — 2 joints rotational
and passive, if the CP of the i-th link is centered on
the (4 + 1)-th joint, for ¢ = 3,...,n — 1 (see [9]).

In this paper, we consider the problem of stabilizing
to a given equilibrium state a PR robot in the horizon-
tal plane with only the first joint actuated (m = 1).
This structure is the counterpart without gravity of an
inverse pendulum on a cart. After performing partial
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feedback linearization of the underactuated dynamic
model in Sect. 2, we detail the controllability analysis
in Sect. 3. Following the same approach applied in [6]
to the underactuated 2R robot, a nilpotent approxi-
mation of the robot dynamics is derived and used in
the design of the stabilization strategy, based on the
iterative state steering paradigm. In particular, Sect. 4
presents the specific conditions for state error contrac-
tion using a continuous (polynomial) open-loop com-
mand at each iteration and the transition maneuvers
that may be needed in this case. Simulation results are
reported in Sect. 5, where the whole control strategy
is evaluated also in the presence of unmodeled viscous
friction at both joints.

2 Dynamic Model of PR Robot

Consider the 2-dof robot with a prismatic and a rota-
tional joint in Fig. 1, moving on the horizontal plane
with a single actuator at the first joint. Let ¢; be
the position of the center of mass of the first link, g;
the second joint angle, m; and ms the masses of the
two links, 5 the baricentral inertia of the second link,
and dy # 0 the distance of its center of mass from the
second joint axis. The dynamic model is!

(my 4 m2)di — modasafo — madacady = T (1)
—modasady + (]2 + mgdg)dg 0 (2)

It

where ¢y = cos gy and sz = sin ga.
2.1 Partial feedback linearization

For analysis and control design, it is convenient to per-
form a partial feedback linearization [1] of the system
dynamics. Using the (globally defined) state feedback

T = |mj +ma —

mjd3s3 2
a — madacagy,

]2 + mgdg
with a as new control variable, system (1-2) becomes

i = a (3)
. madz

y = —22 soa=Kssa, 4
12 T, + mpdd 24 = o2 )

LIf the actuation is reversed (first joint passive), the second-
order differential equation associated to the first joint is twice
integrable, leading to the holonomic constraint

h{q,t) = (m1 4+ ma)q1 + madaca + kot + k1 = 0.

The system is thus not controllable. Similarly, eq. (2) becomes
integrable when dy = 0.

(actuated

>

Figure 1: PR planar robot

q, (passive)

or, defining the state z = (q1, g2, ¢1,¢2) € R,

3 0
i=| 24| ) Je=s@+e@a )
0 Kso

3 System Analysis

It is easy to see that the linear approximation of eq. (5)
around an equilibrium point is not controllable. In a
nonlinear setting, we study first the accessibility of sys-
tem (5). Define a regular point zo = (%10, Z20,0, Z40),
i.e., a state having zero velocity for the first joint. For
Z40 = 0, this is an equilibrium state z..

In order to test accessibility, we use the Lie algebra
rank condition (LARC) [3] at a regular point zy. By
computing the Lie brackets of vector fields f and g,
the accessibility matrix Ao = A(zg) has the form

A= [f g 1hd lolfl]

=20
0 0 -1 0
_ T40 0 —K.Sgo 0
- 0 1 0 0 + (6)

0 K$20 KCzo.Z'4o 2Ky2820020

with det .AO = —2K2L’20520r40. Matrix AQ is singular
iff (i) 290 = £kF or (ii) z40 = 0. When the system is
not at an equilibrium, it can be shown that the config-
uration singularity (i) can be overcome by considering
further brackets (in particular, [f,[g,[f,g]]]).- There-
fore, the LARC condition holds at any regular point.

The accessibility from an equilibrium state z. is
more restricted. Since x40 = 0, the drift vector field
in eq. (5) vanishes (f(z.) = 0) and the accessibility
matrix should be built differently. We have

A=[g 1fa) lalfa) (£lo0al]

which is singular iff zo, = £k%. When ¢ = {0,7}
(i.e., for even k), there is an intrinsic loss of ‘controlla-
bility’: no actuation will move g when the second link
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is at rest and stretched or folded along the prismatic
joint axis. On the other hand, by considering further
brackets, accessibility holds for zs. = £7 (odd k).
Due the presence of a drift vector field f in eq. (5),
accessibility does not imply controllability. The only
analytic way to prove controllability is to apply the
sufficient conditions for small-time local controllabil-
ity (STLC) given in [10] and refined in [11]. Based on
these results, specialized STLC tests for systems in the
form (3)—(4) have been given in [12]. Unfortunately,
these conditions fail for system (5) as the ‘bad’ Lie
bracket {g, [f, g]], which gives rank to the accessibility
matrix (6), cannot be expressed as a linear combina-
tion of ‘good’ brackets of lower length [11]. Never-
theless, controllability will be shown in a constructive
way, by explicitly designing a stabilizing control law.

3.1 Coordinate transformation

Following the algorithm in [13], we use the Lie al-
gebraic structure of system (5) to derive a suitable
change of coordinates around a regular point zg. Let

(7)

We check whether y are privileged coordinates. For,
we need to compare the lengths of the vector fields
in Ay with the orders w; of the new coordinates v;,
1 =1,...,4. The length of a vector field is the number
of Lie bracket operations that define it plus one: f and
g have length 1, [f, g] has length 2, and [g, [f, 9]] has
length 3. The order of y; is the minimum number of di-
rectional derivatives of y; along f or g to be performed
such that the result is nonzero at zp. Privileged coor-
dinates have orders equal to the lengths of the vector
fields in Ay, i.e., {1,1,2,3}. Easy computations show
that w; =1, wy =1, w3 = 2, but wy = 2 # 3 (in fact,
LyLfys(zo) = LyLgya(zo) = TR # 0) and thus
Y4 is not a privileged coordinate. However, by simple
inspection, a set of privileged coordinates is:

y=A;'(r—x0), yeR"

T40
24 = Y4 — o7 Y1Y2-

i =1,2,3
1 )&y 2K820

2y = Yis

The invertible coordinate transformation z = ®(z) is

7 = *Kﬂ(ﬂﬂl — T10) i(562 — 20)
T40 Ta0
Z3 = T3 — T30 (8)
z3 = —(z1 — Z10)
74 = z40(T1 — Z10) _ T3 — T30 Tq — T40
2K820 QKCZ[) 2K2020 820
+ % (1 — z10) — K;O (wg — Cﬂzo)] (3 — @30)-
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The system equations in the z coordinates are ready
for an high-order approximation that, by construction,
preserves the same accessibility of the original system.

3.2 Nilpotent approximation

The nilpotent approximation of z = f,(z) + g.(z)a at
20 = ®(zo) = 0 involves Taylor series expansion of
each coordinate z; up to the order w; — 1. Having the
coordinates zy and 2z, order w; = wo = 1, the first and
second components of f, and g, are approximated by
constant terms; their third component is approximated
by linear terms, since z3 has ws = 2; as for the last
component, having z4 order wy = 3, we will truncate
its expansion at the second order in z; and 29 and at
the first order in z3. The approximated system is

1 0
. 0 1
z = + a
—29 . 0
Tip .2 1
0 __4K4c20 21 T 2743

f2(2) + §:(2) a. (9)
The nilpotent approximation is polynomial and has
a triangular structure. Therefore, when applying a
parametrized input a, it can be easily integrated in
closed form. In addition, the linear part of the dy-
namics (5) is fully preserved in eq. (9). The evolution
of the robot second joint and of its nilpotent approxi-
mation (9) are shown in Fig. 2, when applying a cyclic
polynomial acceleration (see eq. (11)) to the first joint
for T = 2 s. The approximation describes well the be-
havior of the system, but its accuracy decreases with

amplitude and duration of the command. Deriving a
bound on the error is still an open research issue.

Second Joint {R) Position
¥ —

T

rad

radis

L
18 2

0,‘3 1‘ |f2 ‘f4 16
Figure 2: Real (-) and approximated (- -) second joint
position (top) and velocity (bottom) under a cyclic

motion of the first joint



4 Control Strategy

Our objective is to stabilize the underactuated robot to
an equilibrium configuration ¢4 = (g4, g24) (With zero
final velocity). In view of eq. (3), the first joint can be
regulated to (¢i4,0) in a finite time Ty (e.g., using a
terminal feedback controller). This first phase, called
alignment of the active joint, can also be implemented
in practice with a PD controller
a = kp{qia — q1) — kadn, kp,kq > 0. (10)
At the end of the alignment phase, one has in gen-
eral qo(T1) # qog and ¢ # 0. We design then a cyclic
open-loop command a for a period T so as to bring the
first joint back to (g1, ¢1) = (¢14,0) and simultaneously
steer the unactuated joint closer to (g2,42) = (g24,0)
at the end of the cycle. When this second phase,
called contraction, is applied iteratively (namely, start-
ing from the state reached at the end of the previous
cycle) we obtain the iterative state steering control
method [14]. If the contracting command is Holder-
continuous with respect to the initial conditions at
the beginning of each cycle, asymptotic stabilization
is achieved with exponential rate of convergence.
Sometimes it is not possible to switch directly from
the alignment to the contraction phase, since the latter
may be successtfully executed only when starting from
specific contraction sets in the robot state space. In
that case, it is necessary to insert a transition phase
in order to reach the initial conditions sufficient for
contraction.

4.1 Contraction phase

The design of a cyclic and contracting command on
system (5) is not easy. The nilpotent approxima-
tion (9) is used to this end, assuming that each cycle
starts from a regular state. For simplicity, we shall
reset time to zero at the end of the previous phase.

A 5-th order polynomial acceleration a(t) is cho-
sen as a parametric command for the first joint. Its
coefficients are determined from the following bound-
ary conditions: cyclicity, i.e., ¢1(0) = q(T) (= q1a)
and ¢1(0) = ¢ (T) (= 0); vanishing of acceleration
(G1(0) = G1(T) = 0), implying continuity of a across
cycles; zero integral of ¢;(¢) in [0, 7], to simplify sub-
sequent integration. Letting A = ¢t/T, we obtain

A

a(t) = T2

(3X — 30A% + 90X* — 105A* + 42X°)  (11)
with A and T left as free parameters.

The nilpotent approximation (9) can be easily in-
tegrated under the action of the open-loop com-
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mand (11). Similarly to [6], we have

A2
72(T)=T, z2(T)==z(T)=0, z(T)= -B?—,

where § = §0%36' Using the inverse transformation
z = ®~1(z) obtained from egs. (8), it is

Agy = 2(T) — q2(0) = ¢2(0)T'

Ady = ¢o(T) — ¢2(0) = —2K>c082003

(12)
A

7 (13)

Separate contraction of the second joint position and
velocity errors are guaranteed if

(1 —m) {g2a — 92(0))
(772 - 1)Q2(O)7

with contraction rates m,ﬁg € [0,1). Solving for T
and A from egs. (12-13) and (14-15) yields

Ags
Agy

(14)
(15)

T = (1—771)51%;(%(0—) (16)
A = T(l—WZ)QZ(O) (17)

K28 sin2¢2(0)°

Since it should be 0 < T < o0 and 0 < A < o0, expres-
sions (16) and (17) are valid, and thus contraction is
allowed, iff the state belongs to the contractions sets:

QQ(O) >0

g2a > q2(0)
¢2(0) € T or III

42(0) <0

q24 < q2(0)
g2(0) € I or IV,

or

where roman numbers define the four (open) quad-
rants of the 27 angle. If at the end of the alignment
phase the robot is not in a contraction set, a transition
phase is required. However, once the proper contrac-
tion set is reached, it is never left during the iterated
application of the contracting open-loop command.

4.2 Transition phase

There are different situations where the contraction
phase cannot be started. Assume that g24 is in quad-
rant I. In order to reach the proper contraction set, it
is necessary to bring ¢o to quadrant I, with g» < ¢oq4
and ¢o > 0. The following cases may happen:

T1. ¢2(0) > 0, ¢2(0) is in quadrant I, but g2(0) > g2q-
Set @ = 0 to keep the second joint velocity con-
stant until its position reenters quadrant I passing
through 0 (thus having at a certain time go < gaq4).

T2. ¢2(0) > 0, but ¢2(0) is not in quadrant . It is

sufficient to apply a = 0 as in the previous case.



T3. ¢2(0) < 0. To invert the sign of ¢a, note from
eq. (13) that the velocity variations Agy have op-
posite sign w.r.t. sin2gs(0). If g2(0) belongs to
quadrant II or IV, use the command (11) with
any value for time T and amplitude A so that
Aqo will be positive, driving §o(7") toward a posi-
tive value. If g5(0) is instead in quadrant T or 11T,
set a = 0 until g2 enters quadrant IT or IV. Af-
ter a finite number of such cycles, ¢ > 0 will be
attained and we recover one of the two previous
cases or directly enter the contraction phase.

Similar transition maneuvers can be carried out when
the desired position go4 of the second joint is in one of
the other quadrants.

5 Simulation Results

The task is to stabilize the equilibrium configuration
gq¢ = (0,7/4) starting from go = (1, —n/4) with zero
velocity. The nominal data for the PR robot are: dy =
0.5 m, Ir = 1 kgm?, m; = my = 1 kg. The PD gains
for the alignment phase are k, = 7, kq 5. The
contraction rates are chosen as n; = 0.5, 2 = 0.6.

Figures 3 and 4 show the position and velocity of the
joints. At T3 = 3.4 s the alignment phase is virtually
completed; the second joint is still in quadrant IV with
a positive velocity ¢a = 0.06 rad/s. A transition is
then needed (case T2 in Sect. 4.2) and we set a = 0
until the second joint has safely reached quadrant I
(g2 ~ /8 rad at t = 14.9 s). In the contraction phase,
the second joint exponentially approaches the desired
position with zero final velocity. After 9 contraction
cycles (for a total of 32.6 s), the desired equilibrium is
reached within a tolerance € == |gz — gag| +|g2| < 0.005.
Figure 5 shows the resulting acceleration a and the
force 7 on the first joint.

In order to test for the robustness of the stabilizing
strategy, we have applied the same previous control
law in the presence of viscous friction at both joints:
the terms f1¢; and f2¢ were added in the lhs of eq. (1)
and (2), respectively, with f; = fo = 0.02. As a conse-
quence, egs. (3—4) will be perturbed by nonlinear terms
and all control phases will be affected accordingly. In
Figs. 6-7, the alignment phase is still achieved by the
PD law (10) in about the sarae time, while the longer
transition phase ends at ¢ = 18.3 s. Sufficient error
contraction is preserved but, after each contraction
phase, a re-alignment of the first joint is needed. Con-
vergence is obtained after 7 contraction-trealignment
cycles (for a total of 49.2 s).
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Figure 4: Joint velocities
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Figure 5: Acceleration a and force 7 commands



First Joint (P} Position

1 — —
E
05 . . . . .
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Second Joint (R) Position

70

Figure 6: Joint positions () and their reference (- -)
in the presence of viscous friction

First Joint (P) Velocity

—_—

L
30

40 50 60 70

Figure 7: Joint velocities in the presence of viscous
friction

6 Conclusions

The stabilization problem for a PR planar robot with
passive second joint has been solved using the iterative
state steering approach. The overall control strategy
is able to asymptotically stabilize a given equilibrium
configuration with an exponential rate of convergence.
This result does not hold when starting at rest with the
second link stretched or folded. Robustness of the con-
trol strategy has been evaluated in simulations w.r.t.
unmodeled viscous friction. An issue left for further
research is related to change of the accessibility struc-
ture of the system at ¢ = £7/2 and/or ¢ = 0. The
existence of a globally valid basis for the accessibility
of the system would avoid control singularities.
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