
Robotics 2
Midterm Test – April 19, 2023

Exercise #1

The end-effector of a 3R planar robot, having equal link lengths l = 0.5 [m], is executing a positional
trajectory pd(t) ∈ R2 in the plane, commanded by joint accelerations q̈(t) ∈ R3 that are updated every
Tc = 100 ms. The robot is subject to the following hard bounds on joint velocities and accelerations:

|q̇i| ≤ Vmax,i, |q̈i| ≤ Amax,i, i = 1, 2, 3. (1)

When the limits in (1) are

V max =

 1.5
1.5
1

 [rad/s], Amax =

 10
10
10

 [rad/s2],

and the robot is in the configuration q =
(

0 0 π/2
)T

[rad] with velocity q̇ =
(

0.8 0 −0.8
)T

[rad/s],
compute the acceleration command q̈ of minimum norm that realizes the desired end-effector acceleration

p̈d =
(

2 1
)T

[m/s2] while complying with the bounds imposed on robot motion.

Exercise #2

A 3R robot with Denavit-Hartenberg (DH) parameters αi = 0, di = 0, and ai = li > 0, for i = 1, 2, 3,
moves in a vertical plane. The i-th link has mass mi > 0 and position of the center of mass (CoM)
irc,i = (rcx,i, rcy,i, 0) when expressed in the i-th DH frame, for i = 1, 2, 3. Define suitable relations
between the link masses, lengths, and CoM positions of this robot such that the gravity term in the
dynamic model takes the following expression:

g(q) =

 m1g0 rcy,1 cos q1

0

0

, with g0 = 9.81 [m/s2]. (2)

Sketch a figure of a robot having the positions of the link CoMs consistent with (2).

Exercise #3

Compute the 4 × 4 inertia matrix of the 4P planar robot in Fig. 1. With the robot in a generic con-
figuration q, determine the joint velocity command q̇ ∈ R4 that realizes a desired end-effector velocity

vd =
(
vxd vyd

)T
while minimizing the kinetic energy T of the robot. Which would be the solution

instead if the norm of the joint velocity ‖q̇‖ is minimized?

y

x

m2

m1

⊕

⊕

⊕

⊕

m3

m4

vd

Figure 1: A 4P planar robot in a generic configuration.

1

Exercise #4

Consider the RPR spatial robot in Fig. 2. Based on the DH frames and joint variables defined therein,
provide the expression of the robot inertia matrix M(q). Assume that the three links have their center of
mass, respectively along the y1, y2, and x3 axes, and that the barycentric inertia matrix of the third link
is diagonal and isotropic, i.e., 3Ic3 = diag {I3, I3, I3}.

x0

y0

⊕

y3

q1

q3x1

y1 x2

⊕
z3

z0

q2

z1
⊕

z2

x3

Figure 2: A spatial RPR robot, with DH frames assigned to each link.

Exercise #5

The inertia matrix of a 3-dof robot with coordinates q = (q1, q2, q3) is given by

M(q) =

 a1 + 2a2q2 + a3q
2
2 + 2a4q2 sin q3 + a5 sin2 q3 0 0

0 a3 a4 cos q3

0 a4 cos q3 a6

, (3)

where a =
(
a1 a2 a3 a4 a5 a6

)T
is the vector of dynamic coefficients. Using (3), compute: i) the

Coriolis and centrifugal term c(q, q̇) in the robot dynamic model; ii) three different factorizations
c(q, q̇) = S(q, q̇)q̇ = S′(q, q̇)q̇ = S′′(q, q̇)q̇, such that Ṁ − 2S and Ṁ − 2S′ are skew-symmetric matrices
while Ṁ − 2S′′ is not; iii) the unique 3× 6 regressor matrix Y such that M(q)q̈ + c(q, q̇) = Y (q, q̇, q̈)a.

Exercise #6

A 2-dof robot has the axes of the first prismatic joint and of the second revolute joint coincident and
vertical (i.e., aligned with the acceleration of gravity). The two joints should perform a displacement
∆q = (∆q1,∆q2), by tracing a rest-to-rest cubic trajectory in the same motion time T . The input
commands u1 and u2 at the joints (respectively, a force and a torque) are bounded as |ui| ≤ Umax,i, for
i = 1, 2. Provide the minimum feasible motion time T ∗ to execute the task, as a function of the problem
data and of the robot dynamics. Without loss of generality, assume that the actuators are at least strong
enough to sustain statically the weight of the robot links.

[270 minutes (4.5 hours); open books]

2

Solution
April 19, 2023

Exercise #1

The task kinematics for the given 3R planar robot is

p = f(q) = l

(
c1 + c12 + c123

s1 + s12 + s123

)
,

with associated Jacobian

J(q) =
∂f

∂q
= l

(
−s1 − s12 − s123 −s12 − s123 −s123
c1 + c12 + c123 c12 + c123 c123

)
.

The end-effector acceleration is then computed as

p̈ = J(q) q̈ + n(q, q̇),

with

n(q, q̇) = J̇(q) q̇ = −l

(
q̇21 c1 + (q̇1 + q̇2)2 c12 + (q̇1 + q̇2 + q̇3)2 c123

q̇21 s1 + (q̇1 + q̇2)2 s12 + (q̇1 + q̇2 + q̇3)2 s123

)
.

When evaluating the terms at the given state (q, q̇) we obtain

J =

(
−0.5 −0.5 −0.5

1 0.5 0

)
, J̇ =

(
−0.8 −0.4 0

0 0 0

)
, n =

(
−0.64

0

)
.

Therefore, the minimum norm joint acceleration realizing the desired task acceleration p̈d in the absence
of hard bounds on robot motion is

q̈ = J# (p̈d − n) =

 0.3333 1

−0.6667 0

−1.6667 −1

((2

1

)
−

(
−0.64

0

))
=

 1.88

−1.76

−5.40

 [rad/s2]. (4)

In order to verify if this command is feasible, we have to check both the direct limits on joint acceleration
(i.e., whether |q̈i| ≤ Amax,i is satisfied for all joints) and the indirect limits induced by the presence of joint
velocity bounds. Since the acceleration command q̈ = q̈ (kTc) at t = kTc is kept constant for an interval
Tc, the joint velocity at the next sampling instant will be

q̇ ((k + 1)Tc) = q̇ (kTc) + q̈ (kTc)Tc.

Thus, the current joint acceleration should also satisfy the bounds (in vector format)

−V max + q̇ (kTc)

Tc
≤ q̈ (kTc) ≤

V max − q̇ (kTc)

Tc
.

As a result, we need to check componentwise (at the current instant) if

Q̈min,i = max

{
−Amax,i,−

Vmax,i + q̇i
Tc

}
≤ q̈i ≤ min

{
Amax,i,

Vmax,i − q̇i
Tc

}
= Q̈max,i, i = 1, 2, 3.

Plugging in the problem data, we have

Q̈min =

 −10

−10

−2

, Q̈max =

 7

10

10

. (5)

3

While the acceleration (4) is feasible at the first two joints, the third acceleration component q̈3 = −5.4
exceeds the lower limit Q̈min,3 = −2. We apply thus a step of the SNS algorithm, as translated to the
acceleration level.

Set first the third joint acceleration to its lower limit, q̈SNS,3 = −2. Then, recompute the solution for the
other two joints by using the reduced 2×2 Jacobian J−3, obtained by removing the third column J3 from
the task Jacobian J ; the desired task acceleration p̈d should be modified accordingly to account for the
saturated contribution of the third joint. We have

p̈SNS,d = p̈d − J3 q̈SNS,3 =

(
2

1

)
−

(
−0.5

0

)
· (−2) =

(
1

1

)
,

and thus, as unique possible solution, we obtain(
q̈SNS,1

q̈SNS,2

)
= (J−3)−1 (p̈SNS,d − n

)
=

(
−0.5 −0.5

1 0.5

)−1(
1.64

1

)
=

(
5.28

−8.56

)
.

The solution

q̈SNS =

 5.28

−8.56

−2

 [rad/s2].

is now feasible, i.e., it stays within the limits (5) and, by the property of the SNS algorithm, its has also
the minimum norm property among all feasible acceleration solutions.

Exercise #2

Since the DH twist angles αi are all zero, the 3R robot is planar. Choose the axis x0 pointing downward

in the vertical plane1, so that the gravity acceleration vector is g0 =
(
g0 0 0

)T
(with g0 = 9.81 [m/s2]).

The potential energy of each link is given by

Ui = −mi g
T
0 rci, i = 1, 2, 3. (6)

In order to use the constant expressions of the CoMs in the local frames, we have

rhom
c,i =

(
rc,i

1

)
= 0Ai(q1, ..., qi)

(
irc,i

1

)
= 0A1(q1) . . . i−1Ai(qi)


rcx,i
rcy,i

0
1

, i = 1, 2, 3.

where the homogeneous transformation matrices are computed from the DH parameters as

i−1Ai(qi) =


ci −si 0 lici

si ci 0 lisi

0 0 1 0

0 0 0 1

 , i = 1, 2, 3.

Performing the computations in (6), one obtains

U1 = m1g0 (rcy,1 s1 − (l1 + rcx,1) c1)

U2 = m2g0 (rcy,2 s12 − (l2 + rcx,2) c12 − l1 c1)

U3 = m3g0 (rcy,3 s123 − (l3 + rcx,3) c123 − l2 c12 − l1 c1) .

1A different choice for the direction of x0 (e.g., horizontal or upward) would not affect the conditions that impose
g2 = g3 = 0 in the gravity term of the dynamic model, but only the actual trigonometric function appearing in
g1(q), i.e., ± sin q1 or ± cos q1.

4

From U = U1 + U2 + U3, we get

g(q) =

(
∂U

∂q

)T
= g0



m1rcy,1 c1 + (m1(l1 + rcx,1) + (m2 +m3)l1) s1
+m2rcy,2 c12 + (m2(l2 + rcx,2) +m3l2) s12

+m3 (rcy,3 c123 + (l3 + rcx,3) s123)

m2rcy,2 c12 + (m2(l2 + rcx,2) +m3l2) s12
+m3 (rcy,3 c123 + (l3 + rcx,3) s123)

m3 (rcy,3 c123 + (l3 + rcx,3) s123)


=

 g1(q)

g2(q)

g3(q)

 .

Proceeding backward from the last component, in order to obtain the desired structure (2) of the gravity
term, we have to set first

rcx,3 = −l3, rcy,3 = 0 ⇒ g3 ≡ 0,

and then also
m2 rcx,2 = − (m2 +m3) l2, rcy,2 = 0 ⇒ g2 ≡ 0,

and finally
m1rcx,1 = − (m1 +m2 +m3) l1 ⇒ g1(q1) = m1g0 rcy,1 c1.

Figure 3 shows a sketch of a possible 3R planar robot satisfying the conditions for having the desired gravity
term (2) in its dynamic model. We have chosen here l1 = l2 = l3 = l [m], m1 = 4m2 = 16m3 = 10 [kg],
and rcy,1 = 0.2 l [m].

⊕

⊕

⊕

m3

m1

m2

q1

q2

q3

x0

x1

x2

y1

y2

x3

y3

y0

rcx,3 = - l
rcy,3 = 0

rcx,2 = -1.2 l
rcy,2 = 0

rcx,1 = -1.3125 l
rcy,1 = 0.2 l

Figure 3: Localization of the CoMs of a 3R planar robot having the dynamic term g(q) as in eq. (2).

Exercise #3

Since there is no angular motion, the kinetic energy of the 4P planar robot is simply computed as

T =

4∑
i=1

Ti =
1

2

4∑
i=1

mi‖vci‖2 =
1

2
q̇TMq̇,

with velocity vectors (conveniently written in R2)

vc1 =

(
q̇1

0

)
, vc2 =

(
q̇1

q̇2

)
, vc3 =

(
q̇1 + q̇3

q̇2

)
, vc4 =

(
q̇1 + q̇3

q̇2 + q̇4

)
.

5

As a result, the robot inertia matrix is constant and is given by

M =


m1 +m2 +m3 +m4 0 m3 +m4 0

0 m2 +m3 +m4 0 m4

m3 +m4 0 m3 +m4 0

0 m4 0 m4

.
The end-effector Jacobian for the linear velocity v in the plane (x, y) is also constant:

J =

(
1 0 1 0

0 1 0 1

)
.

The joint velocity that produces the desired end-effector velocity vd while minimizing T is obtained by
using the inertia-weighted pseudoinverse of J :

q̇ = J#
M vd = M−1JT

(
JM−1JT

)−1

vd =


0 0

0 0

1 0

0 1

(vxd
vyd

)
=


0
0
vxd
vyd

. (7)

This result is rather intuitive: moving only the last two joints, each by the corresponding component of
the end-effector desired velocity, involves the displacement of the minimum amount of mass, and is thus
the minimum kinetic energy solution. By this observation, the use of the following intermediate matrix
computations is really unnecessary:

M−1 =


1

m1+m2
0 − 1

m1+m2
0

0 1
m2+m3

0 − 1
m2+m3

− 1
m1+m2

0 m1+m2+m3+m4
(m1+m2)(m3+m4)

0

0 − 1
m2+m3

0 m2+m3+m4
m4(m2+m3)

, JM−1JT =

(
1

m3+m4
0

0 1
m4

)
.

In comparison with (7), the minimum velocity norm solution

q̇ = J#vd =


0.5 0
0 0.5

0.5 0
0 0.5

(vxd
vyd

)
=

1

2


vxd
vyd
vxd
vyd


equally distributes the desired Cartesian velocity between the pairs of robot joints that move, respectively,
along the x and the y directions.

Exercise #4

We need to compute the kinetic energy of the three links. For i = 1, 2, 3, denote by mi the mass of link i,
by li its kinematic length (i.e., the parameter di or ai of the DH convention), and by iIci and irci ∈ R3,
respectively its 3 × 3 barycentric inertia matrix (for the third short link, this matrix is assumed to be
diagonal and uniform) and the constant position vector of its center of mass (CoM), both expressed in the
local DH frame. Because of the assumptions on the location of the CoMs of the links, only one component
of each irci will be different from zero. With reference to Fig. 4, we have

1rc1 =

 0

−dc1
0

, 2rc2 =

 0

dc2

0

, 3rc3 =

 −l3 + dc3

0

0

.
where dci > 0, for i = 1, 2, 3. For the first two links, computation of the kinetic energy is rather straight-
forward. For the third link, it is convenient to use the moving frame algorithm mainly to obtain 3ω3.

6

x0

y0

⊕

y3

q1

q3x1

y1 x2

⊕
z3

z0

q2

z1
⊕

z2

x3

dc2

dc1

dc3

𝜃!diai𝛼!i

q1l10𝜋/21

𝜋/2q20−𝜋/22

q30l303

Figure 4: Localization of the link CoMs and DH table for the spatial RPR robot.

Link 1

T1 =
1

2
Ic1,yy q̇

2
1 =

1

2
I1q̇

2
1 ,

where we set I1 = Ic1,yy for compactness. Note that the actual position of the CoM of link 1 along the
axis z0 = y1 is irrelevant.

Link 2

T2 =
1

2
m2

(
(rc2,y − q2)2 q̇21 + q̇22

)
+

1

2
Ic2,xx q̇

2
1 =

1

2

(
m2 (q2 − dc2)2 + I2

)
q̇21 +

1

2
m2 q̇

2
2 ,

where rc2,y = dc2 > 0 is the distance of the CoM of link 2 from the axis of joint 3 and we set Ic2,xx = I2
for compactness.

Link 3

Since dc3 > 0 is the distance of the CoM of link 3 from the axis of joint 3, we have

pc3 =

 (q2 − dc3s3) s1

− (q2 − dc3s3) c1

l1 + dc3c3

 ⇒ vc3 = ṗc3 =

 (q2 − dc3s3) c1q̇1 + (q̇2 − dc3c3 q̇3) s1

(q2 − dc3s3) s1q̇1 − (q̇2 − dc3c3 q̇3) c1

−dc3s3 q̇3

.
Moreover,

1ω1 =

 0
q̇1
0

 ⇒ 2ω2 = 1RT
2

1ω2 =

 0 1 0
0 0 −1
−1 0 0

 0
q̇1
0

 =

 q̇1
0
0

 ,

and so

3ω3 = 2RT
3 (q3)

2ω2 +

 0
0
q̇3

 =

 c3 s3 0
−s3 c3 0

0 0 1

 q̇1
0
q̇3

 =

 c3 q̇1
−s3 q̇1
q̇3

 .

Therefore,

T3 =
1

2
m3 v

T
c3vc3 +

1

2
3ωT

3
3Ic3

3ω3

=
1

2
m3

(
(q2 − dc3s3)2 q̇21 + q̇22 + d2c3q̇

2
3 − 2dc3c3q̇2q̇3

)
+

1

2
I3
(
q̇21 + q̇23

)
.

7

As a result, the total kinetic energy is

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇,

with the robot inertia matrix given by

M(q) =

 m11(q2, q3) 0 0

0 m2 +m3 −m3dc3 c3

0 −m3dc3 c3 I3 +m3d
2
c3

, (8)

where

m11(q2, q3) = I1 + I2 +m2d
2
c2 + I3 − 2m2dc2q2 + (m2 +m3)q22 − 2m3dc3q2s3 +m3d

2
c3s

2
3.

Note finally that by defining the six dynamic coefficients

a1 = I1 + I2 +m2d
2
c2 + I3

a2 = −m2dc2

a3 = m2 +m3

a4 = −m3dc3

a5 = m3d
2
c3

a6 = I3 +m3d
2
c3,

the inertia matrix (8) is exactly the same input matrix (3) of the next exercise.

Exercise #5

This exercise is solved by the following symbolic code of MATLAB.

syms q1 q2 q3 dq1 dq2 dq3 ddq1 ddq2 ddq3 a1 a2 a3 a4 a5 a6 real

disp(‘the given robot inertia matrix’)

M=[a1+2*a2*q2+a3*q22+2*a4*q2*sin(q3)+a5*(sin(q3))2 0 0;

0 a3 a4*cos(q3);

0 a4*cos(q3) a6]

disp(‘Christoffel matrices’)

q=[q1;q2;q3];

M1=M(:,1);

C1=(1/2)*(jacobian(M1,q)+jacobian(M1,q)’-diff(M,q1))

M2=M(:,2);

C2=(1/2)*(jacobian(M2,q)+jacobian(M2,q)’-diff(M,q2))

M3=M(:,3);

C3=(1/2)*(jacobian(M3,q)+jacobian(M3,q)’-diff(M,q3))

disp(‘robot centrifugal and Coriolis terms’)

dq=[dq1;dq2;dq3];

c1=dq’*C1*dq;

c2=dq’*C2*dq;

c3=dq’*C3*dq;

c=[c1;c2;c3]

disp(‘time derivative of the inertia matrix’)

dM=diff(M,q1)*dq1+diff(M,q2)*dq2+diff(M,q3)*dq3

8

disp(‘skew-symmetric factorization of velocity terms’)

S1=dq’*C1;

S2=dq’*C2;

S3=dq’*C3;

S=[S1;S2;S3]

disp(‘check skew-symmetry of N=dM-2*S’)

N=simplify(dM-2*S)

N plus NT=simplify(N+N’)

disp(‘a second, different factorization of velocity terms (yet with skew-symmetry)’)

SS=[0 -dq3 dq2;dq3 0 -dq1;-dq2 dq1 0]

Sprime=S+SS

%namely, obtained by adding to S a skew symmetric matrix SS such that SS*dq=0

disp(‘check validity of Sprime and skew-symmetry of N=dM-2*Sprime’)

checkzero=simplify(c-Sprime*dq)

Nprime=simplify(dM-2*Sprime)

Nprime plus NprimeT=simplify(Nprime+Nprime’)

disp(‘a third factorization of velocity terms (without skew-symmetry)’)

S2prime=S+[0 -dq3 dq2;dq3 0 -dq1;0 0 0]

disp(‘check validity of S2prime and absence of skew-symmetry of N=dM-2*S2prime’)

checkzero=simplify(c-S2prime*dq)

N2prime=simplify(dM-2*S2prime)

N2prime plus N2primeT=simplify(N2prime+N2prime’)

disp(‘regressor Y in linear parametrization Y(q,dq,ddq)*a=tau’)

ddq=[ddq1;ddq2;ddq3];

tau=M*ddq+c;

a=[a1;a2;a3;a4;a5;a6];

Y=simplify(jacobian(tau,a))

The output of this code yields the matrices of Christoffel symbols

C1(q) =

 0 a2 + a3q2 + a4s3 (a4q2 + a5s3) c3

a2 + a3q2 + a4s3 0 0

(a4q2 + a5s3) c3 0 0


C2(q) =

 − (a2 + a3q2 + a4s3) 0 0

0 0 0

0 0 −a4s3


C3(q) =

 − (a4q2 + a5s3) c3 0 0

0 0 0

0 0 0

 ,

(9)

from which the Coriolis and centrifugal terms are obtained (with ci(q, q̇) = q̇TCi(q)q̇, for i = 1, 2, 3):

c(q, q̇) =

 2 (a2 + a3q2 + a4s3) q̇1q̇2 + 2 (a4q2 + a5s3) c3 q̇1q̇3

− (a2 + a3q2 + a4s3) q̇21 − a4s3 q̇23
− (a4q2 + a5s3) c3 q̇

2
1

. (10)

9

The time derivative of the inertia matrix is

Ṁ =

 2 (a2 + a3q2 + a4s3) q̇2 + 2 (a4q2 + a5s3) c3 q̇3 0 0

0 0 −a4s3 q̇3
0 −a4s3 q̇3 0

.
The standard factorization of (10) yielding the skew-symmetric property is given by the matrix having its
rows ST

i built with the Christoffel matrices (ST
i (q, q̇) = q̇TCi(q), for i = 1, 2, 3):

S(q, q̇) =

 (a2 + a3q2 + a4s3) q̇2 + (a4q2 + a5s3) c3 q̇3 (a2 + a3q2 + a4s3) q̇1 (a4q2 + a5s3) c3 q̇1

− (a2 + a3q2 + a4s3) q̇1 0 −a4s3 q̇3
− (a4q2 + a5s3) c3 q̇1 0 0

 .

A different factorization yielding again the skew-symmetric property is obtained by adding a skew-symmetric
matrix Skew(q̇) built with the components of q̇,

S′(q, q̇) = S(q, q̇) + Skew(q̇) = S(q, q̇) +

 0 −q̇3 q̇2

q̇3 0 −q̇1
−q̇2 q̇1 0

,
which is certainly another valid factorization of c(q, q̇), being Skew(q̇)q̇ = q̇× q̇ = 0. Both choices lead in
fact to the skew-symmetry, respectively of

Ṁ − 2S =

 0 −2 (a2 + a3q2 + a4s3) q̇1 −2 (a4q2 + a5s3) c3 q̇1

2 (a2 + a3q2 + a4s3) q̇1 0 a4s3 q̇3

2 (a4q2 + a5s3) c3 q̇1 −a4s3 q̇3 0


and of

Ṁ−2S′ =

 0 −2 (a2 + a3q2 + a4s3) q̇1 + 2q̇3 −2 (a4q2 + a5s3) c3 q̇1 − 2q̇2

2 (a2 + a3q2 + a4s3) q̇1 − 2q̇3 0 2q̇1 + a4s3 q̇3

2 (a4q2 + a5s3) c3 q̇1 + 2q̇2 −2q̇1 − a4s3 q̇3 0

.
On the other hand, the choice

S′′(q, q̇) = S(q, q̇) +

 0 −q̇3 q̇2

q̇3 0 −q̇1
0 0 0


is still a feasible factorization, being S′′(q, q̇)q̇ = S(q, q̇)q̇ = c(q, q̇), but leads to a matrix

Ṁ−2S′′ =

 0 −2 (a2 + a3q2 + a4s3) q̇1 + 2q̇3 −2 (a4q2 + a5s3) c3 q̇1 − 2q̇2

2 (a2 + a3q2 + a4s3) q̇1 − 2q̇3 0 2q̇1 + a4s3 q̇3

2 (a4q2 + a5s3) c3 q̇1 −a4s3 q̇3 0


which is not skew-symmetric.

Finally, the regressor matrix Y (q, q̇, q̈) that linearly parametrizes the robot dynamics (in the absence of
gravity), i.e.,

M(q)q̈ + c(q, q̇) = Y (q, q̇, q̈)a,

is obtained from (3) and (10) as

Y =

 q̈1 2 (q2 q̈1 + q̇1q̇2) q22 q̈1 + 2q2 q̇1q̇2 2 (q2s3 q̈1 + (s3 q̇2 + q2c3 q̇3)q̇1) s23 q̈1 + 2s3c3 q̇1q̇3 0

0 −q̇21 q̈2 − q2 q̇21 c3 q̈3 − s3
(
q̇21 + q̇23

)
0 0

0 0 0 c3
(
q̈2 − q2 q̇21

)
−s3c3 q̇21 q̈3

.

10

Exercise #6

The 2-dof system under consideration is a PR robot, as sketched in Fig. 5 together with its relevant
dynamic parameters. The kinetic energy of this robot is

T1 =
1

2
m1q̇

2
1 , T2 =

1

2
m2

(
q̇21 + d2c q̇

2
2

)
+

1

2
Ic2q̇

2
2 ⇒ T = T1 + T2 =

1

2
q̇TMq̇,

with

M =

(
m1 +m2 0

0 Ic2 +m2d
2
c2

)
=

(
M1 0

0 M2

)
,

while the potential energy due to gravity and the corresponding gravity term are

U1 = m1g0q1, U2 = m2g0q1 ⇒ U = U1 + U2 ⇒ g =
∂U

∂q
=

(
(m1 +m2) g0

0

)
=

(
g1
0

)
with g0 = 9.81 [m/s2]. As a result, the dynamic model of this PR robot is given by two linear and decoupled
differential equations:

M1q̈1 + g1 = u1

M2q̈2 = u2.
(11)

q1
m1

g0
⊕
m2

q2
Ic2

⊕

dc2

Figure 5: The PR robot with first and second axis coincident and vertical.

The desired rest-to-rest joint trajectory is the cubic polynomial

qd(t) = ∆q

(
3

(
t

T

)2
− 2

(
t

T

)3)
, t ∈ [0, T],

where T is the (coordinated) motion time. The associated acceleration has a linear profile in time

q̈d(t) =
6∆q

T 2

(
1− 2

(
t

T

))
.

From the bounds |ui| ≤ Umax,i, i = 1, 2, and from eqs. (11) it follows that the maximum absolute value of
the acceleration, which is reached at t = 0 and t = T ,

|q̈d(0)| = |q̈d(T)| = 6 |∆q|
T 2

,

should satisfy componentwise

M1
6 |∆q1|
T 2

≤ Umax,1 − g1, M2
6 |∆q2|
T 2

≤ Umax,2.

11

Therefore, the minimum feasible motion time is given by

T ∗ = max

{√
6|∆q1|M1

Umax,1 − g1
,

√
6|∆q2|M2

Umax,2

}
,

which is well defined since Umax,1 − g1 > 0 by assumption.

∗ ∗ ∗ ∗ ∗

12

