Robotics 2

Midterm Test - April 13, 2022

Exercise \#1

We need to calibrate the link lengths of a planar 2 R robot, whose nominal values are $\hat{l}_{1}=\hat{l}_{2}=1[\mathrm{~m}]$. All other kinematic parameters are assumed to be good enough. At four different DenavitHartenberg configurations \boldsymbol{q}, the following data (in $[\mathrm{m}]$) for the position $\boldsymbol{p} \in \mathbb{R}^{2}$ of the robot end-effector are collected by an accurate external measurement system:

$$
\begin{array}{lll}
\boldsymbol{q}_{a}=(0,0) & \Rightarrow & \boldsymbol{p}_{a}=(2,0) \\
\boldsymbol{q}_{b}=(\pi / 2,0) & \Rightarrow & \boldsymbol{p}_{b}=(0,2) \\
\boldsymbol{q}_{c}=(\pi / 4,-\pi / 4) & \Rightarrow & \boldsymbol{p}_{c}=(1.6925,0.7425) \\
\boldsymbol{q}_{d}=(0, \pi / 4) & \Rightarrow & \boldsymbol{p}_{d}=(1.7218,0.6718) .
\end{array}
$$

Provide the best estimate of the actual lengths l_{1} and l_{2} of the two robot links, using the above information. Is this calibration problem linear or nonlinear?

Exercise \#2

A robot is driven by joint acceleration commands $\ddot{\boldsymbol{q}} \in \mathbb{R}^{n}$ which are kept constant for a (sufficiently small) sampling time T_{c}, i.e., $\ddot{\boldsymbol{q}}(t)=\ddot{\boldsymbol{q}}_{k}$, for $t \in\left[t_{k}, t_{k+1}\right)=\left[t_{k}, t_{k}+T_{c}\right)$. Thus, the next velocity at time $t=t_{k+1}$ can be expressed as $\dot{\boldsymbol{q}}_{k+1}=\dot{\boldsymbol{q}}\left(t_{k+1}\right)=\dot{\boldsymbol{q}}_{k}+T_{c} \ddot{\boldsymbol{q}}_{k}$. At time $t=t_{k}$, the robot is in the state $\left(\boldsymbol{q}_{k}, \dot{\boldsymbol{q}}_{k}\right)$ and has to realize a desired task acceleration $\ddot{\boldsymbol{r}}_{d, k} \in \mathbb{R}^{m}$, with $m<n$, being the task function $\boldsymbol{r}=\boldsymbol{f}(\boldsymbol{q})$. What is the expression of the command $\ddot{\boldsymbol{q}}_{k}$ that executes the task while minimizing the squared norm of the joint velocity at the next sampled instant t_{k+1} ?

Exercise \#3

Consider the spatial 3R robot in Fig. 1. Using the D-H generalized coordinates defined therein, compute the robot inertia matrix $\boldsymbol{M}(\boldsymbol{q})$. Assume that the links have their center of mass on $\boldsymbol{x}_{1}, \boldsymbol{y}_{2}$, and \boldsymbol{x}_{3}, respectively, and that the barycentric link inertia matrices are diagonal, i.e., ${ }^{i} \boldsymbol{I}_{c i}=\operatorname{diag}\left\{I_{c i, x x}, I_{c i, y y}, I_{c i, z z}\right\}, i=1,2,3$.

Figure 1: A spatial 3R robot, with D-H frames assigned to each link.

Exercise \#4

A planar 3 R robot with unitary link lengths is commanded by a joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$ with components bounded as $\left|\dot{q}_{i}\right| \leq 2[\mathrm{rad} / \mathrm{s}], i=1,2,3$. The D-H joint variables have limited ranges specified by

$$
q_{1} \in[-\pi / 2, \pi / 2], \quad q_{2} \in[0,2 \pi / 3], \quad q_{3} \in[-\pi / 4, \pi / 4] .
$$

At the configuration $\widehat{\boldsymbol{q}}=(2 \pi / 5, \pi / 2,-\pi / 4)$, the robot should move its end-effector horizontally with a speed $v_{x}=-3[\mathrm{~m} / \mathrm{s}]$, while trying to keep the joints close to their midranges. Compute the value of the instantaneous joint velocity $\dot{\boldsymbol{q}}$ that performs the Cartesian task while improving at best the criterion $H_{\text {range }}(\boldsymbol{q})$. Check if this joint velocity is feasible and, if not, perform the least end-effector task scaling to recover feasibility.

Exercise \#5

Figure 2 shows a PR robot and its inertia matrix, already expressed in terms of three dynamic coefficients a, b and c. The robot moves in a vertical plane. A task trajectory $y_{d}(t) \in \mathbb{R}$ is assigned to the coordinate y of the end-effector position. With the robot being at rest in the configuration $\overline{\boldsymbol{q}}=\left(\begin{array}{ll}1 & \pi / 2\end{array}\right)^{T}$, provide the joint force/torque inputs $\boldsymbol{\tau}_{A} \in \mathbb{R}^{2}$ and $\boldsymbol{\tau}_{B} \in \mathbb{R}^{2}$ executing the desired task that instantaneously minimize, respectively,

$$
H_{A}=\frac{1}{2}\|\boldsymbol{\tau}\|^{2} \quad \text { or } \quad H_{B}=\frac{1}{2}\|\boldsymbol{\tau}\|_{M^{-2}(\overline{\boldsymbol{q}})}^{2} .
$$

Which of the two solutions $\boldsymbol{\tau}_{A}$ and $\boldsymbol{\tau}_{B}$ has the largest first component in absolute value?

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{cc}
a & b \cos q_{2} \\
b \cos q_{2} & c
\end{array}\right)>0
$$

Figure 2: A planar PR robot and its inertia matrix.

Exercise \#6

For the same PR robot in Fig. 2, determine the gravity term $\boldsymbol{g}(\boldsymbol{q})$ in the dynamic model and define a tight upper bound $\alpha>0$ on the norm of the square matrix $\partial \boldsymbol{g}(\boldsymbol{q}) / \partial \boldsymbol{q}$, for any value of \boldsymbol{q}.
[180 minutes (3 hours); open books]

Solution

April 13, 2022

Exercise \#1

This calibration task is formulated as a linear least squares problem. In fact, the relevant measurement equations for the planar 2 R robot can be written as

$$
\Delta \boldsymbol{p}=\boldsymbol{p}-\hat{\boldsymbol{p}}=\binom{l_{1} c_{1}+l_{2} c_{12}}{l_{1} s_{1}+l_{2} s_{12}}-\binom{\hat{l}_{1} c_{1}+\hat{l}_{2} c_{12}}{\hat{l}_{1} s_{1}+\hat{l}_{2} s_{12}}=\binom{\Delta l_{1} c_{1}+\Delta l_{2} c_{12}}{\Delta l_{1} s_{1}+\Delta l_{2} s_{12}}=\left(\begin{array}{ll}
c_{1} & c_{12} \\
s_{1} & s_{12}
\end{array}\right)\binom{\Delta l_{1}}{\Delta l_{2}}
$$

or

$$
\Delta \boldsymbol{p}=\boldsymbol{\Phi}(\boldsymbol{q}) \Delta \boldsymbol{l}, \quad \text { with } \boldsymbol{\Phi}(\boldsymbol{q})=\left(\begin{array}{cc}
c_{1} & c_{12} \\
s_{1} & s_{12}
\end{array}\right)
$$

without the need of any local approximation because the link lengths appear linearly in the direct kinematics of the robot. From the nominal model, we compute in the chosen configurations

$$
\hat{\boldsymbol{p}}_{a}=\binom{2}{0}, \quad \hat{\boldsymbol{p}}_{b}=\binom{0}{2}, \quad \hat{\boldsymbol{p}}_{c}=\binom{1.7071}{0.7071}, \quad \hat{\boldsymbol{p}}_{d}=\binom{1.7071}{0.7071}
$$

Note that the first two nominal positions of the end-effector correspond to the measured ones. Stacking the results of the four experiments, we obtain the overdetermined linear system of equations

$$
\Delta \overline{\boldsymbol{p}}=\left(\begin{array}{c}
\Delta \boldsymbol{p}_{a} \\
\Delta \boldsymbol{p}_{b} \\
\Delta \boldsymbol{p}_{c} \\
\Delta \boldsymbol{p}_{c}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{\Phi}\left(\boldsymbol{q}_{a}\right) \\
\boldsymbol{\Phi}\left(\boldsymbol{q}_{b}\right) \\
\boldsymbol{\Phi}\left(\boldsymbol{q}_{c}\right) \\
\boldsymbol{\Phi}\left(\boldsymbol{q}_{d}\right)
\end{array}\right) \Delta \boldsymbol{l}=\overline{\boldsymbol{\Phi}} \Delta \boldsymbol{l}
$$

or

$$
\Delta \overline{\boldsymbol{p}}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-0.0146 \\
0.0354 \\
0.0146 \\
-0.0354
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
0.7071 & 1 \\
0.7071 & 0 \\
1 & 0.7071 \\
0 & 0.7071
\end{array}\right) \Delta \boldsymbol{l}=\overline{\boldsymbol{\Phi}} \Delta \boldsymbol{l} .
$$

By pseudoinversion of the 8×2 matrix $\overline{\boldsymbol{\Phi}}$, we obtain the value that minimizes the estimation error in a least squares sense,

$$
\begin{equation*}
\Delta \boldsymbol{l}=\overline{\boldsymbol{\Phi}}^{\#} \Delta \overline{\boldsymbol{p}}=\binom{0.05}{-0.05}=\binom{\Delta l_{1}}{\Delta l_{2}} \tag{1}
\end{equation*}
$$

Therefore, the resulting estimates of the lengths of the two links are

$$
l_{1}=\hat{l}_{1}+\Delta l_{1}=1.05, \quad l_{2}=\hat{l}_{2}+\Delta l_{2}=0.95 \quad[\mathrm{~m}]
$$

We finally note that the second and third regressor equations provide no information (all zeros!), whereas the fourth equation is a repetition of the first one. These phenomena are related to the singularity of the $\boldsymbol{\Phi}(\boldsymbol{q})$ matrix when $\sin q_{2}=0$ (e.g., in the configurations \boldsymbol{q}_{a} and \boldsymbol{q}_{b} - not the best choices for calibration!). Therefore, these rows can be safely eliminated from the computation without any change in the final result.

Exercise \#2

We are in the presence of redundancy $(m<n)$. The objective function to be minimized at time $t=t_{k}$ is a complete quadratic function of the joint acceleration $\ddot{\boldsymbol{q}}_{k}$, the input to be chosen. We have

$$
H\left(\ddot{\boldsymbol{q}}_{k}\right)=\frac{1}{2}\left\|\dot{\boldsymbol{q}}_{k+1}\right\|^{2}=\frac{1}{2}\left\|\dot{\boldsymbol{q}}_{k}+T_{c} \ddot{\boldsymbol{q}}_{k}\right\|^{2}=\frac{T_{c}^{2}}{2} \ddot{\boldsymbol{q}}_{k}^{T} \ddot{\boldsymbol{q}}_{k}+T_{c} \dot{\boldsymbol{q}}_{k}^{T} \ddot{\boldsymbol{q}}_{k}+c
$$

with the constant $c=\frac{1}{2} \dot{\boldsymbol{q}}_{k}^{T} \dot{\boldsymbol{q}}_{k}$. The unconstrained minimization of $H\left(\ddot{\boldsymbol{q}}_{k}\right)$ would yield the preferred acceleration $\ddot{\boldsymbol{q}}_{k}=-\dot{\boldsymbol{q}}_{k} / T_{c}$, which produces in fact a zero value for the non-negative objective function H. However, the required robot task is expressed by imposing the equality constraint

$$
\boldsymbol{J}\left(\boldsymbol{q}_{k}\right) \ddot{\boldsymbol{q}}_{k}=\ddot{\boldsymbol{r}}_{d, k}-\dot{\boldsymbol{J}}\left(\boldsymbol{q}_{k}\right) \dot{\boldsymbol{q}}_{k}
$$

which is linear in the joint acceleration. Thus, the problem is in the standard form of LQ optimization and the solution is found by applying the general formula with $\boldsymbol{x}=\ddot{\boldsymbol{q}}_{k}, \boldsymbol{W}=T_{c}^{2} \boldsymbol{I}$, $\boldsymbol{x}_{0}=-\dot{\boldsymbol{q}}_{k} / T_{c}$, and $\boldsymbol{y}=\ddot{\boldsymbol{r}}_{d, k}-\dot{\boldsymbol{J}}\left(\boldsymbol{q}_{k}\right) \dot{\boldsymbol{q}}_{k}$ (see the slides). Assuming a full rank Jacobian, we obtain

$$
\begin{align*}
\ddot{\boldsymbol{q}}_{k} & =-\frac{\dot{\boldsymbol{q}}_{k}}{T_{c}}+\frac{1}{T_{c}^{2}} \boldsymbol{J}^{T}\left(\boldsymbol{q}_{k}\right)\left(\frac{1}{T_{c}^{2}} \boldsymbol{J}\left(\boldsymbol{q}_{k}\right) \boldsymbol{J}^{T}\left(\boldsymbol{q}_{k}\right)\right)^{-1}\left(\ddot{\boldsymbol{r}}_{d, k}-\dot{\boldsymbol{J}}\left(\boldsymbol{q}_{k}\right) \dot{\boldsymbol{q}}_{k}-\boldsymbol{J}\left(\boldsymbol{q}_{k}\right)\left(-\frac{\dot{\boldsymbol{q}}_{k}}{T_{c}}\right)\right) \\
& =-\frac{\dot{\boldsymbol{q}}_{k}}{T_{c}}+\boldsymbol{J}^{T}\left(\boldsymbol{q}_{k}\right)\left(\boldsymbol{J}\left(\boldsymbol{q}_{k}\right) \boldsymbol{J}^{T}\left(\boldsymbol{q}_{k}\right)\right)^{-1}\left(\ddot{\boldsymbol{r}}_{d, k}-\dot{\boldsymbol{J}}\left(\boldsymbol{q}_{k}\right) \dot{\boldsymbol{q}}_{k}+\boldsymbol{J}\left(\boldsymbol{q}_{k}\right) \frac{\dot{\boldsymbol{q}}_{k}}{T_{c}}\right) \tag{2}\\
& =\boldsymbol{J}^{\#}\left(\boldsymbol{q}_{k}\right)\left(\ddot{\boldsymbol{r}}_{d, k}-\dot{\boldsymbol{J}}\left(\boldsymbol{q}_{k}\right) \dot{\boldsymbol{q}}_{k}\right)-\left(\boldsymbol{I}-\boldsymbol{J}^{\#}\left(\boldsymbol{q}_{k}\right) \boldsymbol{J}\left(\boldsymbol{q}_{k}\right)\right) \frac{\dot{\boldsymbol{q}}_{k}}{T_{c}} .
\end{align*}
$$

Exercise \#3

We compute the kinetic energy of the three links. Denote by m_{i} the mass of link i, by l_{i} its length (i.e., the parameter d_{i} or a_{i} of the D-H convention), and by ${ }^{i} \boldsymbol{I}_{c i}=\operatorname{diag}\left\{I_{c i, x x}, I_{c i, y y}, I_{c i, z z}\right\}$ its inertia matrix, for $i=1,2,3$. Moreover, let $d_{c i}>0$ be the distance of the center of mass (CoM) of link i from the axis of joint i; because of the assumption on the location of the CoM of each link, only one scalar is needed for each link ${ }^{1}$.

Link 1

$$
T_{1}=\frac{1}{2}\left(I_{c 1, z z}+m_{1} d_{c 1}^{2}\right) \dot{q}_{1}^{2}
$$

Link 2

$$
T_{2}=\frac{1}{2} m_{2} l_{1}^{2} \dot{q}_{1}^{2}+\frac{1}{2} I_{c 2, y y}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}
$$

Link 3

$\boldsymbol{p}_{c 3}=\left(\begin{array}{c}l_{1} c_{1}+d_{c 3} c_{3} c_{12} \\ l_{1} s_{1}+d_{c 3} c_{3} s_{12} \\ l_{2}+d_{c 3} s_{3}\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}_{c 3}=\dot{\boldsymbol{p}}_{c 3}=\left(\begin{array}{c}-\left(l_{1} s_{1} \dot{q}_{1}+d_{c 3} c_{3} s_{12}\left(\dot{q}_{1}+\dot{q}_{2}\right)+d_{c 3} s_{3} c_{12} \dot{q}_{3}\right) \\ l_{1} c_{1} \dot{q}_{1}+d_{c 3} c_{3} c_{12}\left(\dot{q}_{1}+\dot{q}_{2}\right)-d_{c 3} s_{3} s_{12} \dot{q}_{3} \\ d_{c 3} c_{3} \dot{q}_{3}\end{array}\right)$
${ }^{1} \boldsymbol{\omega}_{1}=\left(\begin{array}{c}0 \\ 0 \\ \dot{q}_{1}\end{array}\right) \Rightarrow{ }^{2} \boldsymbol{\omega}_{2}=\left(\begin{array}{c}0 \\ \dot{q}_{1}+\dot{q}_{2} \\ 0\end{array}\right) \Rightarrow{ }^{3} \boldsymbol{\omega}_{3}={ }^{2} \boldsymbol{R}_{3}^{T}\left(q_{3}\right)\left({ }^{2} \boldsymbol{\omega}_{2}+\left(\begin{array}{c}0 \\ 0 \\ \dot{q}_{3}\end{array}\right)\right)=\left(\begin{array}{c}s_{3}\left(\dot{q}_{1}+\dot{q}_{2}\right) \\ c_{3}\left(\dot{q}_{1}+\dot{q}_{2}\right) \\ \dot{q}_{3}\end{array}\right)$

[^0]\[

$$
\begin{aligned}
T_{3}= & \frac{1}{2} m_{3} \boldsymbol{v}_{c 3}^{T} \boldsymbol{v}_{c 3}+\frac{1}{2}{ }^{3} \boldsymbol{\omega}_{3}^{T}{ }^{3} \boldsymbol{I}_{c 3}{ }^{3} \boldsymbol{\omega}_{3} \\
= & \frac{1}{2} m_{3}\left(l_{1}^{2} \dot{q}_{1}^{2}+d_{c 3}^{3} c_{3}^{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+2 l_{1} d_{c 3}\left(c_{2} c_{3} \dot{q}_{1}\left(\dot{q}_{1}+\dot{q}_{2}\right)-s_{2} s_{3} \dot{q}_{1} \dot{q}_{3}\right)\right) \\
& +\frac{1}{2}\left(I_{c 3, x x} s_{3}^{2}+I_{c 3, y y} c_{3}^{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+\frac{1}{2} I_{c 3, z z} \dot{q}_{3}^{2} .
\end{aligned}
$$
\]

Inertia matrix

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{ccc}
m_{11}\left(q_{2}, q_{3}\right) & m_{12}\left(q_{2}, q_{3}\right) & m_{13}\left(q_{2}, q_{3}\right) \tag{3}\\
m_{12}\left(q_{2}, q_{3}\right) & m_{22}\left(q_{3}\right) & 0 \\
m_{13}\left(q_{2}, q_{3}\right) & 0 & m_{33}
\end{array}\right)
$$

with

$$
\begin{aligned}
m_{11}\left(q_{2}, q_{3}\right) & =I_{c 1, z z}+m_{1} d_{c 1}^{2}+I_{c 2, y y}+\left(m_{2}+m_{3}\right) l_{1}^{2}+m_{3} d_{c 3}^{2} c_{3}^{2}+2 m_{3} l_{1} d_{c 3} c_{2} c_{3}+\left(I_{c 3, x x} s_{3}^{2}+I_{c 3, y y} c_{3}^{2}\right) \\
m_{12}\left(q_{2}, q_{3}\right) & =I_{c 2, y y}+m_{3} d_{c 3}^{2} c_{3}^{2}+m_{3} l_{1} d_{c 3} c_{2} c_{3}+\left(I_{c 3, x x} s_{3}^{2}+I_{c 3, y y} c_{3}^{2}\right) \\
m_{13}\left(q_{2}, q_{3}\right) & =-m_{3} l_{1} d_{c 3} s_{2} s_{3} \\
m_{22}\left(q_{3}\right) & =I_{c 2, y y}+m_{3} d_{c 3}^{2} c_{3}^{2}+\left(I_{c 3, x x} s_{3}^{2}+I_{c 3, y y} c_{3}^{2}\right) \\
m_{33} & =I_{c 3, z z}+m_{3} d_{c 3}^{2} .
\end{aligned}
$$

Note finally that one can remove the presence of s_{3}^{2} by replacing it everywhere with $\left(1-c_{3}^{2}\right)$. This is also what MATLAB does when applying a simplify instruction to the symbolic expressions. The affected elements of $\boldsymbol{M}(\boldsymbol{q})$ become then

$$
\begin{aligned}
m_{11}\left(q_{2}, q_{3}\right) & =I_{c 1, z z}+m_{1} d_{c 1}^{2}+I_{c 2, y y}+\left(m_{2}+m_{3}\right) l_{1}^{2}+I_{c 3, x x}+2 m_{3} l_{1} d_{c 3} c_{2} c_{3}+\left(I_{c 3, y y}+m_{3} d_{c 3}^{2}-I_{c 3, x x}\right) c_{3}^{2} \\
m_{12}\left(q_{2}, q_{3}\right) & =I_{c 2, y y}+I_{c 3, x x}+m_{3} l_{1} d_{c 3} c_{2} c_{3}+\left(I_{c 3, y y}+m_{3} d_{c 3}^{2} c_{3}^{2}-I_{c 3, x x}\right) c_{3}^{2} \\
m_{22}\left(q_{3}\right) & =I_{c 2, y y}+I_{c 3, x x}+\left(I_{c 3, y y}+m_{3} d_{c 3}^{2}-I_{c 3, x x}\right) c_{3}^{2} .
\end{aligned}
$$

Exercise \#4

The planar 3R robot $(n=3)$ is redundant for the Cartesian position task $(m=2)$. When the joint limits are not regarded as hard constraints, the solution to the stated problem is

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{\#}(\boldsymbol{q}) \dot{\boldsymbol{r}}-\left(\boldsymbol{I}-\boldsymbol{J}^{\#}(\boldsymbol{q}) \boldsymbol{J}(\boldsymbol{q})\right) \nabla_{q} H_{\text {range }}(\boldsymbol{q})
$$

where the task velocity is

$$
\boldsymbol{r}=\binom{p_{x}}{p_{y}} \quad \Rightarrow \quad \dot{r}=\binom{v_{x}}{v_{y}}=\binom{-3}{0}
$$

and the associated Jacobian, evaluated at $\widehat{\boldsymbol{q}}=(2 \pi / 5, \pi / 2,-\pi / 4)$, is given by

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{ccc}
-\left(s_{1}+s_{12}+s_{123}\right) & -\left(s_{12}+s_{123}\right) & -s_{123} \\
c_{1}+c_{12}+c_{123} & c_{12}+c_{123} & c_{123}
\end{array}\right) \Rightarrow \boldsymbol{J}=\left(\begin{array}{ccc}
-2.1511 & -1.2000 & -0.8910 \\
-1.0960 & -1.4050 & -0.4540
\end{array}\right) .
$$

For each joint i, we have a range $\left[q_{m, i}, q_{M, i}\right]$ and a midrange $\bar{q}_{i}=\left(q_{M, i}+q_{m, i}\right) / 2$. As a result, the objective function to be minimized is

$$
H_{\text {range }}(\boldsymbol{q})=\frac{1}{2 n} \sum_{i=1}^{n} \frac{\left(q_{i}-\bar{q}_{i}\right)^{2}}{\left(q_{M, i}-q_{m, i}\right)^{2}}=\frac{1}{6}\left(\frac{q_{1}^{2}}{\pi^{2}}+\frac{\left(q_{2}-(\pi / 3)\right)^{2}}{(2 \pi / 3)^{2}}+\frac{q_{3}^{2}}{(\pi / 2)^{2}}\right)
$$

Its gradient evaluated at $\widehat{\boldsymbol{q}}=(2 \pi / 5, \pi / 2,-\pi / 4)$ is

$$
\nabla_{q} H_{\text {range }}(\boldsymbol{q})=\frac{1}{3}\left(\begin{array}{c}
q_{1} / \pi^{2} \\
\left(q_{2}-\pi / 3\right) /(2 \pi / 3)^{2} \\
q_{3} /(\pi / 2)^{2}
\end{array}\right) \quad \Rightarrow \quad \nabla_{q} H_{\text {range }}=\left(\begin{array}{c}
0.0424 \\
0.0398 \\
-0.1061
\end{array}\right)
$$

As a result, the two terms of the solution are separately evaluated as

$$
\dot{\boldsymbol{q}}_{r}=\boldsymbol{J}^{\#} \dot{\boldsymbol{r}}=\left(\begin{array}{c}
2.1076 \\
-1.9261 \\
0.8730
\end{array}\right), \quad \dot{\boldsymbol{q}}_{n}=-\left(\boldsymbol{I}-\boldsymbol{J}^{\#} \boldsymbol{J}\right) \nabla_{q} H_{\text {range }}=\left(\begin{array}{c}
-0.0437 \\
0 \\
0.1056
\end{array}\right)
$$

yielding thus

$$
\dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}_{r}+\dot{\boldsymbol{q}}_{n}=\left(\begin{array}{c}
2.0638 \tag{4}\\
-1.9261 \\
0.9786
\end{array}\right)
$$

The first component of the solution exceeds the (positive) velocity bound. This is true as well for the minimum norm solution $\dot{\boldsymbol{q}}_{r}$; the first component of the null space term $\dot{\boldsymbol{q}}_{n}$, being negative, mildens the situation but is not sufficient to recover feasibility. Therefore, the largest scaling factor $k<1$ of the task velocity $\dot{\boldsymbol{r}}$ that allows to obtain a feasible solution w.r.t. the joint velocity bounds (uniformly equal to $\dot{q}_{\max }=2[\mathrm{rad} / \mathrm{s}]$ for all joints) is computed as follows:
$\dot{\boldsymbol{r}} \rightarrow k \dot{\boldsymbol{r}} \Rightarrow \dot{\boldsymbol{q}} \rightarrow k \dot{\boldsymbol{q}}_{r}+\dot{\boldsymbol{q}}_{n} \Rightarrow k \dot{q}_{r, 1}+\dot{q}_{n, 1} \stackrel{\downarrow}{=} \dot{q}_{\max } \Rightarrow k^{*}=\frac{\dot{q}_{\max }-\dot{q}_{n, 1}}{\dot{q}_{r, 1}}=\frac{2+0.0437}{2.1076}=0.9697$.
Therefore, the scaled task velocity and the scaled joint velocity that recovers feasibility are

$$
\dot{\boldsymbol{r}}_{s}=k^{*} \dot{\boldsymbol{r}}=\binom{-2.9091}{0} \quad \Rightarrow \quad \dot{\boldsymbol{q}}_{s}=k^{*} \dot{\boldsymbol{q}}_{r}+\dot{\boldsymbol{q}}_{n}=\left(\begin{array}{c}
2 \tag{5}\\
-1.8678 \\
0.9521
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{J} \dot{\boldsymbol{q}}_{s}=\binom{-2.9091}{0}
$$

It should be noted that, in this particular case, we could have chosen a larger step $\alpha>1$ (rather than $\alpha=1$) along the negative gradient direction of $H_{\text {range }}$ within the term $\dot{\boldsymbol{q}}_{n}$, thus recovering feasibility of the solution without the need of task scaling. On the other hand, a direct application of the SNS method to recover feasibility would not be correct, since the solution $\dot{\boldsymbol{q}}$ in (4) contains also a null-space term that does not scale with the task velocity $\dot{\boldsymbol{r}}$.

Exercise \#5

The planar PR robot $(n=2)$ is redundant with respect to a task of dimension $m=1$. For the specified (scalar) task, we have

$$
r=y=q_{1}+l_{2} s_{2} \quad \Rightarrow \quad \dot{r}=\dot{y}=\left(\begin{array}{cc}
1 & -l_{2} c_{2}
\end{array}\right)\binom{\dot{q}_{1}}{\dot{q}_{2}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

with the Jacobian being always full rank. The closed-form solutions to the two problems of dynamic redundancy optimization are obtained from the general LQ formulation as

$$
\tau_{A}=\left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q})\right)^{\#}\left(\ddot{\boldsymbol{r}}-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}+\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q})(\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q}))\right)
$$

and

$$
\boldsymbol{\tau}_{B}=\boldsymbol{M}(\boldsymbol{q}) \boldsymbol{J}^{\#}(\boldsymbol{q})\left(\ddot{\boldsymbol{r}}-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}+\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q})(\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q}))\right)
$$

Since the robot is at rest, the velocity terms \boldsymbol{c} and $\dot{\boldsymbol{J}} \dot{\boldsymbol{q}}$ are zero. Evaluating the inertia matrix and the task Jacobian in the configuration $\overline{\boldsymbol{q}}=\left(\begin{array}{ll}1 \pi / 2\end{array}\right)^{T}$,

$$
\boldsymbol{M}(\overline{\boldsymbol{q}})=\left(\begin{array}{cc}
a & 0 \\
0 & c
\end{array}\right), \quad \boldsymbol{J}(\overline{\boldsymbol{q}})=\left(\begin{array}{ll}
1 & 0
\end{array}\right),
$$

we compute

$$
\begin{align*}
\boldsymbol{\tau}_{A} & =\left(\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / c
\end{array}\right)\right)^{\#}\left(\ddot{y}_{d}+\left(\begin{array}{cc}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / c
\end{array}\right) \boldsymbol{g}(\boldsymbol{q})\right) \tag{6}\\
& =\left(\begin{array}{ll}
1 / a & 0
\end{array}\right)^{\#}\left(\ddot{y}_{d}+\left(\begin{array}{ll}
1 / a & 0
\end{array}\right) \boldsymbol{g}(\boldsymbol{q})\right)=\binom{a}{0}\left(\ddot{y}_{d}+(1 / a) g_{1}(\overline{\boldsymbol{q}})\right)=\binom{a \ddot{y}_{d}+g_{1}(\overline{\boldsymbol{q}})}{0} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
\boldsymbol{\tau}_{B} & =\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{\#}\left(\begin{array}{ll}
\left.\ddot{y}_{d}+\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / c
\end{array}\right) \boldsymbol{g}(\boldsymbol{q})\right) \\
& =\binom{a}{0}\left(\ddot{y}_{d}+(1 / a) g_{1}(\overline{\boldsymbol{q}})\right)=\binom{a \ddot{y}_{d}+g_{1}(\overline{\boldsymbol{q}})}{0}=\boldsymbol{\tau}_{A} .
\end{array} . . \begin{array}{l}
\end{array}\right)
\end{align*}
$$

As a result, the two solutions (6) and (7) are identical in this very particular case (in fact, it is here $\left(\boldsymbol{J} \boldsymbol{M}^{-1}\right)^{\#}=\boldsymbol{M} \boldsymbol{J}^{\#}$, an identity which is not true in general). Note that there is no need to derive the expression of the model term $\boldsymbol{g}(\boldsymbol{q})$ for this comparison.
A final remark is in order. The torque commands $\boldsymbol{\tau}_{A}$ and $\boldsymbol{\tau}_{B}$, which have been obtained above from the general solution of the associated constrained minimization problems, could have been found in this specific case by inspection. In the configuration $\overline{\boldsymbol{q}}$, the PR robot is fully stretched along the vertical y-axis. In addition, being the robot at rest, any torque applied at the second joint would give no contribution to the desired task acceleration \ddot{y}_{d}. Since we pursue in both cases a (weighted) minimum torque norm solution, the second joint torque τ_{2} should simply be zero; the entire task (task acceleration \ddot{y}_{d} in the vertical direction plus gravity compensation) is executed in a unique way by the first joint only.

Exercise \#6

The gravity term of the PR robot in Fig. 2 is obtained as the gradient of the sum of the potential energies of each link

$$
U_{i}(\boldsymbol{q})=-m_{i} \boldsymbol{g}^{T} \boldsymbol{r}_{0, c i}=-m_{i}\left(\begin{array}{lll}
0 & -g_{0} & 0
\end{array}\right) \boldsymbol{r}_{0, c i}=m_{i} g_{0} r_{0, c i_{y}}, \quad i=1,2 .
$$

Thus (neglecting an arbitrary constant), we have

$$
U(\boldsymbol{q})=U_{1}\left(q_{1}\right)+U_{2}\left(q_{1}, q_{2}\right)=m_{1} g_{0} q_{1}+m_{2} g_{0}\left(q_{1}+d_{c 2} s_{2}\right)
$$

that gives

$$
\boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\binom{\left(m_{1}+m_{2}\right) g_{0}}{m_{2} g_{0} d_{c 2} c_{2}} .
$$

The gradient of $\boldsymbol{g}(\boldsymbol{q})$ w.r.t. \boldsymbol{q} is the symmetric (here, negative semi-definite) Hessian matrix

$$
\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\frac{\partial^{2} U(\boldsymbol{q})}{\partial \boldsymbol{q}^{2}}=\left(\begin{array}{cc}
0 & 0 \\
0 & -m_{2} g_{0} d_{c 2} s_{2}
\end{array}\right)
$$

Its norm (associated to the standard Euclidean norm of vectors) is given by

$$
\left\|\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right\|=\sqrt{\lambda_{\max }\left\{\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\left(\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}\right\}}=\sqrt{\lambda_{\max }\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & m_{2}^{2} g_{0}^{2} d_{c 2}^{2} s_{2}^{2}
\end{array}\right)\right\}}=m_{2} g_{0} d_{c 2}\left|s_{2}\right|
$$

Thus, an upper bound for this norm is

$$
\begin{equation*}
\left\|\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right\| \leq \alpha=m_{2} g_{0} d_{c 2}, \quad \forall \boldsymbol{q} \tag{8}
\end{equation*}
$$

This upper bound is tight, being attained at $q_{2}= \pm \pi / 2$.

[^0]: ${ }^{1}$ If using the moving frames algorithm for the computation of ${ }^{i} \boldsymbol{v}_{c i}$ in the kinetic energy, it will be convenient to define the constant vectors of CoM positions in each of the local frame as follows: ${ }^{1} \boldsymbol{r}_{c 1}=\left(-l_{1}+d_{c 1}, 0,0\right)$, ${ }^{2} \boldsymbol{r}_{c 2}=\left(0,-l_{2}+d_{c 2}, 0\right)$-although this is not relevant in ${ }^{2} \boldsymbol{v}_{c 2}$, and ${ }^{3} \boldsymbol{r}_{c 3}=\left(-l_{3}+d_{c 3}, 0,0\right)$. These symbolic choices in the recursive algorithm provide the same result as with the direct computations used in the text.

