## Robotics 2

February 16, 2024

## Exercise 1

Figure 1 shows a 2 P planar robot having the two prismatic joint axes skewed by a fixed angle $\alpha=\pi / 3 \mathrm{rad}$.


Figure 1: A 2P planar robot with skewed joint axes.

- Let the plane of motion be horizontal and the joint torques $\boldsymbol{\tau} \in \mathbb{R}^{2}$ be bounded componentwise as $\left|\tau_{i}\right| \leq T_{i}, i=1,2$, so that

$$
\begin{equation*}
-\boldsymbol{T} \leq \boldsymbol{\tau} \leq \boldsymbol{T}, \quad \boldsymbol{T}=\binom{T_{1}}{T_{2}} \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

As a result of (1), is it true that the joint acceleration vector $\ddot{\boldsymbol{q}}$ is bounded by

$$
-\boldsymbol{A} \leq \ddot{\boldsymbol{q}} \leq \boldsymbol{A}, \quad \text { with } \boldsymbol{A}=\binom{A_{1}}{A_{2}}=\boldsymbol{M}^{-1} \boldsymbol{T}
$$

where $\boldsymbol{M}$ is the constant, symmetric, and positive definite $2 \times 2$ inertia matrix of the robot? Motivate your answer.

- Suppose next that the robot is subject also to gravity, i.e., the plane of motion is vertical. Let the mass of the two links be $m_{1}=5$ and $m_{2}=3[\mathrm{~kg}]$, while the distance of the center of mass of the second link from the tip is $d=0.2 \mathrm{~m}$. Determine the region of all feasible accelerations $\ddot{\boldsymbol{q}} \in \mathbb{R}^{2}$ under the bound (1), for $T_{1}=T_{2}=30 \mathrm{~N}$.


## Exercise 2

Consider the robot of Exercise 1 moving in a vertical plane. By means of a revolute joint, add at the tip end of the second link also a third link of length $l_{3}=0.5 \mathrm{~m}$, uniformly distributed mass $m_{3}=2 \mathrm{~kg}$, and barycentric inertia (normal to the motion plane) $I_{3}=m_{3} l_{3}^{2} / 12$. The resulting structure is a (skewed) PPR planar robot. For the third joint variable, let $q_{3}=0$ correspond to the third link being horizontal. Neglect all dissipative effects.

- Derive the dynamic model of this robot and find a minimal linear parametrization with dynamic coefficients $a_{i}, i=1, \ldots, p$, with associated $3 \times p$ regressor matrix $\boldsymbol{Y}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$.
- Design a control law based on feedback linearization that achieves exponential tracking of the desired trajectory

$$
\boldsymbol{q}_{d}(t)=\left(\begin{array}{c}
1-\cos 4 t \\
0 \\
\pi(t-1)^{2} / 2+\pi / 4
\end{array}\right)[\mathrm{m}, \mathrm{~m}, \mathrm{rad}]
$$

with diagonal PD gains $\boldsymbol{K}_{P}=\operatorname{diag}\{25,25,25\}$ and $\boldsymbol{K}_{D}=\operatorname{diag}\{10,10,10\}$. If the robot is at rest at $t=0$ in the configuration $\boldsymbol{q}(0)=(1,1, \pi / 4)$ [ $\mathrm{m}, \mathrm{m}, \mathrm{rad}$ ], compute the value of the initial control input $\boldsymbol{\tau}(0) \in \mathbb{R}^{3}$.

## Exercise 3

With reference to Fig. 2, consider an assembly task in which a sphere is fully inserted in a cylindric hole with reduced clearance. A 6R robot can move the sphere within the hole using an end-effector equipped with a suction cup that firmly holds the sphere, without interfering with the lateral sides of the hole. Neglecting contact friction, define a suitable task frame and write the natural and artificial constraints for this task. Draw a block diagram of a hybrid force-velocity controller for the task, indicting the number and type of variables that are motion controlled and force controlled.


Figure 2: A sphere-in-hole task.

## Exercise 4

Consider again the (skewed) PPR robot of Exercise 2 and suppose that the control architecture allows to command directly the joint velocities $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$. If a motion task is specified only for the robot end-effector velocity as $\boldsymbol{v}_{d}=(1,0)[\mathrm{m} / \mathrm{s}]$, determine the explicit expression of the joint velocity command $\dot{\boldsymbol{q}}_{d}$ that executes the task while minimizing instantaneously the kinetic energy $T=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ of the robot.
[180 minutes, open books]

