Robotics II

January 24, 2024

Exercise 1

The dynamic model of a rigid robot with n generalized coordinates \boldsymbol{q} and associated input torques $\tau \in \mathbb{R}^{n}$ is written in the usual Lagrangian form as

$$
\begin{equation*}
\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})+\boldsymbol{F} \dot{\boldsymbol{q}}=\boldsymbol{\tau} \tag{1}
\end{equation*}
$$

with inertial, Coriolis/centrifugal, gravity, and viscous friction terms (with diagonal matrix $\boldsymbol{F}>0$). The Coriolis and centrifugal quadratic terms in the velocity $\dot{\boldsymbol{q}}$ can be suitably factorized as $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$.
Derive the explicit expressions of a nonlinear state-space representation of the n second-order differential equations (1) in the general form

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{G}(\boldsymbol{x}) \boldsymbol{u}, \quad \text { with } \quad \boldsymbol{x}=\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}}=\binom{\boldsymbol{q}}{\boldsymbol{p}} \in \mathbb{R}^{2 n}, \quad \boldsymbol{u}=\boldsymbol{\tau} \tag{2}
\end{equation*}
$$

where $\boldsymbol{p}=\boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} \in \mathbb{R}^{n}$ is the generalized momentum of the robot.

Exercise 2

Consider the RP robot in Fig. 1 moving in a vertical plane and with the generalized coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$ defined therein. The center of mass of the first link is on the axis of joint 1 . The robot is commanded at the joint level by the input $\boldsymbol{\tau}=\left(\tau_{1}, \tau_{2}\right)$, with a torque τ_{1} and a force τ_{2}. Viscous friction is acting on the joints.

Figure 1: A RP planar robot and its relevant kinematic and dynamic parameters.

- Write down for this robot the $(2 n=) 4$ first-order scalar equations of the state-space representation (2).
- Assume the following dynamic data: $m_{1}=10, m_{2}=5[\mathrm{~kg}] ; I_{1}=0.1, I_{2}=0.5\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$. Neglect the viscous friction terms. With the robot in the configuration $\boldsymbol{q}=(\pi / 4,1)[\mathrm{rad}, \mathrm{m}]$, having a joint velocity $\dot{\boldsymbol{q}}=(2,-0.5)[\mathrm{rad} / \mathrm{s}, \mathrm{m} / \mathrm{s}]$, and with an input command $\boldsymbol{\tau}=(1,0)[\mathrm{Nm}, \mathrm{N}]$, provide the numerical values of the last two components of $\dot{\boldsymbol{x}}$, namely of \dot{p}_{1} and \dot{p}_{2}.

Exercise 3

A number of questions and statements are reported on the attached Questionnaire Sheet. Fill in your answers and/or comments on the same or on a different sheet, providing a short motivation/explanation for each item.
[180 minutes, open books]

Robotics II - Questionnaire Sheet

January 24, 2024
Name: \qquad
Answer to the questions or comment the statements, providing also a short motivation/explanation for each of the following 4 items.

1. Write down the calibration equation for a planar $2 R$ robot in which the only inaccurate values are the link lengths l_{1} and l_{2}. Describe briefly how to set up a kinematic calibration procedure in this case.
\qquad
\qquad
\qquad
\qquad
2. At a given $\boldsymbol{q} \in \mathbb{R}^{n}$, we have to choose the velocity command $\dot{\boldsymbol{q}} \in \mathbb{R}^{n}$ that minimizes the objective function $H=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{A}^{-1} \dot{\boldsymbol{q}}$, with $\boldsymbol{A}>0$, while satisfying the task $\boldsymbol{J} \dot{\boldsymbol{q}}=\dot{\boldsymbol{x}} \in \mathbb{R}^{m}$, with $m<n$ and $\operatorname{rank}\{\boldsymbol{J}\}=m$. Two velocity commands have been proposed as

$$
\dot{\boldsymbol{q}}^{\prime}=\boldsymbol{A}^{-1} \boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{A}^{-1} \boldsymbol{J}^{T}\right)^{-1} \dot{\boldsymbol{x}} \quad \text { and } \quad \dot{\boldsymbol{q}}^{\prime \prime}=\boldsymbol{J}^{\#} \dot{\boldsymbol{x}}-\left(\boldsymbol{I}-\boldsymbol{J}^{\#} \boldsymbol{J}\right) \nabla_{\dot{\boldsymbol{q}}} H, \quad \text { with } \nabla_{\dot{\boldsymbol{q}}} H=\boldsymbol{A}^{-1} \dot{\boldsymbol{q}} .
$$

Which command is better? Why?
\qquad
\qquad
\qquad
\qquad
\qquad
3. Consider an assembly task, in which a peg having an equilateral triangle as section is to be inserted at a slow but constant speed V in a similar hole with reduced clearance. Neglecting contact friction, define a suitable task frame and write the natural and artificial constraints for this task.
\qquad
\qquad
\qquad
\qquad
\qquad
4. A mass m is in free linear motion in a vertical plane. At time $t=0$, the mass is in the position $y(0)=0$ and has a vertical (upward) velocity $\dot{y}(0)=v_{0}>0$. At a given time $t=\delta>0$, will the position $y(\delta)$ be positive, zero, or negative? At which time $t=\bar{\delta}>0$, if any, will the mass invert the sign of its velocity?
\qquad
\qquad
\qquad
\qquad
\qquad

