Robotics 2

September 11, 2023

Figure 1: A 4P planar robot in the vertical plane.

Consider the 4-dof planar robot shown in Fig. 1, moving under gravity. All robot joints are prismatic and thus the joint torques $\tau \in \mathbb{R}^4$ are in fact forces (with units expressed in [N]).

- 1) Derive in symbolic form the dynamic model of this robot in the joint space, including the external force $f \in \mathbb{R}^2$ acting on the end-effector.
- 2) Determine the 2×2 Cartesian inertia matrix M_r at the end-effector level. Compute M_r numerically for q = 0 and equal link masses $m_i = 1$ [kg], $i = 1, \ldots, 4$.
- 3) Design the simplest control law for τ that is able to globally asymptotically stabilize the robot to a desired constant configuration q_d , also in the presence of a known force f acting on the end-effector. Discuss the necessity and/or sufficiency of suitable choices for the feedback gains on position error $e = q_d q$ and on velocity error $\dot{e} = -\dot{q}$.

Set now f = 0.

- 4) Let $\boldsymbol{\tau} = \boldsymbol{\tau}_0 + \boldsymbol{g}(\boldsymbol{q})$ (gravity is cancelled from the picture). Find a non-zero joint torque $\boldsymbol{\tau}_0 \in \mathbb{R}^4$ that does not generate any acceleration $\ddot{\boldsymbol{r}} = (\ddot{p}_x, \ddot{p}_y) \in \mathbb{R}^2$ at the end-effector level.
- 5) Provide the expression of the joint torque τ of minimum norm that realizes a desired acceleration $\ddot{r} \in \mathbb{R}^2$ of the end-effector. Compute τ numerically for $q = \dot{q} = 0$, equal link masses $m_i = 1$ [kg], $i = 1, \ldots, 4$, and $\ddot{r} = (2, -3)$ [m/s²].
- 6) Suppose you have no knowledge about the values of the dynamic parameters of this 4P robot. Design an adaptive control law for τ that is able to globally asymptotically stabilize the tracking error along a smooth desired trajectory $q_d(t)$. The controller should be of minimal dimension.

[180 minutes; open books]