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Exercise 1

A robot with n degrees of freedom and dynamics (with no gravity)

M(q)q̈ + c(q, q̇) = τ

is redundant with respect to a m-dimensional task (m < n) described at the second-order differ-
ential level by

ÿ = J(q)q̈ +J̇(q)q̇,

where the m× n task Jacobian J is assumed to be full row rank. In the redundant case, the joint
torque τ ∈ Rn can always be decomposed as

τ = JT (q)F +
(
I − JT (q)H(q)

)
τ 0,

where F ∈ Rm is the task-space generalized force performing work on ẏ, matrix H is any gener-
alized inverse of JT (i.e., such that JTHJT = JT ), and τ 0 ∈ Rn.

With the robot in the state (q, q̇), prove the following two statements.

a) In order for an arbitrary τ 0 6= 0 not to produce any task acceleration (ÿ = 0), the only choice
for H is

H(q) =
(
J(q)M−1(q)JT (q)

)−1

J(q)M−1(q), (1)

namely the weighted pseudoinverse of JT , with the inverse of the robot inertia as weight.

b) Based on (1), the m-dimensional dynamic model of the robot in the task space is given by

My(q)ÿ + cy(q, q̇) = F (2)

with the m×m task-space inertia matrix My and the task-space Coriolis and centrifugal terms
cy given respectively by

My(q) =
(
J(q)M−1(q)JT (q)

)−1

, cy(q, q̇) = My(q)
(
J(q)M−1(q)c(q, q̇)−J̇(q)q̇

)
.

Exercise 2

Consider the 3-dof planar robot in Fig. 1, with one prismatic and two revolute joints, moving in a
vertical plane. The coordinates q to be used are defined in the figure. Each link of the robot has
uniformly distributed mass mi > 0, i = 1, 2, 3, with center of mass on its geometric axis, and a
diagonal barycentric inertia matrix. The prismatic joint has a limited range q2 ∈ [−L2, L2], while
the revolute joints are unlimited. The robot is commanded by a joint force/torque τ ∈ R3.

a) Derive the robot inertia matrix M(q).

b) Derive the gravity term g(q) and find all unforced equilibrium configurations (i.e., with τ = 0).

c) Assume that the gravity acceleration g0 and the kinematic quantities L2 and L3 are known,
while all other dynamic parameters are unknown. Provide a linear parametrization of the
gravity vector g(q) = Yg(q)ag, in terms of a vector ag ∈ Rp of unknown dynamic coefficients
and a 3× p regressor matrix Yg(q). Discuss the minimality of p.
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d) Provide a symbolic expression (in terms of the robot dynamic parameters and joint limits) of a
constant upper bound α > 0 for the norm of the gradient of the gravity vector, i.e., such that
‖∂g(q)/∂q‖ ≤ α for all feasible q.
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Figure 1: A planar RPR robot, with the definition of the coordinates to be used q = (q1 q2 q3)T .

Exercise 3

Consider the robotic task of inserting a sphere in a cylindrical hole having the same size (zero
clearance), as shown in Fig. 2. Assuming rigid and frictionless contacts, define a task frame, the
natural constraints imposed by the geometry on the generalized velocity/force quantities expressed
in this task frame, and the artificial constraints that can be taken as reference values by a hybrid
force-velocity control law for the execution of this sphere-in-hole task with minimum effort.

Figure 2: Sphere-in-hole task.

Provide a basis for the space of admissible twists V = (vTωT )T ∈ R6 and a complementary basis
for the space of reaction wrenches F = (fTmT )T ∈ R6. Discuss how measurements that are
inconsistent with the geometric model are being handled by an hybrid force-velocity control law,
and give two examples of such inconsistent measurements, one related to motion and one related
to interaction.

[180 minutes; open books]
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