Robotics 2

July 10, 2023

Exercise 1

A robot with n degrees of freedom and dynamics (with no gravity)

$$
\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{\tau}
$$

is redundant with respect to a m-dimensional task $(m<n)$ described at the second-order differential level by

$$
\ddot{\boldsymbol{y}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

where the $m \times n$ task Jacobian \boldsymbol{J} is assumed to be full row rank. In the redundant case, the joint torque $\boldsymbol{\tau} \in \mathbb{R}^{n}$ can always be decomposed as

$$
\boldsymbol{\tau}=\boldsymbol{J}^{T}(\boldsymbol{q}) \boldsymbol{F}+\left(\boldsymbol{I}-\boldsymbol{J}^{T}(\boldsymbol{q}) \boldsymbol{H}(\boldsymbol{q})\right) \boldsymbol{\tau}_{0}
$$

where $\boldsymbol{F} \in \mathbb{R}^{m}$ is the task-space generalized force performing work on $\dot{\boldsymbol{y}}$, matrix \boldsymbol{H} is any generalized inverse of \boldsymbol{J}^{T} (i.e., such that $\boldsymbol{J}^{T} \boldsymbol{H} \boldsymbol{J}^{T}=\boldsymbol{J}^{T}$), and $\boldsymbol{\tau}_{0} \in \mathbb{R}^{n}$.

With the robot in the state $(\boldsymbol{q}, \dot{\boldsymbol{q}})$, prove the following two statements.
a) In order for an arbitrary $\boldsymbol{\tau}_{0} \neq \mathbf{0}$ not to produce any task acceleration $(\ddot{\boldsymbol{y}}=\mathbf{0})$, the only choice for \boldsymbol{H} is

$$
\begin{equation*}
\boldsymbol{H}(\boldsymbol{q})=\left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^{T}(\boldsymbol{q})\right)^{-1} \boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \tag{1}
\end{equation*}
$$

namely the weighted pseudoinverse of \boldsymbol{J}^{T}, with the inverse of the robot inertia as weight.
b) Based on (1), the m-dimensional dynamic model of the robot in the task space is given by

$$
\begin{equation*}
M_{y}(\boldsymbol{q}) \ddot{\boldsymbol{y}}+c_{\boldsymbol{y}}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{F} \tag{2}
\end{equation*}
$$

with the $m \times m$ task-space inertia matrix $\boldsymbol{M}_{\boldsymbol{y}}$ and the task-space Coriolis and centrifugal terms $\boldsymbol{c}_{\boldsymbol{y}}$ given respectively by

$$
\boldsymbol{M}_{\boldsymbol{y}}(\boldsymbol{q})=\left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^{T}(\boldsymbol{q})\right)^{-1}, \quad \boldsymbol{c}_{\boldsymbol{y}}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{M}_{\boldsymbol{y}}(\boldsymbol{q})\left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}\right) .
$$

Exercise 2

Consider the 3-dof planar robot in Fig. 1, with one prismatic and two revolute joints, moving in a vertical plane. The coordinates \boldsymbol{q} to be used are defined in the figure. Each link of the robot has uniformly distributed mass $m_{i}>0, i=1,2,3$, with center of mass on its geometric axis, and a diagonal barycentric inertia matrix. The prismatic joint has a limited range $q_{2} \in\left[-L_{2}, L_{2}\right]$, while the revolute joints are unlimited. The robot is commanded by a joint force/torque $\boldsymbol{\tau} \in \mathbb{R}^{3}$.
a) Derive the robot inertia matrix $\boldsymbol{M}(\boldsymbol{q})$.
b) Derive the gravity term $\boldsymbol{g}(\boldsymbol{q})$ and find all unforced equilibrium configurations (i.e., with $\boldsymbol{\tau}=\mathbf{0}$).
c) Assume that the gravity acceleration g_{0} and the kinematic quantities L_{2} and L_{3} are known, while all other dynamic parameters are unknown. Provide a linear parametrization of the gravity vector $\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{Y}_{\boldsymbol{g}}(\boldsymbol{q}) \boldsymbol{a}_{g}$, in terms of a vector $\boldsymbol{a}_{g} \in \mathbb{R}^{p}$ of unknown dynamic coefficients and a $3 \times p$ regressor matrix $\boldsymbol{Y}_{\boldsymbol{g}}(\boldsymbol{q})$. Discuss the minimality of p.
d) Provide a symbolic expression (in terms of the robot dynamic parameters and joint limits) of a constant upper bound $\alpha>0$ for the norm of the gradient of the gravity vector, i.e., such that $\|\partial \boldsymbol{g}(\boldsymbol{q}) / \partial \boldsymbol{q}\| \leq \alpha$ for all feasible \boldsymbol{q}.

Figure 1: A planar RPR robot, with the definition of the coordinates to be used $\boldsymbol{q}=\left(\begin{array}{ll}q_{1} & q_{2} q_{3}\end{array}\right)^{T}$.

Exercise 3

Consider the robotic task of inserting a sphere in a cylindrical hole having the same size (zero clearance), as shown in Fig. 2. Assuming rigid and frictionless contacts, define a task frame, the natural constraints imposed by the geometry on the generalized velocity/force quantities expressed in this task frame, and the artificial constraints that can be taken as reference values by a hybrid force-velocity control law for the execution of this sphere-in-hole task with minimum effort.

Figure 2: Sphere-in-hole task.
Provide a basis for the space of admissible twists $\boldsymbol{V}=\left(\boldsymbol{v}^{T} \boldsymbol{\omega}^{T}\right)^{T} \in \mathbb{R}^{6}$ and a complementary basis for the space of reaction wrenches $\boldsymbol{F}=\left(\boldsymbol{f}^{T} \boldsymbol{m}^{T}\right)^{T} \in \mathbb{R}^{6}$. Discuss how measurements that are inconsistent with the geometric model are being handled by an hybrid force-velocity control law, and give two examples of such inconsistent measurements, one related to motion and one related to interaction.
[180 minutes; open books]

