
Robotics 2
February 13, 2023

Exercise 1

The torque controlled 3R planar robot in Fig. 1 moves on a horizontal plane, performing a two-
dimensional trajectory task with its end-effector. The links have equal length l and equal uniformly
distributed mass m, with barycentric inertia Ic = ml2/12. While at rest in the configuration
q̄ = (π/4,−π/2, π/2) [rad], the end-effector should accelerate with p̈d = (1, 0) [m/s2] (as in figure).
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Figure 1: A 3R planar robot with equal links.

Determine, in a parametric way with respect to l and m, the torques τ i ∈ R3, for i = A,B,C,
that realize instantaneously the following objectives:

• τA minimizes the squared norm of the joint accelerations HA = 1
2 ‖q̈‖

2
;

• τB minimizes the squared norm of the absolute joint accelerations HB = 1
2 ‖q̈a‖

2
, where

q̈a,i =

i∑
j=1

q̈j , i = 1, 2, 3;

• τC minimizes the squared norm of the inertia-weighted joint accelerations HC = 1
2 q̈

TM(q)q̈.

Comment on the obtained results in terms of the control efforts at the joint level.

Exercise 2

Consider the single link under gravity in Fig. 2, with all dynamic parameters specified therein.
The link should perform a rest-to-rest motion from θ(0) = 0 to θ(T ) = π (a swing-up maneuver,
counterclockwise), by following a cubic polynomial interpolating trajectory θd(t) under the torque
bound |u| ≤ umax. Suppose that the maximum available torque is large enough to sustain gravity
in any configuration, typically with some extra torque left for dynamic motion.
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Figure 2: Swing-up maneuver of a single link under maximum torque bound.
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Determine the expression of the minimum time T = Tmin for performing the task, discussing any
assumption that you may introduce. Furthermore, suppose that, with a time T = 1 s, the motion
is unfeasible for a given set of data. What will be the minimum uniform time scaling factor k of
the original trajectory that allows to execute the task in a feasible way?

Exercise 3

Figure 3 shows a simplified one-dimensional model of two robots permanently interacting in a
compliant mode at the level of their end effectors1. Compliance at the contact is modeled by a
spring with stiffness K > 0. The two robots have equivalent masses m1 and m2 and are subject to
control forces F1 and F2. Their positions are given by q1 and q2, with the zero reference for both
variables corresponding to when the spring has no deformation (as shown in the figure).
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Figure 3: Two masses interacting through a spring.

Define the two control laws

F1 = KP1 (q1d − q1)−KD1q̇1, F2 = KP2 (q2d − q2)−KD2q̇2, (1)

with all gains strictly positive, and where the target positions q1d and q2d for the two masses are
generic but different (i.e., q1d 6= q2d). These control laws have a decentralized structure, since they
both use feedback information only local to the controlled mass, i.e., Fi is function only of (qi, q̇i),
for i = 1, 2.

• Find the unique equilibrium state (q, q̇) = (q̄,0) for the closed-loop system under the control (1).

• Prove the global asymptotic stability of this equilibrium state by a Lyapunov/LaSalle argument.

• Is the equilibrium configuration q̄ such that q̄1 = q1d and q̄2 = q2d? If not, how would you modify
the controllers (1), possibly keeping the decentralized structure, for the same previous target
positions so that q̄ = qd becomes the unique asymptotically stable equilibrium configuration?

[180 minutes; open books]

1This ideal situation is not unrealistic. In fact, it can be obtained by applying a preliminary feedback linearizing
and decoupling control law in the Cartesian space to two articulated robot manipulators.

2



Solution

February 13, 2023

Exercise 1

For the considered instantaneous situation, we need to compute only the 2 × 3 Jacobian matrix
J(q) and the 3×3 inertia matrix M(q) of the robot. In fact, since the robot moves on a horizontal
plane (g(q) ≡ 0) and is currently at rest (q̇ = 0), its dynamic model simplifies to

M(q)q̈ = τ , (2)

while the second-order differential kinematics for the positional task becomes

p̈ = J(q)q̈. (3)

Moreover, the absolute joint coordinates qa are related to q by a constant matrix:

qa =

 1 0 0
1 1 0
1 1 1

 q = Tq ⇒ q̈a = T q̈. (4)

For a desired end-effector acceleration p̈d at the current state (q, q̇) = (q̄,0), being q̄ a nonsingular
configuration for the Jacobian, the three schemes that are locally using the robot redundancy are
obtained as particular solutions of the general LQ (Linear Quadratic) optimization problem by the
following torques:

• minimization of the squared norm of the joint accelerations

HA =
1

2
‖q̈‖2 =

1

2
q̈T q̈

gives

τA = M(q̄)J†(q̄) p̈d, with J†(q) = JT(q)
(
J(q)JT(q)

)−1
; (5)

• minimization of the squared norm of the absolute joint accelerations

HB =
1

2
‖q̈a‖

2
=

1

2
‖T q̈‖2 =

1

2
q̈TWq̈

gives

τB = M(q̄)J†W (q̄) p̈d, with J†W (q) = W−1JT(q)
(
J(q)W−1JT(q)

)−1
, (6)

where, from (4), W is the symmetric, positive definite weighting matrix

W = T TT =

 3 2 1
2 2 1
1 1 1

 > 0 ;

• minimization of the squared norm of the inertia-weighted joint accelerations

HC =
1

2
q̈TM(q)q̈
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gives

τC = M(q̄)J†M (q̄) p̈d = JT(q̄)
(
J(q̄)M−1(q̄)JT(q̄)

)−1
p̈d. (7)

Note that, in view of (2), this case is equivalent to the minimization of the squared norm of the
inverse inertia-weighted torques:

HC =
1

2
q̈TM(q)q̈ =

1

2

(
M−1(q)τ

)T
M(q)

(
M−1(q)τ

)
=

1

2
τTM−1(q)τ .

We proceed then by computing the required matrices. Note that, because of the uniform nature
of the links, the symbolic factors l and ml2 can be isolated in the computations of kinematic and,
respectively, dynamic terms.

Jacobian

p = l

(
c1 + c12 + c123
s1 + s12 + s123

)
⇒ J(q) =

∂p

∂q
= l

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
.

Therefore, at q̄ = (π/4,−π/2, π/2 ) we have

J(q̄) = l

(
−0.7071 0 −0.7071

2.1213 1.4142 0.7071

)
.

Jacobian pseudoinverse

J†(q̄) =
1

l

 −0.2357 0.2357
0.9428 0.4714
−1.1785 −0.2357

 .

Jacobian weighted pseudoinverse

Being

W−1 =

 1 −1 0
−1 2 −1

0 −1 2

 ,

we obtain

J†W (q̄) =
1

l

 −0.3536 0.3536
1.0607 0.3536
−1.0607 −0.3536

 .

Kinetic energy

By the uniform mass distribution of the link, which is also considered as a thin rod, we have

T1 =
1

2
m

(
l

2

)2

q̇21 +
1

2

(
1

12
ml2

)
q̇21 =

1

6
ml2q̇21 .

For the second link, being

vc2 = ṗc2 =
d

dt

(
l

(
c1
s1

)
+
l

2

(
c12
s12

))
= l

(
−s1q̇1 − 1

2 s12 (q̇1 + q̇2)

c1q̇1 + 1
2 c12 (q̇1 + q̇2)

)
,
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it is

‖vc2‖2 = l2
(
q̇21 +

1

4
(q̇1 + q̇2)

2
+ c2 q̇1(q̇1 + q̇2)

)
,

and thus

T2 =
1

2
m ‖vc2‖2 +

1

2

(
1

12
ml2

)
(q̇1 + q̇2)

2

=
1

6
ml2

(
4 q̇21 + q̇22 + 2 q̇1q̇2 + 3 c2q̇1(q̇1 + q̇2)

)
.

Similarly, for the third link it is

vc3 = ṗc3 =
d

dt

(
l

(
c1 + c12
s1 + s12

)
+
l

2

(
c123
s123

))
= l

(
−s1q̇1 − s12 (q̇1 + q̇2)− 1

2 s123 (q̇1 + q̇2 + q̇3)

c1q̇1 + c12 (q̇1 + q̇2) + 1
2 c123 (q̇1 + q̇2 + q̇3)

)
,

so that

‖vc3‖2 = l2
(
q̇21 + (q̇1 + q̇2)2 +

1

2
(q̇1 + q̇2 + q̇3)2

+ 2 c2 q̇1(q̇1 + q̇2) + c23 q̇1(q̇1 + q̇2 + q̇3) + c3 (q̇1 + q̇2)(q̇1 + q̇2 + q̇3)

)
,

and thus

T3 =
1

2
m ‖vc3‖2 +

1

2

(
1

12
ml2

)
(q̇1 + q̇2 + q̇3)

2

=
1

6
ml2

(
7 q̇21 + 4 q̇22 + q̇23 + 8 q̇1q̇2 + 2 q̇1q̇2 + 2 q̇2q̇3

+ 6 c2 q̇1(q̇1 + q̇2) + 3 c3
(
(q̇1 + q̇2)2 + q̇3(q̇1 + q̇2)

)
+ 3 c23 q̇1(q̇1 + q̇2 + q̇3)

)
.

Finally,

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇.

Inertia matrix

Rather than rewriting the lengthy terms contained in the contributions Ti of the kinetic energy,
we directly evaluate numerically inertia matrix at q̄. Factoring out the common symbolic factor
ml2, one has

M(q̄) = ml2

 5.0000 2.1667 0.8333

2.1667 1.1667 0.3333

0.8333 0.3333 0.3333

,
with inverse

M−1(q̄) =
1

ml2

 0.6316 −0.6316 −0.9474

−0.6316 1.3816 0.1974

−0.9474 0.1974 5.1711

.
At this stage, we can evaluate the three solutions (5)–(7) obtaining

τA = ml

 −0.1179

0.6678

−0.2750

 , τB = ml

 −0.3536

0.6482

−0.2946

 , τC = ml

 0.4950

0.7189

−0.2239

. (8)
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The associated accelerations, computed as q̈ = M−1(q̄)τ , are

q̈A = l

 −0.2357

0.9428

−1.1785

 , q̈B = l

 −0.3536

1.0607

−1.0607

 , q̈C = l

 0.0707

0.6364

−1.4849

. (9)

There are no major differences between the three results in (8) and (9), except for the fact that
the torque and the acceleration of the first joint in the inertia-weighted case C have an opposite
sign with respect to the other two cases. Moreover, solution C has lower acceleration at joint 2
and (even less) at joint 1, due to the fact that the inertia of the robot has been taken into account.
This result is consistent with the intuitive idea that in a serial manipulator it is more convenient, in
terms of torque/acceleration efforts, to move distal joints in the chain rather than proximal ones.

For comparison, consider also a fourth case in which the solution τ minimizes the squared norm
of the torques:

minHD =
1

2
‖τ‖2 ⇒ τD =

(
J(q̄)M−1(q̄)

)†
p̈d = ml

 −0.0339

0.6748

−0.2680

 ⇒ q̈D = l

 −0.1937

0.9008

−1.2205

.
This solution has, by construction, the minimum norm of the torque and, compared to the other
control torques, also by far the lowest value of torque at the first joint.

Exercise 2

The dynamic model of the actuated pendulum in Fig. 2 is(
Ic +md2

)
θ̈ +mg0d sin θ = u. (10)

In the following, let I = Ic + md2. The assigned cubic trajectory for performing the swing-up
maneuver in time T can be written (in normalized time) as

θd(t) = π
(
−2τ3 + 3τ2

)
, τ =

t

T
∈ [0, 1],

with acceleration

θ̈d(t) =
6π

T 2
(1− 2τ) .

By inverse dynamics, the torque needed to execute this trajectory is then

ud(t) =
6πI

T 2
(1− 2τ) +mg0d sin

(
π
(
−2τ3 + 3τ2

))
, τ ∈ [0, 1]. (11)

The torque (11) is the sum of two terms: a linear contribution ua(t) due to acceleration, which is
maximum in absolute value at the start and end of the trajectory, with ua(0) = −ua(T ) = 6πI/T 2,
and zero at the midpoint t = T/2; and a sinusoidal contribution ug(t) due to gravity, which is zero
at the start and end of the trajectory, always positive otherwise, and maximum at the midpoint,
with ug(T/2) = mg0d. It is easy to show that the superposition of the two torques will have
a maximum value which occurs certainly in the first half of the motion (where both terms are
positive), but not necessarily at t = 0 or t = T/2 (i.e., τ = 0.5). Moreover, it is also clear that
the faster will be the assigned trajectory (i.e., the smaller the total motion time T ), the more will
the acceleration term grow and dominate the gravitatonal term, which does not change in fact its
profile being dependent only on the configuration θ.
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In Fig. 4, using the numerical data

I = 1.5 [Nm s2], mg0d = 14.715 [Nm], (12)

we report for illustration two typical situations, the first for a slow trajectory having Ts = 1.5 s,
the second for a fast trajectory with Tf = 0.8 s. The exchanged roles of the two contributions in
assessing the maximum absolute value of the torque is clear.
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Figure 4: The two contributions ua(t) (in red) and ug(t) (in blue) to the total driving torque ud(t)
(in black): slow trajectory with Ts = 1.5 s [left]; fast trajectory with Tf = 0.8 s [right].

In practice, the available torque umax will not only be larger that mg0d (the maximum gravity
load on the link), but also capable of providing a sufficient acceleration at the time instants t = 0
and t = T (where ud(t) = ua(t)), so as to quickly start and stop motion. Therefore, given a
sufficiently large maximum torque umax, the minimum time Tmin will be specified by the value of
the acceleration component at t = 0. Thus,

ud(0) = ua(0) =
6πI

T 2
= umax ⇒ Tmin =

√
6πI

umax
. (13)

Using the same data as in (12) and setting umax = 20 [Nm] leads to the optimal solution of Fig. 5,
with minimum time Tmin = 1.1890 s, as evaluated from (13).
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Figure 5: The two contributions ua(t) (in red) and ug(t) (in blue) in the time-optimal driving
torque ud(t) (in black).

Finally, consider again the same pendulum with umax = 18 [Nm] and set the motion time to
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T = 1 s. The corresponding torque profile will be unfeasible since

ud(0) =
6Iπ

T 2
= 28.27 > 18 = umax.

Therefore, the minimum uniform time scaling factor to recover feasibility is computed as

k =

√
6πI

umax
= 1.2533 > 1. (14)

The scaled trajectory is slower, with a longer duration Ts = kT = 1.2533 s. Feasibility is auto-
matically recovered, with the bound being saturated only at instants with the largest unfeasible
torque (in absolute value). Note that, when computing the scaling factor, gravity needs not to
be removed because the maximum violating torque already occurs at an instant with zero gravity
contribution. The effect of uniform time scaling on the unfeasible trajectory is illustrated in Fig. 6.
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Figure 6: The contributing and total torques for an unfeasible trajectory with T = 1 s [left] and
after uniform time scaling by k = 1.2533 [right].

Exercise 3

The dynamic model of the system of two masses with a spring in between is

m1q̈1 +K (q1 − q2) = F1

m2q̈2 +K (q2 − q1) = F2.
(15)

With the control (1), the closed-loop system becomes(
m1

m2

)(
q̈1
q̈2

)
+

(
KD1

KD2

)(
q̇1
q̇2

)
+

(
K +KP1 −K
−K K +KP2

)(
q1
q2

)
=

(
KP1q1d
KP2q2d

)
. (16)

At an equilibrium (q̇ = q̈ = 0), it is then

K̄q =

(
K +KP1 −K
−K K +KP2

)(
q1
q2

)
=

(
KP1q1d
KP2q2d

)
= KPqd = q̄d, (17)

where KP = diag {KP1,KP2} Since the stiffness/control matrix K̄ is nonsingular (det K̄ =
K (KP1 +KP2) + KP1KP2 > 0), equation (17) can be solved for the unique equilibrium configu-
ration

q̄ =

(
q̄1

q̄2

)
= K̄

−1
q̄d =

1

K (KP1 +KP2) +KP1KP2

(
K (KP1q1d +KP2q2d) +KP1KP2q1d

K (KP1q1d +KP2q2d) +KP1KP2q2d

)
.

(18)
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The equilibrium position q̄i of each mass is in general different from its target value qid, for i = 1, 2.
From eq. (18), it follows also that only when q1d = q2d = qd (a case excluded here), it is then
q̄1 = q̄2 = qd.

To show that the unique equilibrium state (q̄,0) is globally asymptotically stable (in fact, expo-
nentially stable since the system is linear) one can follow in principle two ways.

The first is to leverage the linearity of the closed-loop system dynamics (16). It can be recognized
that the three matricesM = diag {m1,m2}, D = diag {KD1,KD2} and K̄ are all positive definite:
this is a sufficient condition for concluding on asymptotic stability of mechanical systems in this
form. Along the same lines, one can apply tools from linear systems theory to draw the same
conclusion: e.g., by computing the four eigenvalues of system (16), once put into a state-space
format, and verifying that their real parts are on the left-hand side of the complex plane.

The second way is to follow, as requested, a Lyapunov/LaSalle analysis. Consider the following
function as natural Lyapunov candidate:

V =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 +

1

2
K (q1 − q2)

2
+

1

2
KP1 (q1d − q1)

2
+

1

2
KP2 (q2d − q2)

2 ≥ 0. (19)

This function is composed by the total energy of the system (kinetic and elastic potential in the
first three terms) and by the equivalent elastic potential energy introduced by the control laws (1).
Indeed, V is always non-negative and is zero only at the equilibrium q = q̄, with q̇ = 0. In fact,
setting to zero the gradient of (19) with respect to q, as a necessary condition for a minimum, one
has

∇qV =

(
∂V

∂q

)T

= K̄q − q̄d = 0,

which is exactly (17) and thus uniquely solved by q̄. Moreover, since ∂2V/∂q2 = K̄ > 0, this will
be a minimum of V . By taking the time derivative of V and evaluating it along the trajectories of
the closed-loop system (16), we obtain after few simplifications:

V̇ = . . . = −D̄q̇ ≤ 0 ⇒ V̇ = 0 ⇐⇒ q̇ = 0.

When q̇ = 0, the closed-loop system (16) simplifies to

M̄q̈ + K̄q = q̄d ⇒ q̈ = M̄
−1(

q̄d − K̄q
)

⇒ q̈ = 0 ⇐⇒ q = q̄,

thanks to (17). Therefore, by LaSalle theorem, the system trajectories will globally converge to
the unique equilibrium state (q̄,0) (i.e., the single element in the largest invariant set contained in
the set of states corresponding to V̇ = 0), which is then asymptotically stable. Again, being the
considered system linear, asymptotic stability is equivalent here to exponential stability.

Finally, a modification of the control laws (1) is needed in order to enforce q̄ = qd, i.e., to eliminate
the constant final position errors at steady state. A straightforward solution would be to cancel
the effect of elasticity on both masses, namely defining the new control laws as

F1 = KP1 (q1d − q1)−KD1q̇1+K (q1 − q2) , F2 = KP2 (q2d − q2)−KD2q̇2+K (q2 − q1) . (20)

This would fully decouple the behavior of the two controlled masses, being the closed-loop system(
m1

m2

)(
q̈1
q̈2

)
+

(
KD1

KD2

)(
q̇1
q̇2

)
+

(
KP1

KP2

)(
q1 − q1d
q2 − q2d

)
=

(
0
0

)
. (21)

It is easy to verify that mass mi would independently reach its target position qid at the equilibrium,
for i = 1, 2.
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However, the control modification (20) destroys the decentralized structure of (1), being the input
force to each mass also a function of the position of the other mass. If the original decentralized
structure has to be kept, one can include integral terms in the two controllers, i.e.,

Fi = KPi (qid − q̇i)−KDiq̇i +KIi

∫
(qid − q̇i) dt, i = 1, 2,

and then study the conditions for the control gains KPi, KDi and KIi (i = 1, 2) that guarantee
asymptotic stability of the closed-loop system. This choice has the advantage of requiring no
information at all about the parameters of the dynamic system (except for some bounds). A
simpler solution is to include feedforward terms in the control laws (1), i.e.,

Fi = KPi (qid − q̇i)−KDiq̇i + Fi,ffw, i = 1, 2, (22)

with

F ffw =

(
F1,ffw

F2,ffw

)
= K̄qd − q̄d

=

(
K +KP1 −K
−K K +KP2

)(
q1d

q2d

)
−
(
KP1q1d

KP2q2d

)
=

(
K −K
−K K

)(
q1d

q2d

)
=

(
K (q1d − q2d)

K (q2d − q1d)

)
.

(23)

The new equilibrium conditions are obtained by modifying accordingly (17) as

K̄q = q̄d + F ffw = q̄d + K̄qd − q̄d = K̄qd, with K̄ > 0,

which has the unique solution q = qd as desired. The Lyapunov/LaSalle analysis for the con-
troller (22),(23) follows then in a similar way by using

V ′ = V + (ad − q)
T
F ffw, with ad =


3q1d + q2d

4
q1d + 3q2d

4

,
which can be shown to be a suitable Lyapunov candidate, i.e., V ′ ≥ 0 and V ′ = 0 if and only
if (q, q̇) = (qd,0), obtaining eventually global asymptotic (exponential) stability of the unique
closed-loop equilibrium state (qd,0). The actual verification is left as an exercise to the reader.

∗ ∗ ∗ ∗ ∗
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