
Robotics 2

July 8, 2022

Exercise #1

A generic 3R spatial manipulator, which is self-balanced with respect to gravity, is driven by three

actuators that deliver the torques τ =
(
τ1 τ2 τ3

)T
. When using the generalized coordinates

q ∈ R3, the robot dynamic model is expressed in compact form as

Mq(q)q̈ + cq(q, q̇) = τ q, (1)

where

Mq =

m11(q2, q3) 0 0
0 m22(q3) m23(q3)
0 m23(q3) m33

, cq =

 c1(q2, q3, q̇2, q̇3)
c2(q2, q3, q̇1, q̇2, q̇3)
c3(q2, q3, q̇1, q̇2)

, τ q =

 τ1
τ2 + τ3
τ3

.
• Find the set of coordinates p ∈ R3 on which the torque vector τ ∈ R3 produces work component-

wise, and give the coordinate transformation between q and p.

• Write the dynamic model in the coordinates p, expressing the elements of the inertia matrix Mp

and of the Coriolis and centrifugal vector cp in terms of the elements mij and ci of model (1).
For compactness, there is no need to replace the dependences on (q, q̇) by those on (p, ṗ) within
these terms.

Exercise #2

The dynamic model of a serial manipulator with n revolute joints can always be written as(
m11(q) mT

12(q)

m12(q) M22(q)

)(
q̈1

q̈2

)
+

(
n1(q, q̇)

n2(q, q̇)

)
=

(
τ1

τ 2

)
, (2)

where the joint variables q ∈ Rn are partitioned in q1 ∈ R and q2 ∈ Rn−1 and, similarly, the
joint torques τ ∈ Rn in τ1 ∈ R and τ 2 ∈ Rn−1. The inertia matrix M(q) and the dynamic terms
n(q, q̇) = c(q, q̇) + g(q) in (2) have been partitioned accordingly. Suppose that a constraint is
imposed on the first joint, so that q1(t) = k (an arbitrary constant value).

• Derive the explicit form of the (n− 1)-dimensional reduced dynamics of the constrained robot.

• Provide the corresponding expression of the force multiplier λ ∈ R that arises when attempting
to violate the constraint during a generic robot motion.

• Define control laws for τ1 and for τ 2 that regulate the robot to a desired configuration qd, which
is feasible (i.e., such that q1d = k), while keeping λ(t) = 0 at all times.

Exercise #3

With reference to Fig. 1, consider a Cartesian (PP) robot with links of mass m1 and m2, moving
in a vertical plane. The end-effector should transfer from rest to rest between two generic points
Ps and Pg in minimum time, with the two input force commands being bounded as

|ui| ≤ Ui,max, i = x, y.

The robot starts at an equilibrium and should remain in equilibrium when the motion ends.
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Figure 1: A Cartesian robot in a point-to-point task in the vertical plane.

• Determine the minimum feasible value T ∗ of the transfer time in a parametric form with respect
to the problem data.

• For the numerical values

Ps = (1, 0.3), Pg = (0.6, 0.7) [m], m1 = 5, m2 = 3 [kg], Ux,max = Uy,max = 40 [N],

evaluate time T ∗ and sketch the optimal profiles of force, acceleration, velocity, and position of
the two robot joints.

• Is the end-effector path associated to this time-optimal trajectory a straight line segment between
Ps and Pg? (Support your answer with an argument: a simple ‘yes’ or ‘no’ does not count!).

[180 minutes; open books]
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Solution
July 8, 2022

Exercise #1

The objective is to obtain the robot dynamic equations in the transformed coordinates p = t(q)
such that

Mp(p)p̈+ cp(p, ṗ) = τp =

 τ1

τ2

τ3

, (3)

i.e., in the right-hand side of eq. (3) the three available actuators torques τ are those performing
work of the coordinates p.

Since the following holds by duality

ṗ =
∂t(q)

∂q
= Jt(q)q̇ ⇐⇒ τ q = JT

t (q)τp,

we extract from the right-hand side of (1) the required Jacobian of the transformation,

τ q =

 τ1

τ2 + τ3

τ3

 = JT
t τp ⇒ JT

t =

 1 0 0

0 1 1

0 0 1

,
which turns out to be constant. Therefore, the change of coordinates is linear

p = Jt q =

 1 0 0

0 1 0

0 1 1

 q =

 q1

q2

q2 + q3


and its inverse is

q = J−1
t p =

 1 0 0

0 1 0

0 −1 1

p =

 p1

p2

p3 − p2

 ⇒ q̇ = J−1
t ṗ, q̈ = J−1

t p̈.

Plugging these into (1) yields finally (3) with

Mp(p) = J−T
t Mq(q)J−1

t

=

 m11(p2, p3 − p2) 0 0

0 m22(p3 − p2) +m33 − 2m23(p3 − p2) m23(p3 − p2)−m33

0 m23(p3 − p2)−m33 m33

 (4)

cp(p, ṗ) = J−T
t cq(q, q̇) =

 c1(p2, p3 − p2, ṗ2, ṗ3 − ṗ2)

c2(p2, p3 − p2, ṗ1, ṗ2, ṗ3 − ṗ2)− c3(p2, p3 − p2, ṗ1, ṗ2)

c3(p2, p3 − p2, ṗ1, ṗ2)

, (5)

where the arguments in the functions on the right-hand sides of (4) and (5) have been substituted
with the inverse mappings (q, q̇) =

(
J−1

t p,J−1
t ṗ

)
. This is not strictly needed in general (nor

required by the text), but is particularly simple here because of the linearity of the transformation.
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Exercise #2

We apply the standard procedure for obtaining the reduced dynamic model, which is particularly
simple in this case.

The Jacobian of the scalar constraint h(q) = q1(t) − k = 0 is A = ∂h(q)/∂q =
(

1 01×(n−1)

)
.

Therefore, the obvious completion of A with a matrix D to obtain a square nonsingular matrix is(
A

D

)
=

(
1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)
= In×n,

and thus (
E F

)
=

(
A

D

)−1

=

(
1 01×(n−1)

0(n−1)×1 I(n−1)×(n−1)

)
.

As a result, the pseudo-velocity vector is

v = Dq̇ = q̇2 ∈ Rn−1.

Being all the defined transformation matrices constant, the reduced dynamics becomes(
F TM(q)F

)
v̇ = F T (τ − n(q, q̇)),

or
M22(q) q̈2 = τ 2 − n̄2(q, q̇) = τ 2 − c̄2(q, q̇)− ḡ2(q), (6)

where a ‘bar’ on a dynamic term means that:

• M22 is identical to the same block in (2), because q1 does not appear in the inertia matrix M(q)
of any robot (a so-called cyclic variable);

• c̄2 is evaluated at q̇1 = 0 while, as a result of the previous property, is also independent from q1;

• ḡ2 is evaluated at q1 = q1d = k.

Similarly, the expression of the (scalar) force multiplier λ becomes

λ = ET (M(q)F v̇ + n(q, q̇)− τ ) = mT
12(q)q̈2 + n̄1(q, q̇)− τ1

= mT
12(q)M−1

22 (q) (τ 2 − n̄2(q, q̇)) + n̄1(q, q̇)− τ1,
(7)

where eq. (6) has been used.

For any arbitrary choice of the torque τ 2, the control law applied at joint 1 to make sure that
λ(t) ≡ 0 is then

τ1 = n̄1(q, q̇) +mT
12(q)M−1

22 (q) (τ 2 − n̄2(q, q̇)) . (8)

Note that gravity effects acting on joint 1 are also cancelled at rest by the ḡ1 torque within n̄1.
Furthermore, in order to achieve regulation to a desired q2d, one can use a feedback linearization
approach yielding

τ 2 = M22(q) (KP (q2d − q2)−KDq̇2) + n̄2(q, q̇), with KP > 0, KD > 0, (9)

which provides exponential and decoupled stabilization of the error e2 = qd2 − q2 to zero. In
alternative, one can design a simpler PD regulator with gravity cancellation

τ 2 = KP (q2d − q2)−KDq̇2 + ḡ2(q, q̇), with KP > 0, KD > 0. (10)
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It is straightforward to prove asymptotic stability of the closed-loop system with (10), using a
Lyapunov/LaSalle argument on the reduced dynamics (6).

Exercise #3

The task does not require any coordination between the two joints, nor there is a velocity bound.
Thus, each joint will move as fast as possible with a bang-bang force profile. The minimum transfer
time will be given by the slowest joint completing its motion (while the fastest joint remains at
rest for some interval).

The two scalar problems are however different because of the presence of gravity on the vertical
(second) joint, which offsets its feasible acceleration range. With q = (x, y), the dynamic model of
this PP robot is

(m1 +m2) ẍ = ux

m2 ÿ +m2 g0 = uy,
(11)

being g0 = 9.81 [m/s2]. As a result

|ux| ≤ Ux,max ⇒ |ẍ| ≤ Ux,max

m1 +m2

|uy| ≤ Uy,max ⇒ −
(
Uy,max

m2
+ g0

)
≤ ÿ ≤ Uy,max

m2
− g0,

with an asymmetric feasible range for ÿ. Moreover, let Pg − Ps = (∆x,∆y) be the required
displacement.
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Figure 2: Force, acceleration and velocity profiles for the joint moving under gravity by ∆y > 0.

Consider first the time-optimal motion for the y-axis under gravity. With reference to Fig. 2,
which shows only the case of ∆y > 0, the acceleration is bang-bang and the velocity is triangular,
both switching at Ty,sw and being typically asymmetric in time with respect to the total interval
Ty. Two relations are then obtained from these behaviors: i) the area with sign covered by the
acceleration profile (i.e., its integral) should be zero in order to obtain a rest-to-rest motion, i.e.,(

sign(∆y)
Uy,max

m2
− g0

)
Ty,sw −

(
sign(∆y)

Uy,max

m2
+ g0

)
(Ty − Ty,sw) = 0;

ii) the area with sign covered by the velocity profile should be equal to the required displacement
∆y of the joint, i.e.,

1

2

(
sign(∆y)

Uy,max

m2
− g0

)
T 2
y,sw +

1

2

(
sign(∆y)

Uy,max

m2
− g0

)
Ty,sw (Ty − Ty,sw) = ∆y.
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Solving these two equations for Ty and Ty,sw gives

Ty = 2

√
m2 |∆y|Uy,max

U2
y,max − (m2g0)2

(12)

and

Ty,sw =
Ty
2

(
1 + sign(∆y)

m2g0
Uy,max

)
6= Ty

2
. (13)

If ∆y > 0 then Ty,sw > Ty/2 and, viceversa, if ∆y < 0 then Ty,sw < Ty/2.

The time-optimal motion for the x-axis without gravity is a sub-case of the formulas (12) and (13),
obtained by setting g0 = 0 and replacing m2 with the total mass m1 + m2 driven by this joint.
Thus,

Tx = 2

√
(m1 +m2) |∆x|

Ux,max
and Tx,sw =

Tx
2
. (14)

Therefore,
T ∗ = max {Tx, Ty} . (15)

Note that the joint that arrives first should remain then at rest, waiting for the slower joint to reach
its goal. Indeed, the faster joint could also remain at rest at the beginning and then start moving
at an instant such that task completion occurs simultaneously at T ∗ for both joints. In any event,
to stay at rest at steady state, the horizontal joint does not require any force (ux,ss = 0), whereas
the vertical joint should sustain gravity (uy,ss = m2g0). Except for very special combinations of
problem data, the above minimum-time control strategy will not result in a coordinated robot
motion (i.e., all joints start and end their motion at the same instant, without intermediate stops).

With the problem data, it is ∆x = −0.4, ∆y = 0.4 [m] and we obtain the following motion times
(in seconds):

Tx = 0.5657, Tx,sw = 0.2828, Ty = 0.5115, Ty,sw = 0.4439 ⇒ T ∗ = 0.5657.

The results are reported in Fig. 3. We note that, since in this case the y-axis is faster, when this
joint reaches its goal (at t = Ty < T ∗), the control input switches to the steady-state equilibrium
force uy,ss = 20.43 [N].

The resulting Cartesian path of the robot end-effector is not a straight line segment between Ps

and Pg —see Fig. 4. Rather, the initial part of the path, between t = 0 and t = Tx,sw, is linear
since

dy

dx
=
ẏ

ẋ
=

Uy,max

m2
t

Ux,max

m1 +m2
t

=
Uy,max

Ux,max

m2

m1 +m2
= k;

it is followed then by two different curvilinear parts1, between t = Tx,sw and t = Ty,sw and between
t = Ty,sw and t = Ty; the last part, between t = Ty and t = Tx = T ∗, is again a (very short) linear
segment.

It can be shown2 that even if the problem data were such that the two joints complete their task
at the same instant (i.e., T ∗ = Tx = Ty), the resulting path would still not be a linear segment
between Ps and Pg.

1These parts have no easy geometric expressions. In fact, the tangent to each curve is a rational function given
by the ratio of linear polynomials in time t.

2If you write a code for this problem, try out Pg = (0.673, 0.7) with all the rest being the same. This will result
in a coordinated joint motion, but still without a resulting linear Cartesian path. Try out also a motion task in
favor of gravity (∆y < 0), in order to better understand the need of the absolute value and sign of ∆y in eqs. (12)
and (13).
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Figure 3: From top to bottom: Joint position, velocity, acceleration, and input force in the time-
optimal solution (blue = x-axis, red = y-axis).
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Figure 4: Cartesian path of the robot end-effector.
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