
Robotics 2

September 10, 2021

Exercise #1

Consider the planar 3R robot in Fig. 1. The three links have all equal length L. The robot
is controlled by a joint acceleration command u = q̈ ∈ R3. The input commands are bounded
componentwise as |ui| ≤ Umax,i, for i = 1, 2, 3. Moreover, let p = f(q) ∈ R2 be the end-effector
position. At a given instant t = t0, the robot is in a generic state (q(t0), q̇(t0)) = (q0, q̇0) ∈ R6, with
q̇0 6∈ N {J(q0)}. Which feasible command u0 = u(t0) would you apply to stop as fast as possible
the Cartesian motion of the end-effector, while keeping its velocity aligned with the direction of
ṗ0 = ṗ(t0) 6= 0? If there are multiple feasible solutions, provide the one having minimum norm.
Illustrate your findings with a numerical example, providing the values of q0, q̇0, u0, and of the
resulting acceleration p̈0 = p̈(t0).
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Figure 1: A planar 3R robot.

Exercise #2

For the same robot in Fig. 1, assume that the three links of equal length L = 0.5 [m] are all modeled
as thin rods with a uniformly distributed mass of m = 5 [kg]. Provide the eigenvalues of the 2× 2
Cartesian inertia matrix Mp, when the robot is in the regular configuration q∗ = (π/2, π/2, 0).

Hint: Use an equivalent expression for the Cartesian inertia matrixMp = J−TMJ−1 that applies
both to square and non-square Jacobians under the same full rank assumption.

Exercise #3

The end-effector of a 2-dof Cartesian robot with different link masses m1 and m2 moves in a vertical
plane (x,y) making contact with an environment. There is no force/torque sensor mounted on
the robot. Design an impedance control law that shapes the response between interacting forces
and tracking errors by assigning the same two real, negative and coincident eigenvalues (i.e., in
−λ < 0) to the closed-loop linear dynamics along the two decoupled directions x and y.

[180 minutes (3 hours); open books]
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Solution
September 10, 2021

Exercise #1

The second-order differential kinematics of a robot with n joints performing a m-dimensional task
(with m ≤ n) is

p̈ = J(q)q̈ +J̇(q)q̇ = J(q)u+ h(q, q̇), (1)

with vector h ∈ Rm being quadratic in q̇. The joint acceleration q̈ ∈ Rn is taken as the input
command u.

At time t = t0, the task velocity is ṗ0 = ṗ(t0) = J (q(t0)) q̇(t0) = J0q̇0, which is necessarily
different from zero since one should choose a q̇0 6∈ N {J0}. We impose to the end-effector an
acceleration p̈0 (actually, a deceleration) that is aligned with ṗ0 and whose components are opposite
in sign to the associated velocity components. Therefore, we set

p̈0 = −λ ṗ0 = −λJ0q̇0, with λ ≥ 0,

and choose the largest possible (non-negative) value for the scalar λ such that the minimum norm
joint acceleration solution u0 to (1) is feasible. It is then

u0 = J#
0 (p̈0 − h0) = −λJ#

0 J0 q̇0 − J
#
0 J̇0 q̇0. (2)

Define now the two n-dimensional vectors1

a = −J#
0 J0 q̇0, b = −J#

0 J̇0 q̇0, (3)

and organize the bounds on the commands in vector form as

Umax =


Umax,1
Umax,2

...
Umax,n

 .

The problem is formulated as a simple linear program (LP) as follows:

max λ s.t. −Umax ≤ aλ+ b ≤ Umax, λ ≥ 0, (4)

where vector inequalities are to be considered component-wise. Note first that a 6= 0 (although
some of its components may possibly vanish). In fact, ṗ0 = J0q̇0 6= 0 is a realizable velocity, as
generated by q̇0 6= 0; thus, the pseudoinverse of such task velocity cannot produce a zero joint
velocity. The feasible set may be empty, in which case no instantaneous acceleration solution
exists. Moreover, if the optimal value of problem (4) is λ = 0, the end-effector will not be able to
instantaneously decelerate; the problem has again no actual solution at t = t0. Nonetheless, it is
convenient to keep the value λ = 0 in the feasible set, so as to guarantee the existence of a solution
to problem (4) whenever its (closed) feasible set is non-empty.

1One can also define the two vectors a and b with a positive sign in front. Being the bounds on the command
u symmetric, the linear inequalities in (4) would remain the same.

2



The optimal solution λ∗ to (4) is easily found. For i = 1, . . . , n, let

λi =



−∞ if bi < −Umax,i and ai ≤ 0,

Umax,i − bi
ai

if bi < −Umax,i and ai > 0,

max

{
−Umax,i + bi

ai
,
Umax,i − bi

ai

}
if Umax,i ≤ bi ≤ Umax,i and ai 6= 0,

+∞ if Umax,i ≤ bi ≤ Umax,i and ai = 0,

−Umax,i + bi
ai

if bi > Umax,i and ai < 0,

−∞ if bi > Umax,i and ai ≥ 0.

(5)

We compute then
λ∗ = min

i=1,...,n
λi, (6)

with the following conclusions:

λ∗ > 0 ⇒ λ∗ is the optimal solution, with a feasible acceleration u∗
0 = aλ∗ + b;

λ∗ = 0 ⇒ the resulting joint acceleration is u0 = −J#
0 J̇0 q̇0, yielding p̈0 = 0;

λ∗ = −∞ ⇒ there is no solution to the problem (the feasible set is empty).

In the optimal solution u∗
0, at least one joint acceleration will saturate one of its bounds. When

λ∗ = 0, the end-effector will keep instantaneously the same velocity ṗ0, with no deceleration. When
there is no solution to the problem, the end-effector will no longer be able to move exactly along
the direction of ṗ0 (in either way). Some of the various possible situations for a generic single
component λi are illustrated in Fig. 2. Figure 3 shows geometrically some resulting cases for u∗

0

with n = 2 components (thus, when m = 1).

Umax,i– Umax,i 0 bi

ui

ai > 0ai < 0 𝜆" =
$%&',)*+)

,)
> 0

ai = 0 

⇒ 𝜆" = +∞

𝜆" = −$%&',)3+)
,)

> 0

Umax,i– Umax,i 0 bi =

ui

ai < 0 ai > 0𝜆" = −$%&',)3+)
,)

> 0

ai = 0 

⇒ 𝜆" = +∞
𝜆" = 0

Umax,i– Umax,i 0bi

ui

ai > 0ai ≤ 0 𝜆" =
$%&',)*+)

,)
> 0𝜆" = −∞

Figure 2: Examples of evaluation of λi for a generic single component.
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Umax,2

– Umax,2

Umax,1

– Umax,1 0 u1

u2

b

a

b
a

ba
(with a1 = 0, a2 < 0)

u0
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*no solution!
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Figure 3: Examples of existence or not of a solution u∗
0 and its geometrical evaluation when n = 2.

For the planar 3R robot of Fig. 1, we have n = 3, m = 2, and the terms in (1) are the 2× 3 task
Jacobian

J(q) =
∂f(q)

∂q
= L

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
, (7)

its time derivative

J̇(q) = −L ·(
c1q̇1 + c12 (q̇1 + q̇2) + c123 (q̇1 + q̇2 + q̇3) c12 (q̇1 + q̇2) + c123 (q̇1 + q̇2 + q̇3) c123 (q̇1 + q̇2 + q̇3)

s1q̇1 + s12 (q̇1 + q̇2) + s123 (q̇1 + q̇2 + q̇3) s12 (q̇1 + q̇2) + s123 (q̇1 + q̇2 + q̇3) s123 (q̇1 + q̇2 + q̇3)

)
,

and the product of matrix J̇ by the joint velocity q̇

h(q, q̇)=−L
(

(c1 + c12 + c123) q̇
2
1 + 2 (c12 + c123) q̇1q̇2 + 2 c123 q̇1q̇3 + (c12 + c123) q̇

2
2 + 2 c123 q̇2q̇3 + c123 q̇

2
3

(s1 + s12 + s123) q̇
2
1 + 2 (s12 + s123) q̇1q̇2 + 2 s123 q̇1q̇3 + (s12 + s123) q̇

2
2 + 2 s123 q̇2q̇3 + s123 q̇

2
3

)
,

having used the shorthand notation for trigonometric functions (e.g., c123 = cos(q1 + q2 + q3)).

As a first numerical example, set L = 1 [m] for the link lengths and choose

Umax =

 15π

10π

10π

 =

 47.1239

31.4159

31.4159

 [rad/s2]

as values for the (symmetric) bounds for the acceleration commands2. At time t = t0, consider
the robot state

q0 =

 0

π/2

π/2

 [rad], q̇0 =

 π/2

π/2

0

 [rad/s].

2These bounds are the same used in Exercise 1 of the exam of July 12, 2021.
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We compute then from the previous formulas

J0 =

(
−1 −1 0

0 −1 −1

)
, ṗ0 = J0q̇0 =

(
−π
−π/2

)
[m/s]

and

J̇0 =

(
π/2 π π

−π −π 0

)
, h0 = J̇0q̇0 =

(
3π2/4

−π2

)
=

(
7.4022

−9.8696

)
[m/s2].

The pseudoinverse of the task Jacobian is

J#
0 = JT0

(
J0J

T
0

)−1

=

 −2/3 1/3

−1/3 −1/3

1/3 −2/3

 .

Therefore, from (3) we obtain

a = −J#
0 ṗ0 = −

 π/2

π/2

0

 , b = −J#
0 h0 =

 5π2/6

−π2/12

−11π2/12

 =

 8.2247

−0.8225

−9.0471

 .

None of the components of vector b (related to the Cartesian drift acceleration h0) is outside the
acceleration bounds specified by Umax. As a result, according to the law (5–6), an optimal solution
certainly exists and is given by

λ∗ = 19.4764 [s−1] ⇒ u∗
0 =

 −22.3688

−31.4159

−9.0471

 [rad/s2] ⇒ p̈0 =

(
61.1869

30.5935

)
[m/s2].

As expected, there is at least a component of u∗
0 that is saturated (only the second one, at its

negative lower bound). The obtained task acceleration is p̈0 = −λ∗ṗ0, as expected.

To verify further the method, consider now the following joint velocity at time t = t0,

q̇0 =

 2π

π/2

0

 =

 6.2832

1.5708

0

 [rad/s],

with the first component four times higher than before, all the rest being the same. The changed
terms are

ṗ0 =

(
−7.8540

−1.5708

)
[m/s], J̇0 =

(
1.5708 7.8540 7.8540

−7.8540 −7.8540 0

)
, h0 =

(
22.2066

−61.6850

)
[m/s2],

and thus

a =

 −4.7124

−3.1416

1.5708

 , b =

 35.3661

−13.1595

−48.5256

 .

The component b3 of vector b exceeds now the lover bound −Umax,3 = −31.4159 [rad/s2]. However,
a3 > 0 and thus an optimal solution exists. According to the law (5–6), we obtain

λ∗ = 5.8112 [s−1] ⇒ u∗
0 =

 7.9814

−31.4159

−39.3973

 [rad/s2] ⇒ p̈0 =

(
45.6411

9.1282

)
[m/s2].
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As before, the second component of u∗
0 is saturated at its negative lower bound. The rate of

decrease of the Cartesian velocity is now slower3, because the optimal λ∗ is also smaller and the
rate of decrease of p̈0 depends on λ∗ only. In fact, it is immediate to see that

p̈ = −λ ṗ ⇒ ṗ(t) = e−λ(t−t0) ṗ(t0) ' (1− λ dt) ṗ0 ⇒ ṗ(t)− ṗ0
dt

' −λ ṗ0,

for a sufficiently small dt = t− t0 > 0.

As a last example, we double the joint velocity at time t = t0 with respect to the first case,

q̇0 =

 π

π

0

 =

 3.1416

3.1416

0

 [rad/s],

all the rest being again the same4. The changed terms are now

ṗ0 =

(
−6.2832

−3.1416

)
[m/s], J̇0 =

(
3.1416 6.2832 6.2832

−6.2832 −6.2832 0

)
, h0 =

(
29.6088

−39.4784

)
[m/s2],

and

a =

 −3.1416

−3.1416

0

 , b =

 32.8987

−3.2899

−36.1885

 .

Again, the third component of b exceeds its lower bound −Umax,3 = −31.4159 [rad/s2]. However,
since a3 = 0, no solution exists in this case. In fact, according to the law (5–6), it is

λ1 = 25.4720, λ2 = 8.9528, but λ3 = −∞ ⇒ λ∗ = −∞.

Exercise #2

Note first that the m ×m Cartesian inertia matrix of a robot with a m × n Jacobian J(q) that
has full rank m can always be written as5

Mp(q) =
(
J(q)M−1(q)JT(q)

)−1

, (8)

where M(q) > 0 is the n × n inertia matrix in the configuration space. The derivation of (8) for
the case m < n (redundant robot) with a full rank Jacobian is simple. Let the robot dynamics in
joint space be

M(q)q̈ + c(q, q̇) + g(q) = τ , (9)

and the second-order differential kinematics to the Cartesian space be

p̈ = J(q)q̈ + J̇(q)q̇. (10)

Extracting q̈ from (9), using the transformation of generalized forces τ = JT(q)F , and substituting
in (10) yields

p̈ = J(q)M−1(q)
(
JT(q)F − c(q, q̇)− g(q)

)
+ J̇(q)q̇

=
(
J(q)M−1(q)JT(q)

)
F − J(q)M−1(q)

(
c(q, q̇) + g(q)

)
+ J̇(q)q̇

3This happens independently from the value of ‖p̈0‖, which is smaller here than in the first case.
4This case coincides with the first one considered in Exercise 1 of the exam of July 12, 2021.
5The expression (8) appears also in the lecture slides on robot redundancy (block 2, part 2, p. 10) and on collision

detection and reaction (block 19, p. 40).
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or
Mp(q)p̈+ cp(q, q̇) + gp(q) = F , (11)

with Mp(q) as in (8) and

cp(q, q̇) = Mp(q)
(
J(q)M−1(q) c(q, q̇)− J̇(q)q̇

)
, gp(q) = Mp(q)J(q)M−1(q) g(q).

Indeed, the dynamic description (11) is incomplete when m < n and should be complemented
by additional n − m dynamic equations (e.g., judiciously extracted from the original complete
dynamics (9) in the joint space). On the other hand, when the Jacobian is square (m = n) and
nonsingular, the terms in the (now complete) Cartesian dynamic model (11) simplify to

Mp(q) = J−T(q)M(q)J−1(q)

and
cp(q, q̇) = J−T(q) c(q, q̇)−Mp(q)J̇(q)q̇, gp(q) = J−T(q) g(q).

The Jacobian of the planar 3R robot in Fig. 1 is given by (7). The inertia matrix M(q) is extracted
from the kinetic energy of the three links of the robot. Under the assumption of equal uniform
thin rods, the center of mass of each link is at dci = L/2 on its kinematic axis and the barycentral
inertia (around the axis normal to the plane) equals Ii = (1/12)mL2. For the first link, we have
then

T1 =
1

2

(
md2c1 + I1

)
q̇21 =

1

2

(
m

(
L

2

)2

+
1

12
mL2

)
q̇21 =

1

2

mL2

3
q̇21 .

For the second link, we have

pc2 = L

 c1 +
1

2
c12

s1 +
1

2
s12

 ⇒ vc2 = ṗc2 = L

 −s1q̇1 −
1

2
s12 (q̇1 + q̇2)

c1q̇1 +
1

2
c12 (q̇1 + q̇2)

 ,

and thus

T2 =
1

2

(
m ‖vc2‖2 + I2 (q̇1 + q̇2)

2
)

=
1

2

(
mL2

(
q̇21 +

1

4
(q̇1 + q̇2)

2
+ c2 q̇1 (q̇1 + q̇2)

)
+

1

12
mL2 (q̇1 + q̇2)

2

)
=

1

2
mL2

((
4

3
+ c2

)
q̇21 +

(
2

3
+ c2

)
q̇1q̇2 +

1

3
q̇22

)
.

Finally, for the third link

pc3 = L

 c1 + c12 +
1

2
c123

s1 + s12 +
1

2
s123

 ⇒ vc3 = L

 −
(
s1q̇1 + s12 (q̇1 + q̇2) +

1

2
s123 (q̇1 + q̇2 + q̇3)

)
c1q̇1 + c12 (q̇1 + q̇2) +

1

2
c123 (q̇1 + q̇2 + q̇3)

 ,
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and so

T3 =
1

2

(
m ‖vc3‖2 + I3 (q̇1 + q̇2 + q̇3)

2
)

=
1

2

(
mL2

(
q̇21 + (q̇1 + q̇2)

2
+

1

4
(q̇1 + q̇2 + q̇3)

2
+ 2 c2 q̇1 (q̇1 + q̇2)

+ c23 q̇1 (q̇1 + q̇2 + q̇3) + c3 (q̇1 + q̇2) (q̇1 + q̇2 + q̇3)

)
+

1

12
mL2 (q̇1 + q̇2 + q̇3)

2

)
=

1

2
mL2

((
7

3
+ 2 c2 + c23 + c3

)
q̇21 +

(
8

3
+ 2 c2 + c23 + 2c3

)
q̇1q̇2 +

(
2

3
+ c23 + c3

)
q̇1q̇3

+

(
4

3
+ c3

)
q̇22 +

(
2

3
+ c3

)
q̇2q̇3 +

1

3
q̇23

)
.

.

Therefore, from

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇

we obtain

M(q) = mL2


4 + 3 c2 + c23 + c3

5

3
+

3

2
c2 +

1

2
c23 + c3

1

3
+

1

2
c23 +

1

2
c3

...
5

3
+ c3

1

3
+

1

2
c3

symm · · · 1

3

 . (12)

Since L = 0.5 [m] and mL2 = 5·0.52 = 1.25 [kgm2], evaluating eqs. (7) and (12) at the configuration
q∗ = (π/2, π/2, 0) gives:

J = J(q∗) =

(
−0.5 0 0

−1 −1 −0.5

)
,

M = M(q∗) =


25

4

10

3

25

24
10

3

10

3

25

24
25

24

25

24

5

12

 '
 6.25 3.3333 1.0417

3.3333 3.3333 1.0417

1.0417 1.0417 0.4167

 .

The Cartesian inertia matrix in (8) is

Mp = Mp(q
∗) =

(
35/3 0

0 35/24

)
'
(

11.6667 0

0 1.4583

)
.

Its two eigenvalues are then
λ1 = 11.6667, λ2 = 1.4583.

Note that the Cartesian inertia is fully decoupled in the configuration q∗. This is by no means the
generic case, although the matrix Mp(q) is always symmetric, and also positive definite as long as
the Jacobian is full rank (its eigenvalues are always real, and strictly positive outside singularities).
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Exercise #3

With reference to Fig. 4, the dynamic model of the 2-dof Cartesian robot in contact with a generic
environment is

Mq̈ + g = τ + F , (13)

with

M =

(
m1 +m2 0

0 m2

)
, g =

(
0

m2g0

)
, τ =

(
τ1

τ2

)
, F =

(
Fx

Fy

)
,

where τ ∈ R2 is the control input force at the prismatic joints and F ∈ R2 is the contact force
exerted from the environment on the robot end effector.

q1

y0

x0

q2

g0

m1

m2 ⊕

⊕

F

𝜏# 𝜏$

Figure 4: A 2-dof Cartesian robot making contact with an environment.

The desired linear and decoupled impedance model is

Md ë+Dd ė+Kd e = F , (14)

where

e = p− pd, p =

(
x

y

)
=

(
q1
q2

)
,

with pd ∈ R2 being the desired position of the robot end effector, and

Md =

(
Mdx 0

0 Mdy

)
> 0, Dd =

(
Ddx 0

0 Ddy

)
> 0, Kd =

(
Kdx 0

0 Kdy

)
> 0.

Since there is no force/torque sensor available, we have to choose necessarily the actual (Cartesian)
inertia as desired (apparent) inertia:

Md = M ⇐⇒ Mdx = m1 +m2, Mdy = m2. (15)

From (13) and (14), with (15), the required control law is

τ = Mp̈d + g −Dd ė−Kd e

=

(
(m1 +m2) ẍd

m2 ÿd

)
+

(
0

m2g0

)
+

(
Ddx (ẋd − ẋ) +Kdx (xd − x)

Ddy (ẏd − ẏ) +Kdy (yd − y)

)
,

(16)
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which has the standard form of a PD action with a feedforward acceleration term (if p̈d 6= 0)
and gravity cancellation. For the choice of the gains, we rewrite the impedance model (14), using
again (15), in the Laplace domain,(

Ms2 +Dds+Kd

)
e(s) = F (s),

and impose the desired dynamic characteristics between F (s) and e(s) in each Cartesian direction:

(
Is2 +M−1Dd s+M−1Kd

)
=

(
(s+ λ)

2
0

0 (s+ λ)
2

)
=

(
s2 + 2λs+ λ2 0

0 s2 + 2λs+ λ2

)
.

As a result,
Ddx = 2 (m1 +m2)λ, Kdx = (m1 +m2)λ2,

and
Ddy = 2m2λ, Kdy = m2λ

2.

∗ ∗ ∗ ∗ ∗
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