Robotics 2

Remote Exam - October 23, 2020

Exercise \#1

The PR robot in Fig. 1 moves on a horizontal plane. Its positive definite inertia matrix has the form

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{cc}
a & b \cos q_{2} \tag{1}\\
b \cos q_{2} & c
\end{array}\right)>0 .
$$

Using only the symbolic coefficients a, b and c in (1), provide the expression of the regressor matrix $\boldsymbol{Y}\left(\boldsymbol{q}, \dot{\boldsymbol{q}}, \dot{\boldsymbol{q}}_{r}, \ddot{\boldsymbol{q}}_{r}\right)$ in the adaptive control law that guarantees global asymptotic tracking of a smooth joint trajectory $\boldsymbol{q}_{d}(t)$, without a priori information on the values of the dynamic coefficients.

Figure 1: The planar PR robot with definition of joint variables q_{1} and q_{2} and relevant parameters.

Exercise \#2

For the same PR robot in Fig. 1, suppose that a desired twice-differentiable trajectory $y_{d}(t) \in \mathbb{R}$ has been assigned to the coordinate y of the end-effector position. With the robot in the configuration $\overline{\boldsymbol{q}}=\left(\begin{array}{ll}1 & \pi / 2\end{array}\right)^{T}$ and at rest, provide the three input vectors of joint force/torque $\boldsymbol{\tau}_{A}, \boldsymbol{\tau}_{B}$, and $\boldsymbol{\tau}_{C}$ (all $\in \mathbb{R}^{2}$) that execute the desired task and instantaneously minimize, respectively,

$$
H_{A}=\frac{1}{2}\|\boldsymbol{\tau}\|^{2}, \quad H_{B}=\frac{1}{2}\|\boldsymbol{\tau}\|_{M^{-1}(\overline{\boldsymbol{q}})}^{2}, \quad \text { or } \quad H_{C}=\frac{1}{2}\|\boldsymbol{\tau}\|_{M^{-2}(\overline{\boldsymbol{q}})}^{2}
$$

Which of the three solutions has the largest component at the first joint in absolute value?

Exercise \#3

Assume now that the robot in Fig. 1 is moving instead in a vertical plane. Derive the expression of the gravity term $\boldsymbol{g}(\boldsymbol{q})$ in the dynamic model as a function of the robot dynamic parameters m_{1}, $m_{2}, d_{c 2}$ and I_{2}. In order to regulate the robot configuration at a desired constant value \boldsymbol{q}_{d}, the following control law is being applied:

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{K}_{P}\left(\boldsymbol{q}_{d}-\boldsymbol{q}\right)-\boldsymbol{K}_{D} \dot{\boldsymbol{q}}+\boldsymbol{g}\left(\boldsymbol{q}_{d}\right) \tag{2}
\end{equation*}
$$

Provide explicit sufficient conditions (depending also on the robot dynamic parameters) ensuring that the law (2) globally asymptotically stabilizes the closed-loop equilibrium state $(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left(\boldsymbol{q}_{d}, \mathbf{0}\right)$.

Exercise \#4

Consider the task of rolling a sphere of radius R on a rigid plane, while the contact point C follows a desired trajectory on the planar surface. The sphere will be held by a robot through a gimbal fork that allows free rotation of the sphere around the instantaneous direction of the axis \boldsymbol{r}-see Fig. 2. In turn, the fork can be rotated around the axis \boldsymbol{t}, which remains however always vertical. Under the action of a sufficiently large force in the normal direction to the plane, friction at the contact will let the sphere only roll when in motion, without slipping. With this in mind, define a suitable task frame and specify the natural and artificial constraints associated to this hybrid force-velocity control problem. How many generalized velocity directions $\boldsymbol{V}=\left(\boldsymbol{v}^{T} \boldsymbol{\omega}^{T}\right)^{T} \in \mathbb{R}^{6}$ can be independently assigned by the control law?

Figure 2: A sphere rolling on a plane and following a desired trajectory of the contact point C.
[180 minutes (3 hours); open books]

