Robotics II

January 11, 2017

Exercise 1

Figure 1: A 2R polar robot with associated link frames.
The 2R polar robot shown in Fig. 1 moves in the presence of gravity and has links of cylindric form and uniformly distributed mass. Its dynamic model is

$$
\boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{\tau}
$$

where

$$
\boldsymbol{B}(\boldsymbol{q})=\left(\begin{array}{cc}
a_{1}+a_{2} \sin ^{2} q_{2} & 0 \\
0 & a_{3}
\end{array}\right), \quad \boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\binom{2 a_{2} \sin q_{2} \cos q_{2} \dot{q}_{1} \dot{q}_{2}}{-a_{2} \sin q_{2} \cos q_{2} \dot{q}_{1}^{2}}, \quad \boldsymbol{g}(\boldsymbol{q})=\binom{0}{a_{4} \cos q_{2}} .
$$

with $a_{1}=I_{1 y}+I_{2 y}+m_{2} d_{2}^{2}, a_{2}=I_{2 x}-I_{2 y}-m_{2} d_{2}^{2}, a_{3}=I_{2 z}+m_{2} d_{2}^{2}$, and $a_{4}=m_{2} g_{0} d_{2}$.

- Give a physical interpretation of the inertia matrix elements that confirms their correctness.
- Write down all expressions of feedback control laws for $\boldsymbol{\tau}$ that you are aware of, which guarantee regulation to a desired (generic) constant configuration \boldsymbol{q}_{d}. Specify for each law the design conditions for success and the type of convergence/stability achieved.

Exercise 2

In inverse dynamics problems for serial manipulators, the most efficient implementations are based on a numerical Newton-Euler (NE) algorithm that contains a forward recursive (FR) part, which computes from the base to the tip all relevant differential kinematic terms associated to the links, and a backward recursive (BR) part, which computes from the tip to the base the exchanged forces/torques between links. Suppose now that we compute the (linear/angular) acceleration vector $\ddot{\boldsymbol{p}} \in \mathbb{R}^{6}$ of the end-effector by

$$
\ddot{\boldsymbol{p}}=N E F R(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

where $N E F R$ denotes compactly the FR part only of the NE algorithm.

- How can the $N E F R$ algorithm be used to evaluate numerically and separately the Jacobian matrix \boldsymbol{J} and the product term $\dot{\boldsymbol{J}} \dot{\boldsymbol{q}}$? How many times is the algorithm called in total?
- With the same algorithm, can we evaluate also the matrix $\dot{\boldsymbol{J}}$ alone? If so, how?

Exercise 3

Consider a planar 3 R robot with unitary link lengths. Taking into account robot redundancy, a kinematic control scheme is active at the velocity level so as to track a desired end-effector position trajectory, while trying to locally maximize the minimum Cartesian distance of the robot body from obstacles.

Figure 2: A planar 3R robot moving its end effector in the presence of an obstacle.

- In the shown configuration $\boldsymbol{q}=\left(30^{\circ},-30^{\circ}, 30^{\circ}\right)$ and with a single obstacle placed as in Fig. 2 , the robot end effector is assigned a unitary velocity \boldsymbol{v} in the positive \boldsymbol{x}_{0} direction. Specify one particular kinematic control scheme achieving at best both tasks, and provide the associated numerical value of the command vector $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$.
- Compare with a minimum velocity norm solution that neglects the presence of the obstacle.
[180 minutes; open books but no computer or smartphone]

