
Robotics II
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Exercise 1
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Figure 1: A 2R polar robot with associated link frames.

The 2R polar robot shown in Fig. 1 moves in the presence of gravity and has links of cylindric
form and uniformly distributed mass. Its dynamic model is

B(q)q̈ + c(q, q̇) + g(q) = τ ,

where

B(q) =
(

a1 + a2 sin2q2 0
0 a3

)
, c(q, q̇) =

(
2a2 sin q2 cos q2 q̇1q̇2

−a2 sin q2 cos q2 q̇2
1

)
, g(q) =

(
0

a4 cos q2

)
.

with a1 = I1y + I2y + m2d
2
2, a2 = I2x − I2y −m2d

2
2, a3 = I2z + m2d

2
2, and a4 = m2g0d2.

• Give a physical interpretation of the inertia matrix elements that confirms their correctness.
• Write down all expressions of feedback control laws for τ that you are aware of, which

guarantee regulation to a desired (generic) constant configuration qd. Specify for each law
the design conditions for success and the type of convergence/stability achieved.

Exercise 2

In inverse dynamics problems for serial manipulators, the most efficient implementations are based
on a numerical Newton-Euler (NE) algorithm that contains a forward recursive (FR) part, which
computes from the base to the tip all relevant differential kinematic terms associated to the links,
and a backward recursive (BR) part, which computes from the tip to the base the exchanged
forces/torques between links. Suppose now that we compute the (linear/angular) acceleration
vector p̈ ∈ R6 of the end-effector by

p̈ = NEFR(q, q̇, q̈) = J(q)q̈ + J̇(q)q̇,

where NEFR denotes compactly the FR part only of the NE algorithm.

• How can the NEFR algorithm be used to evaluate numerically and separately the Jacobian
matrix J and the product term J̇ q̇? How many times is the algorithm called in total?

• With the same algorithm, can we evaluate also the matrix J̇ alone? If so, how?
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Exercise 3

Consider a planar 3R robot with unitary link lengths. Taking into account robot redundancy, a
kinematic control scheme is active at the velocity level so as to track a desired end-effector position
trajectory, while trying to locally maximize the minimum Cartesian distance of the robot body
from obstacles.

x0 

y0 

0.5 

P 

! 

1+5 3/6

v 

Figure 2: A planar 3R robot moving its end effector in the presence of an obstacle.

• In the shown configuration q = (30◦,−30◦, 30◦) and with a single obstacle placed as in Fig. 2,
the robot end effector is assigned a unitary velocity v in the positive x0 direction. Specify one
particular kinematic control scheme achieving at best both tasks, and provide the associated
numerical value of the command vector q̇ ∈ R3.

• Compare with a minimum velocity norm solution that neglects the presence of the obstacle.

[180 minutes; open books but no computer or smartphone]
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