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in practice, the method from this paper appears to be a good starting
point in stable adaptive control design for a more general class of
nonlinearly parameterized plants.
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Global Positioning of Robot Manipulators via PD Control
Plus a Class of Nonlinear Integral Actions

Rafael Kelly

Abstract—This paper deals with the position control of robot manip-
ulators. Proposed is a simple class of robot regulators consisting of a
linear proportional–derivative (PD) feedback plus an integral action of a
nonlinear function of position errors. By using Lyapunov’s direct method
and LaSalle’s invariance principle, the authors characterize a class of
such nonlinear functions, and they provide explicit conditions on the
regulator gains to ensure global asymptotic stability. These regulators
offer an attractive alternative to global regulation compared with the
well-known partially model-based PD control with gravity compensation
and PD control with desired gravity compensation.

Index Terms—Manipulators, position control, stability.

I. INTRODUCTION

Position control of robot manipulators, also called regulation of
robots, may be recognized as the simplest aim in robot control and
at the same time one of the most relevant issues in the practice of
manipulators. The goal of global position control is to move the
manipulator from any initial state to a fixed desired configuration. It
is well known that many applications of robots moving freely in their
workspace can be well performed by position controllers [1].
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The proportional–derivative (PD) control plus gravity compensa-
tion together with the PD control plus desired gravity compensa-
tion are the simplest global regulators for robot manipulators. The
best feature of these controllers is that the tuning procedure to
achieve global asymptotic stability reduces to select the proportional
and derivative gains in a straightforward manner [2]. However, a
drawback of both control strategies is that the knowledge of the
gravitational torque vector of the robot dynamics which depends
on some parameters as mass of the payload, usually uncertain, is
required. To overcome parametric uncertainties on the gravitational
torque vector, adaptive versions of above controllers have been
introduced in [3]–[5]. However, two minor weaknesses remain for
these approaches; first, the structure of the gravitational torque vector
has to be known, and second, the parameters of the controllers have
to be chosen satisfying complex inequalities. On the other hand, the
common practice of using the linear proportional-integral-derivative
(PID) control in most industrial robots, which does not require any
component of the robot dynamics into its control law, lacks a global
asymptotic stability proof [6]–[8]. Recently, a semiglobally stable
linear regulator without gravity compensation called PI2D has been
proposed to solve the robot position goal [9].

The first global regulator for robot manipulators removing the use
of the gravitational torque vector in the control law was proposed
in [10]. The controller structure incorporates a PI term driven by
a bounded nonlinear function of the position error and a linear PD
feedback loop. It has been shown that there exist suitable parameters
of the controller which achieve positioning in a global sense. The
controller proposed in [10] has been the main motivation and starting
point of this paper.

In this paper we introduce a new class of global position controllers
for robots which do not include their dynamics in the control
laws. Motivated by the controller introduced in [10], which aims
at modifying the potential energy of the closed–loop system and
the injection of the required dissipation, we develop a new class
of regulators leading to a linear PD feedback plus an integral action
driven by a class of nonlinear functions of the position error. We
characterize the class of function and give simple explicit conditions
on the controller parameters which guarantee global positioning.

Throughout this paper, we use the notation�mfAg and�MfAg
to indicate the smallest and largest eigenvalues, respectively, of a
symmetric positive definite bounded matrixA(xxx), for anyxxx 2 <n.
The norm of vectorxxx is defined askxxxk =

p
xxxTxxx; and that of

matrix A is defined as the corresponding induced normkAk =
�MfATAg.
The organization of this paper is as follows. Section II summarizes

the robot model, its main properties, and the controller introduced
in [10]. Our main results are presented in Section III, where we
propose a class of PD controller with nonlinear integral action and we
provide conditions on the controller gains to ensure global asymptotic
stability. Finally, we offer some concluding remarks in Section IV.

II. ROBOT DYNAMICS AND MOTIVATION

In the absence of friction or other disturbances, the dynamics of a
serialn-link rigid robot manipulator can be written as [13]

M(qqq)�qqq + C(qqq; _qqq)_qqq + ggg(qqq) = ��� (1)

whereqqq is then � 1 vector of joint displacements,��� is then � 1
vector of applied joint torques,M(qqq) is then�n symmetric positive
definite manipulator inertia matrix,C(qqq; _qqq)_qqq is then � 1 vector of
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centripetal and Coriolis torques, andggg(qqq) is the n � 1 vector of
gravitational torques obtained as the gradient of the robot potential
energyU(qqq) due to gravity. We assume the links are connected with
revolute joints, and matrixC(qqq; _qqq) is defined using the Christoffel
symbols.

The equation of motion (1) has the following important properties.
Property 1 [14]: The matrix

1

2

_M(qqq)� C(qqq; _qqq) (2)

is skew-symmetric.

Property 2: The gravitational torque vectorggg(qqq) is bounded for
all qqq 2 IRn [15]. In addition, there exists a positive constantkg
satisfying [3], [16]

kg >
@ggg(xxx)

@xxx
; 8xxx 2 IRn

and

kggg(xxx)� ggg(yyy)k � kgkxxx� yyyk; 8xxx; yyy 2 IRn: (3)

Property 3: There exists a positive constantkC1 such that

kC(qqq; xxx)yyyk � kC1kxxxkkyyyk; 8 qqq; xxx; yyy 2 IRn: (4)

Property 4: (See the Appendix.) For any constant vectorqqqd 2
IRn, the function

U(qqqd � ~qqq)� U(qqqd) + ggg(qqqd)
T ~qqq +

kg
2
k~qqqk2

is globally positive definite with respect to~qqq 2 IRn.

Now we recall that the global position control problem is to design
a controller to evaluate the torque��� 2 IRn applied to the joints so
that the robot joint displacementsqqq tend asymptotically to a constant
desired joint displacementqqqd regardless the initial conditionsqqq(0)
and _qqq(0).

Motivated by the energy-shaping methodology and passivity the-
ory, a simple position (set-point) controller for robot manipulator has
been proposed in [10]–[12]. The controller structure is composed by
a saturated, proportional, and differential (SP-D) feedback plus a PI
controller driven by a linear sum of velocity and saturated position
errors. The control law can be written as

��� = Kp~qqq �Kv _qqq +KDfff(~qqq) +Ki

t

0

fff [~qqq(s)] ds (5)

where ~qqq = qqqd � qqq denotes the joint position error, andKp, Kv,
KD, andKi are suitablen�n matrices. The entries of the nonlinear
vector functionfff(~qqq) = [f(~q1) f(~q2) � � � f(~qn)]T are given by

f(x) =
sin(x); if jxj < �=2
1; if x � �=2
�1; if x � ��=2:

(6)

Hence, the control law (5) is constituted by a PI term driven by
the nonlinear functionfff(~qqq) of the position error~qqq and a linear PD
feedback. One important feature of controller (5) is that its structure
does not depend on the robot dynamics. In [10]–[12], it has been
proven that there exists a suitable choice of the controller parameters
so that the overall closed-loop system is globally asymptotically
stable.

In this paper we extend the work of [10]–[12] in two directions.
First, we show that global asymptotic stability is still possible without
the nonlinear position error feedbackKDfff(~qqq). This leads to a linear
PD control plus an integral term of a nonlinear function of~qqq.

Fig. 1. F(�; �; x) functions.

Second, we characterize a class of nonlinear functionsfff(~qqq) which
yields, under a suitable selection of the controller gains, a globally
asymptotically stable closed-loop system.

III. A C LASS OF PD CONTROLLERS

WITH NONLINEAR INTEGRAL ACTION

Most of the present industrial robots are controlled through local
PID controllers [1]. The textbook version of the PID controller can
be described by the equation

��� = Kp~qqq �Kv _qqq +Ki

t

0

~qqq(�)d�

whereKp, Kv, andKi are suitable positive definite diagonaln� n
matrices, and~qqq = qqqd� qqq denotes the position error vector. Although
the PID controller has been shown in practice to be effective for
position control of robot manipulators, unfortunately it lacks, until
now, a global asymptotic stability proof [6]–[8].

In this paper we propose a modification to the integral term of the
PID controller which leads to a new class of controllers which yield
globally asymptotically stable systems. This modification follows
the idea presented in [10] and [4] where global position control is
guaranteed by using controllers whose integral term is driven by a
saturated position error.

For the purpose of this paper, it is convenient to introduce the
following.

Definition 1: F(�; �; xxx) with 1 � � > 0, � > 0, andxxx 2 IRn

denotes the set of all continuous differentiable increasing functions
fff(xxx) = [f(x1) f(x2) � � � f(xn)]T such that

• jxj � jf(x)j � �jxj; 8 x 2 IR : jxj < �;
• � � jf(x)j � ��; 8x 2 IR : jxj � �;
• 1 � (d=dx)f(x) � 0;

wherej � j stands for the absolute value.
Fig. 1 depicts the region allowed for functions belonging to set

F(�; �; xxx). For instance, the function considered in [10], whose
entries are given by (6), belongs to setF(sin(1); 1; xxx). Another
example is the tangent hyperbolic function

tanh(x) =
ex � e�x

ex + e�x

which belongs toF(tanh(1); 1; xxx).
Two important properties of functionsfff(xxx) belonging to

F(�; �; xxx) are now established.
Property 5: The Euclidean norm offff(xxx) satisfies for allxxx 2 IRn

kfff(xxx)k � �kxxxk; if kxxxk < �
��; if kxxxk � �

and

kfff(xxx)k � kxxxk; if kxxxk < �p
n�; if kxxxk � �:
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Property 6: The functionfff(xxx)Txxx satisfies for allxxx 2 IRn

fff(xxx)Txxx � �kxxxk2; if kxxxk < �

��kxxxk; if kxxxk � �.

A. PD Control with Nonlinear Integral Action

Let us propose the following control law:

��� = Kp~qqq �Kv _qqq +Ki

t

0

fff [~qqq(�)] d� (7)

whereKp, Kv , andKi are diagonal positive definiten�n matrices,
and fff(~qqq) 2 F(�; �; ~qqq). The above control law is composed by a
linear PD term plus an integral action of the nonlinear functionfff(~qqq).

The closed-loop system dynamics is obtained by substituting the
control action��� from (7) into the robot dynamic model (1). By
defining zzz as

zzz(t) =
t

0

fff(~qqq(�))d� �K
�1

i ggg(qqqd) (8)

we can describe the closed-loop system by (9), as shown at the bottom
of the page, which is an autonomous nonlinear differential equation
whose origin ~qqqT _qqqT zzzT

T
= 0 2 IR3n is the unique equilibrium.

The objective is now to provide conditions on the controller gains
Kp, Kv , and Ki guaranteeing global asymptotic stability of the
unique equilibrium. This would mean that the global position control
with regulator (7) is ensured for anyfff(~qqq) 2 F(�; �; ~qqq). This is
established in the following.

Proposition 1: Consider the robot dynamics (1) together with
control law (7) wherefff(~qqq) 2 F(�; �; ~qqq). If

�mfKig > 0 (10)

�mfKvg >�MfMg+ kC1�
p
n (11)

�mfKpg >kg

p
n

�
+ �MfMg+ �MfKig (12)

then, the equilibrium[~qqqT _qqqT zzzT ]T = 0 2 IR3n of (9) is globally
asymptotically stable.

Proof: To carry out the stability analysis, we consider the
following Lyapunov function candidate:

V (~qqq; _qqq; zzz) = 1

2
_qqqTM(qqq)_qqq � 1

2
_qqqTM(qqq)fff(~qqq)

� 1

2
fff(~qqq)TM(qqq)_qqq + 1

2
[zzz + ~qqq]TKi[zzz + ~qqq]

+ 1

2
~qqqT [Kp �Ki]~qqq +

~qqq

0

fff(xxx)TKv dxxx

+ U(qqq)� U(qqqd) + ggg(qqqd)
T~qqq (13)

where
~qqq

0

fff(xxx)TKv dxxx

=
~q

0

f(x1)kv1 dx1 + � � � +
~q

0

f(xn)kvn dxn

with Kv = diagfkv1; � � � ; kvng.
Concerning the Lyapunov function candidate, we digress momen-

tarily to give the following explanation. Let us recall that the PD
control with desired gravity compensation given by [2]

��� = Kp~qqq �Kv _qqq + ggg(qqqd)

yields the closed-loop equation

d

dt

~qqq
_qqq

=
� _qqq

M(qqq)�1[Kp~qqq �Kv _qqq � C(qqq; _qqq)_qqq � ggg(qqq) + ggg(qqqd)]
:

(14)

It is worth noting that the structure of the closed-loop system (9)
becomes (14) if we only consider the state variables~qqq, _qqq, andKi = 0.
By using the following Lyapunov function proposed in [4]:

V (~qqq; _qqq; zzz) =
1

2
_qqqTM(qqq)_qqq � �

2
_qqqTM(qqq)hhh(~qqq)� �

2
hhh(~qqq)TM(qqq)_qqq

+
1

2
~qqqTKp~qqq + U(qqq)� U(qqqd) + ggg(qqqd)

T~qqq (15)

where

hhh(~qqq) =
1

1 + k~qqqk~qqq

and� > 0, the global asymptotic stability of (14) can be shown [4].
Note that these terms, but withfff(~qqq) instead ofhhh(~qqq) and� = 1, are
all included in the Lyapunov function candidate (13) which contains
the additional terms

1

2
zzz
T
Kizzz + ~qqqTKizzz +

~qqq

0

fff(xxx)TKv dxxx:

The first two terms are included in the Lyapunov function candidate
(13) to take into account the state variablezzz induced by the integral
action. The remaining integral term, which is not a key term, turns
out to be useful to cancel cross terms in the time derivative of the
Lyapunov function. It should be pointed out that Lyapunov function
candidate (15) was motivated from [2] and [17].

Now we show that under assumption (12) onKp, the Lyapunov
function candidate (13) is a positive definite function. This Lyapunov
function candidate (13) can be written as

V (~qqq; _qqq; zzz) = 1

2
[ _qqq � fff(~qqq)]TM(qqq)[ _qqq � fff(~qqq)] + 1

2
[zzz + ~qqq]T

�Ki[zzz + ~qqq] +
~qqq

0

fff(xxx)TKv dxxx+ 1

2
~qqqT

� [Kp �Ki]~qqq � 1

2
fff(~qqq)TM(qqq)fff(~qqq) + U(qqq)

� U(qqqd) + ggg(qqqd)
T~qqq: (16)

The first term is a nonnegative function of~qqq and _qqq, while the second
is a nonnegative function of~qqq andzzz. It can be shown that the third
term satisfies

~qqq

0

fff(xxx)TKv dxxx > 0; 8~qqq 6= 0 2 IRn (17)

becauseKv is a diagonal positive definite matrix,fff(0) = 0, and
the entries offff(xxx) are increasing functions. Therefore, this term is
positive definite with respect to~qqq. Now, we prove that the remaining
terms yield a positive definite function with respect to~qqq. To this end,
notice that

� 1

2
fff(~qqq)TM(qqq)fff(~qqq) � � 1

2
�MfMgk~qqqk2 (18)

where we have usedk~qqqk2 � fff(~qqq)T~qqq � kfff(~qqq)k2. From this and
using Property 4 we have

1

2
~qqqT [Kp �Ki]~qqq � 1

2
fff(~qqq)TM(qqq)fff(~qqq) + U(qqq)� U(qqqd)

+ ggg(qqqd)
T~qqq

� 1

2
[�mfKpg � �MfKig � �MfMg � kg]k~qqqk2

d

dt

~qqq
_qqq
zzz

=
� _qqq

M(qqq)�1[Kp~qqq �Kv _qqq +Kizzz � C(qqq; _qqq)_qqq � ggg(qqq) + ggg(qqqd)]
fff(~qqq)

(9)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998 937

which is a positive definite function with respect to~qqq because
of selection (12) ofKp; this implies that the Lyapunov function
candidate (13) is in turn a positive definite function.

After some simplifications and using Property 1, the time derivative
of the Lyapunov function candidate (13) along the trajectories of the
closed-loop system (9) can be written as

_V (~qqq; _qqq; zzz) = � _qqqT [Kv �M(qqq)F (~qqq)] _qqq � _qqqTC(qqq; _qqq)fff(~qqq)

� fff(~qqq)T [Kp �Ki]~qqq + [ggg(qqq)� ggg(qqqd)]
Tfff(~qqq) (19)

where _fff(~qqq) = �F (~qqq)_qqq; with F (~qqq) being a diagonal matrix whose
entries@f(~qi)=@~qi are nonnegative and smaller than or equal to one.

By using Properties 3 and 5 we have

� _qqqTC(qqq; _qqq)fff(~qqq) � kC1

p
n�k _qqqk2:

On the other hand, it is easy to show

_qqqTM(qqq)F (~qqq)_qqq � �MfMgk _qqqk2:
Therefore, the time derivative of the Lyapunov function candidate

(19) satisfies

_V (~qqq; _qqq; zzz) � � 
k _qqqk2 � fff(~qqq)T [Kp �Ki]~qqq

+ [ggg(qqq)� ggg(qqqd)]
Tfff(~qqq) (20)

where
 = �mfKvg � �MfMg � kC1
p
n� is a positive constant

because of the selection ofKv in (11). The second term of the above
equation is bounded by

�fff(~qqq)T [Kp �Ki]~qqq � �[�mfKpg � �MfKig]fff(~qqq)T~qqq
becauseKp and Ki are diagonal positive definite matrices and
~qif(~qi) � 0. Hence, the second and third right-hand side terms of
(20) satisfy

� fff(~qqq)T [Kp �Ki]~qqq + [ggg(qqq)� ggg(qqqd)]
Tfff(~qqq)

� �[�mfKpg � �MfKig]fff(~qqq)T~qqq + kgk~qqqkkfff(~qqq)k (21)

where we have used Property 2. Taking into account Properties 5
and 6, we obtain

� [�mfKpg � �MfKig]fff(~qqq)T~qqq + kgk~qqqkkfff(~qqq)k
� ��k~qqqk2; if k~qqqk < �

���k~qqqk; if k~qqqk � �
(22)

where� = [�mfKpg � �MfKig]� � kg
p
n. The choice ofKp in

(12) ensures� > 0.
Therefore, incorporating (21) and (22) into (20), we get

_V (~qqq; _qqq; zzz) � �
k _qqqk2 � �k~qqqk2; if k~qqqk < �
�
k _qqqk2 � ��k~qqqk; if k~qqqk � �

which is a globally negative semidefinite function.
Using the fact that the Lyapunov function candidate (13) is a

globally positive definite function and its time derivative is a globally
negative semidefinite function, we conclude that the equilibrium of
the closed-loop system (9) is stable. Finally, by invoking the LaSalle’s
invariance principle, the global asymptotic stability of the equilibrium
is proven straightforward.

IV. CONCLUDING REMARKS

In this paper we have characterized a class of global regulators for
robot manipulators. The main feature of these regulators is the simple
structure based on a linear PD feedback plus an integral action driven
by a nonlinear function of the joint position error. This nonlinear
function has been characterized, and we provide explicit conditions on
the regulator gains given in terms of some information extracted from
the robot dynamics and the nonlinear function characterization to
ensure global asymptotic stability of the overall closed-loop system.

APPENDIX

This Appendix presents a proof of Property 4 following ideas
reported in [3]. Let us define the twice continuously differentiable
function G(~qqq) : IRn ! IR as

G(~qqq) = kg
2
k~qqqk2 + U(qqqd � ~qqq)� U(qqqd) + ggg(qqqd)

T~qqq

whereqqqd 2 IRn is a constant vector.
First notice thatG(0) = 0. Usingggg(qqq) = @U(qqq)=@qqq, we have that

the gradient ofG(~qqq) with respect to~qqq given by

@G(~qqq)
@~qqq

= kg~qqq � ggg(qqqd � ~qqq) + ggg(qqqd)

vanishes at~qqq = 0. Thus,G(~qqq) has a critical point at~qqq = 0. The
Hessian matrix ofG(~qqq) with respect to~qqq is given by

kgI +
@ggg(qqqd � ~qqq)

@[qqqd � ~qqq]

where I is the identity matrix. Using Property 2 onkg we have
the conclusion that the Hessian is a positive definite matrix for all
qqqd � ~qqq 2 IRn. Therefore, functionG(~qqq) is a globally strictly convex
function vanishing at the unique global minimum~qqq = 0. This implies
thatG(~qqq) is a globally positive definite function which holds for any
constantqqqd.
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Robust Estimation Without Positive Real Condition

Ruisheng Li and Huimin Hong

Abstract—The strictly positive real (SPR) condition on the noise model
is necessary for a discrete-time linear stochastic control system with
unmodeled dynamics, even so for a time-invariant ARMAX system, in
the past robust analysis of parameter estimation. However, this condition
is hardly satisfied for a high-order and/or multidimensional system with
correlated noise. The main work in this paper is to show that for
robust parameter estimation and adaptive tracking, as well as closed-loop
system stabilization, the SPR condition is replaced by a stable matrix
polynomial. The main method is to design a “two-step” recursive least
squares algorithm with or without a weighted factor and with a fixed lag
regressive vector and to define an adaptive control with bounded external
excitation and with randomly varying truncation.

Index Terms—Adaptive control, least squares, robust estimation, sto-
chastic system, unmodeled dynamics.

I. INTRODUCTION

It is well known that when the quantity of raw input and output
data from a complicated system has much oscillation, the model
describing a true system should be established as an autoregressive
and moving average model with extraneous input (ARMAX), which
means that the system noise is correlated. Further, in the past theory
work for convergent estimation and/or adaptive control was necessary
to impose the following strictly positive real (SPR) condition:

C
�1(ei!) + C

�� (e�i!)� I > 0; 8! 2 [0; 2�]; i =
p�1

(1)

on the true system (cf., [2]–[7], [12], [23], and [24]), whereC(z) is
a matrix polynomial

C(z) = I + C1z + � � �+ Crz
r
: (2)

This condition cannot obviously be verifieda priori. Of course, it
is automatically satisfied in the case ofr = 0, i.e., for uncorrelated
system noise. Condition (1) also implies thatr

i=1
C2
i < 1 and

is implied by r

i=1
jCij < 1 in the case ofr > 0 and of one-

dimensional system noise, i.e.,m = 1 in (3) whereCi(i = 1; � � � ; r)
are unknown scalar parameters [11]. Hence, it is not satisfied if

r

i=1
C2
i � 1. This means that the existent theory results are

only obtained for a special class of discrete-time linear stochastic
systems. However, it is also known that if the SPR condition is not
valid, counterexamples can be constructed such that the estimation of
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least squares (LS) algorithm does not converge to a true parameter
vector [1]. Even so, some endeavors are taken to relax the SPR
condition for the usual time-invariant ARMAX system, e.g., the
prefilter [2], [5], the overparameterization [6], the “prewhitening” [4],
[13], the ARMA model described by stationary processes [8]–[10],
and so on. Recently, by use of the limit theorems for double array
martingale [15] and a “two-step” LS algorithm where an increasing
(but nonrecursive) lag regressive sequence is defined, the strong
consistency of parameter estimates is established in [14] for the time-
invariant ARMAX system where the SPR condition on the noise
model is weakened to a stable noise polynomial.

However, a real system usually contains unmodeled dynamics
which may cause many adaptive control algorithms to go unstable
if other precautions are not taken [16], [17]. Therefore, it is most
important to analyze the influence of the unmodeled dynamics upon
the system stability and the adaptive control. The SPR condition
is necessary for guaranteeing the robust estimation and the robust
adaptive control in [18]–[20]. Naturally, it is more difficult to weaken
the SPR condition for the stochastic system with the unmodeled
dynamics than for the time-invariant ARMAX system.

In this paper, we design the “two-step” recursive algorithm. The
estimates for the noise process are generated by a fixed lag LS
algorithm with or without a weighted factor in the first step. The
estimates for all unknown parameters in the stochastic system are thus
generated by the other LS algorithms with or without the weighted
factor in the second step, where the regressive vector sequence is
obtained by use of the noise estimates in the first step, and the
weighted factor is chosen the same as in the “two-step” algorithm.

This paper is organized as follows. We state the considered system
and present the “two-step” recursive algorithm in Section II. In
Section III, we first design the adaptive control both with the bounded
external excitation and with the randomly varying truncation. Second,
we establish the results of robust parameter estimation, robust adap-
tive tracking, and closed-loop system stability. The robust proofs are
given in Section IV and Appendixes A and B.

II. SYSTEM AND ALGORITHM

Let us consider the following stochastic systems with the unmod-
eled dynamics�n:

A(z)yn+1 =B(z)un+1 + C(z)wn+1 + �n; n � 0

yn =wn = �n = 0; un = 0; n < 0 (3)

whereyn, un, andwn arem-dimensional output, input, and noise se-
quences, respectively,A(z), B(z), andC(z) are matrix polynomials
in backward-shift operatorz

A(z) = I + A1z + � � �+ Apz
p
; p � 0

B(z) =B1z +B2z
2 + � � �+Bqz

q
; q � 1

C(z) = I + C1z + � � �+ Crz
r
; r � 0

with the known upper bound of the ordersp, q, andr, and with the
unknown parameter matrix

� = [�A1 � � � �Ap; B1 � � � Bq; C1 � � � Cr]
�
: (4)

The unmodeled dynamics�n is Fn-measurable, satisfying

k�nk � "

n

i=0

a
n�i(kyik+ kuik+ kwik+ 1) (5)
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