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in practice, the method from this paper appears to be a good starting'he proportional—derivative (PD) control plus gravity compensa-
point in stable adaptive control design for a more general classtafn together with the PD control plus desired gravity compensa-

nonlinearly parameterized plants. tion are the simplest global regulators for robot manipulators. The
best feature of these controllers is that the tuning procedure to
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of the controller which achieve positioning in a global sense. The
controller proposed in [10] has been the main motivation and starting
point of this paper.
Global Positioning of Robot Manipulators via PD Control In this paper we introduce_ anew clas_s of globa_l pogition controllers
Plus a Class of Nonlinear Integral Actions for robots which do not include their dynamics in the control
laws. Motivated by the controller introduced in [10], which aims
Rafael Kelly at modifying the potential energy of the closed—loop system and
the injection of the required dissipation, we develop a new class
of regulators leading to a linear PD feedback plus an integral action
Abstract—This paper deals with the position control of robot manip- driven by a class of nonlinear functions of the position error. We
ulators. Proposed is a simple class of robot regulators consisting of a characterize the class of function and give simple explicit conditions
linear proportional—derivative (PD) feedback plus an integral action of a g the controller parameters which guarantee global positioning.

nonlinear function of position errors. By using Lyapunov’s direct method . . ) )
and LaSalle’s invariance principle, the authors characterize a class of Throughout this paper, we use the notatian{A} and Aw {4}

such nonlinear functions, and they provide explicit conditions on the tO indicate the smallest and largest eigenvalues, respectively, of a
regulator gains to ensure global asymptotic stability. These regulators symmetric positive definite bounded matci¥(x), for anyz € R".

offer an attractive alternative to global regulation compared with the The norm of vectorz is defined ag|z|| = vaTx. and that of
well-known partially model-based PD control with gravity compensation matrix A is defined as the corresponding inducéd ndfe| =
and PD control with desired gravity compensation. 1 {ATA}
M Af.
Index Terms—Manipulators, position control, stability. The organization of this paper is as follows. Section Il summarizes

the robot model, its main properties, and the controller introduced
in [10]. Our main results are presented in Section Ill, where we
N ] _ propose a class of PD controller with nonlinear integral action and we
Position control of robot manipulators, also called regulation Qfroyide conditions on the controller gains to ensure global asymptotic

robots, may be recognized as the simplest aim in robot control agdpjity. Finally, we offer some concluding remarks in Section IV.
at the same time one of the most relevant issues in the practice of

manipulators. The goal of global position control is to move the
manipulator from any initial state to a fixed desired configuration. It
is well known that many applications of robots moving freely in their In the absence of friction or other disturbances, the dynamics of a
workspace can be well performed by position controllers [1]. serial n-link rigid robot manipulator can be written as [13]

|. INTRODUCTION

Il. RoBOT DYNAMICS AND MOTIVATION
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centripetal and Coriolis torques, amdg) is the n x 1 vector of f(x)

gravitational torques obtained as the gradient of the robot potential '

energyZl(q? due to gravity. We {iss.ume .the Iink§ are connef:ted with s y
revolute joints, and matrixC(q, ¢) is defined using the Christoffel //

symbols.
The equation of motion (1) has the following important properties.
Property 1 [14]: The matrix

1M(q) - Clg. §) )

s,

iy
v

is skew-symmetric.
a
Property 2: The gravitational torque vectay(q) is bounded for Fig. 1. F(a, 3, ) functions.
all ¢ € IR™ [15]. In addition, there exists a positive constant

satisfying [3], [16] Second, we characterize a class of nonlinear functifi@ which

dg(x) yields, under a suitable selection of the controller gains, a globally
kg > ox |’ vre R asymptotically stable closed-loop system.
and
n Ill. A CLAss oF PD CONTROLLERS
- <kgllz — 9|, vz, y € R". 3
lg() = 9@l < kol =yl “y ®) WITH NONLINEAR INTEGRAL ACTION
] N - Most of the present industrial robots are controlled through local
Property 3: There exists a positive constait: such that PID controllers [1]. The textbook version of the PID controller can
IC(a, 2)9ll < kerllzllloll, ¥ a @ yeR". (4 be described by the equation
-t
O T=Kpqg— K.g+ K; / q(o)do
Property 4: (See the Appendix.) For any constant vecigr € o N ) o o
R" the function where(,,, K, and K; are suitable positive definite diagonalx n
matrices, ang = ¢, — ¢ denotes the position error vector. Although
Ulg, —q) — Ulg,) +g(qd)'1"1+ k_9||,1||2 the PID controller has been shown in practice to be effective for
2 position control of robot manipulators, unfortunately it lacks, until
is globally positive definite with respect gpe IR". now, a global asymptotic stability proof [6]-[8].
O In this paper we propose a modification to the integral term of the

Now we recall that the global position control problem is to desigRID controller which leads to a new class of controllers which yield
a controller to evaluate the torquec IR™ applied to the joints so globally asymptotically stable systems. This modification follows
that the robot joint displacemengstend asymptotically to a constantthe idea presented in [10] and [4] where global position control is
desired joint displacemeng, regardless the initial conditiong(0) guaranteed by using controllers whose integral term is driven by a
and ¢(0). saturated position error.

Motivated by the energy-shaping methodology and passivity the-For the purpose of this paper, it is convenient to introduce the
ory, a simple position (set-point) controller for robot manipulator ha®sllowing.
been proposed in [10]-[12]. The controller structure is composed byDefinition 1: F(a, 8, ) with 1 > o > 0, 4 > 0, andz € R"
a saturated, proportional, and differential (SP-D) feedback plus a ddnotes the set of all continuous differentiable increasing functions
controller driven by a linear sum of velocity and saturated positiof{z) = [f(z1) f(x2) --- f(x.)]" such that
errors. The control law can be written as o x| > |f(x)] > alzl, VeeR: |z < 3

o . i ~ A e 32> |f(x)] > ap, Ve € R: |z| > f;
T=Kyq— Koqg+EKpf(@) + K: /0 fla(s)] ds B o1 (dfdn)f(x) > 0

whereg = ¢, — g denotes the joint position error, ankdy, k., Whlfre|i |dStairc]:(tjsS tfr?; t:‘; %k;\scz)illllj;(\?v\e/gh;; functions belongin tDo set
K, andK; are suitable: x n matrices. The entries of the nonlinear 9. ep 9 ging

. o tprs P . F(«, 3, x). For instance, the function considered in [10], whose
vector functionf() = [f(q1) ~ f(d2) F(@))" are given by entries are given by (6), belongs to s&{sin(1), 1, ). Another

sin(z), if |z| <7/2 example is the tangent hyperbolic function
fla)y=<1, if >m/2 (6) JER
-1, if 2 < —m/2. tanh(x) = prap—

Hence, the control law (5) is constituted by a PI term driven bijhich belongs taF(tanh(1), 1, z).

the nonlinear fUnCtiOd(&) of the pOSition errolg and a linear PD Two important properties of functionsf(m) be|0nging to
feedback. One important feature of controller (5) is that its structure(, 4, x) are now established.

does not depend on the robot dynamics. In [10]-[12], it has beenproperty 5: The Euclidean norm of (x) satisfies for alk: € IR"
proven that there exists a suitable choice of the controller parameters

so that the overall closed-loop system is globally asymptotically [|f(=)| > {Zg’t”’ :; H:;H ; ;

stable.

In this paper we extend the work of [10]-[12] in two directionsf"’lnd . )
First, we show that global asymptotic stability is still possible without If(z)]| < { ”‘””2 !f [l < /d
the nonlinear position error feedbadkn f(§). This leads to a linear Vg, i ||zl > 6.

PD control plus an integral term of a nonlinear function ¢@f O
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Property 6: The functionf(z)” « satisfies for alke € IR” yields the closed-loop equation
v o [allal® if ||zl < 5 d m _ { -q
> . ; — 1= ar mirrr s e N .
f(z) = > {(}ﬂ”:l;“, if ||| > 3. dt |q M(q) I[prq - K.qg—Clg, g - 9(q) +9(q,)]
0 (14)
It is worth noting that the structure of the closed-loop system (9)
A. PD Control with Nonlinear Integral Action becomes (14) if we only consider the state variafles and&; = 0.
Let us propose the following control law: By using the following Lyapunov function proposed in [4]:
it e 1, . b N Y
r=FK,i- K.+ K, / fli(o)] do @ Vi@ 2) =50 Mad - 54" Moh@) - 5h(@)" M(a)d
9]
1~T o~ T~
wherek,, K,,, andK; are diagonal positive definite x » matrices, 54 Kpq +U(g) —Ug,) +9(g4)" a (15)

and f(q) € F(«, 3, q). The above control law is composed by Qyhere

linear PD term plus an integral action of the nonlinear funcifoé). 1

The closed-loop system dynamics is obtained by substituting the h(q) = 17~&
control actionr from (7) into the robot dynamic model (1). By + llall
defining z as andé > 0, the global asymptotic stability of (14) can be shown [4].
-t Note that these terms, but witf(g) instead ofh(¢) andé = 1, are
z(t) = / F(@(o))do — K ' g(q,) (8) all included in the Lyapunov function candidate (13) which contains
0

the additional terms

we can describe the closed-loop system by (9), as shown at the bottom -q B
of the page, which is an autonomous nonlinear differential equation 1 Kiz+§ Kiz+ / f(z)' K, dz.
whose origin[g” ¢ zT]T = 0 € R*" is the unique equilibrium. 0

The objective is now to provide conditions on the controller gains The first two terms are included in the Lyapunov function candidate
K,, K,, and K; guaranteeing global asymptotic stability of the(13) to take into account the state variablénduced by the integral
unique equilibrium. This would mean that the global position contr@iction. The remaining integral term, which is not a key term, turns
with regulator (7) is ensured for anf(¢) € F(a, 3, q). This is out to be useful to cancel cross terms in the time derivative of the

established in the following. Lyapunov function. It should be pointed out that Lyapunov function
Proposition 1: Consider the robot dynamics (1) together witttandidate (15) was motivated from [2] and [17].
control law (7) wheref(q) € F(a, 3, q). If Now we show that under assumption (12) AR, the Lyapunov
R function candidate (13) is a positive definite function. This Lyapunov
Am{Ki} >0 (10) function candidate (13) can be written as
Am{ K, Am{M ko1 Bn - .
) > ) en O b = - 5@ M@l - @)+ 3+l
)\m{ffp} > kg + AM{A/I} + AM{IX’Z} (12) -q
o CKilz4+q) + / fle)" K, dx+ 1q"
then, the equilibriung” ¢” 27]" =0 € IR*" of (9) is globally 0
asymptotically stable. O (K, - Kila— 5£(@) " M(9)f(@) +U(q)
Proof: To carry out the stability analysis, we consider the —U(qd)'i'g(qd)T@- (16)

following Lyapunov function candidate: ] ) ] ] )
The first term is a nonnegative function @fandg, while the second

ca LT o . T o, N . . . .
V(g ¢ 2z) = 54 M(9)q— 54 M(9)f(q) is a nonnegative function af andz. It can be shown that the third
- f@" " M@a+Liz+q" Ki[z+4] term satisfies
o, q . q . 3 "
+ 1"k, - Is}]q+/ f(x)' K, dx / f(@)'K,dz >0, Vi#0eR" (17)
3 A A
+U(q) —Ulg,) +9g(a)" q (13) becausek, is a diagonal positive definite matrif,(0) = 0, and
where the entries off(x) are increasing functions. Therefore, this term is

positive definite with respect . Now, we prove that the remaining

4 f (w)’[ Ko de terms yield a positive definite function with respecfgtoro this end,
o Y notice that

_ / Pl kot dar + -+ + / FlanYeun din —3F(@" M(9)f(@) > — 3 (M }lall’ (18)
Q Q

where we have usetlg||” > f(@"q@ > ||f(@)|°. From this and

with K, = diag{kus, -+, kon}. ) _ using Property 4 we have
Concerning the Lyapunov function candidate, we digress momen-

tarily to give the following explanation. Let us recall that the PD 107K, - Kilg— $£(@) " M(9)f(@) +U(g) — Ulg,)
control with desired gravity compensation given by [2] +9(qd)1§
7=NK,q- K.q+9(q,) > FAw{ K} = A {K:) = aa { M) = k] llall®
a1 e 1 N
7 [q} = [M(q) Kpd — Kog + Kiz — Cla, 44 — 9(q) + 9(a,)] 9)
= f(a)
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which is a positive definite function with respect fpo because
of selection (12) of,; this implies that the Lyapunov function
candidate (13) is in turn a positive definite function.

937

APPENDIX

This Appendix presents a proof of Property 4 following ideas
reported in [3]. Let us define the twice continuously differentiable

After some simplifications and using Property 1, the time derivatignciion G(g) : R® — IR as

of the Lyapunov function candidate (13) along the trajectories of the
closed-loop system (9) can be written as

V(g q.2)= " [Ko - M@F@)i ¢ Cla. f (@)
— 1@ Ky - Kia+ [9(9) - 9(a,)]" £(@)

wherej‘(q) = —F(q)q, with F(g) being a diagonal matrix whose
entriesd f(g;)/d¢; are nonnegative and smaller than or equal to one.
By using Properties 3 and 5 we have

—q" Cla. DF(@) < kervnpllall*.
On the other hand, it is easy to show
q" M(g)F(@)q < MW{M}al>.

Therefore, the time derivative of the Lyapunov function candidate
(19) satisfies

V(g q.2) < —llall* - £(@)' [K, - Kilq

(19)

kg . . T
G(@) = llall” + g, - @) ~ Ula,) +9las)" @

whereg, € IR" is a constant vector.
First notice thatG(0) = 0. Usingg(q) = 9l{(q)/dq, we have that
the gradient ofG(¢) with respect tog given by

2G(q)

o7 =kyq—g(a,— @) +9(q,)

vanishes ag = 0. Thus, G(q) has a critical point ag = 0. The
Hessian matrix ofj(¢) with respect tag is given by

99(¢;— 9)

koI + :
! g, — 4

where I is the identity matrix. Using Property 2 ok, we have
the conclusion that the Hessian is a positive definite matrix for all

qq —

q € R". Therefore, functiorG(q) is a globally strictly convex

+[g9(q) — g(fld)]Tf@) (20) function vanishing at the unique global minimygma= 0. This implies
thatG(q) is a globally positive definite function which holds for any
wherey = An{K.} — Am{M} — ko1y/nfg is a positive constant constantg,,.

because of the selection &f, in (11). The second term of the above
equation is bounded by

—-f(@" K, - KiJa < =D B} - Wi{ K f(@)" g
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¢:f(g;) > 0. Hence, the second and third right-hand side terms of
(20) satisfy

— F(@" Ky - Kila + [9(9) - 9(a,)]" £(2) [1]
< —Pad K} = M{ K@ a+ kyllallll £(@) 2l

where we have used Property 2. Taking into account Properties 5
and 6, we obtain 3]

— Pl Kb = M K3F@ " a+ ko llallll f(@)]] ]
< {—6||&||2«, it |lql| < 5
~ L-oBllell. if (lall > 5 (5]
wheres = A {K,} — \m{K;}a — ky¢/n. The choice ofK, in
(12) ensuresy > 0.
Therefore, incorporating (21) and (22) into (20), we get

—~llall* - ollall®, i llall < 5

—~llall* - 85llall. if llall > 3 (7]

which is a globally negative semidefinite function. [8]
Using the fact that the Lyapunov function candidate (13) is a

globally positive definite function and its time derivative is a globally [°]

negative semidefinite function, we conclude that the equilibrium of

the closed-loop system (9) is stable. Finally, by invoking the LaSallejg

invariance principle, the global asymptotic stability of the equilibrium

is proven straightforward.

(21)

(22)
(6]

V(g ¢ 2) < {

[11]
IV. CONCLUDING REMARKS

In this paper we have characterized a class of global regulators L?E]
robot manipulators. The main feature of these regulators is the simple
structure based on a linear PD feedback plus an integral action driven
by a nonlinear function of the joint position error. This nonlineaf13]
function has been characterized, and we provide explicit conditions gn
the regulator gains given in terms of some information extracted froﬁ1
the robot dynamics and the nonlinear function characterization fps)

ensure global asymptotic stability of the overall closed-loop system.

REFERENCES

J. J. Craig, Introduction to Robotics2nd ed. New York: Addison
Wesley, 1989.

M. Takegaki and S. Arimoto, “A new feedback method for dynamic
control of manipulators,”ASME J. Dynamic Syst., Measurement, and
Contr., vol. 103, pp. 119-125, June, 1981.

P. Tomei, “Adaptive PD controller for robot manipulator$EE Trans.
Robotics Automatyol. 7, pp. 565-570, 1991.

R. Kelly, “Comments on ‘Adaptive PD controller for robot manipula-
tor,”” IEEE Trans. Robotics Automatol. 9, pp. 117-119, 1993.

R. Colbaugh, K. Glass, and E. Barany, “Adaptive output stabilization of
manipulators,” inProc. 33rd Conf. Decision and Controlake Buena
Vista, FL, Dec. 1994, pp. 1296-1302.

S. Arimoto and F. Miyazaki, “Stability and robustness of PID feed-
back control for robot manipulators of sensory capabilitRObotics
Research: First International SymposiuM, Brady and R. P. Paul, Ed.
Cambridge, MA: MIT Press, 1984, pp. 783-799.

J. T. Wen and S. Murphy, “PID control for robot manipulators,”
Rensselaer Polytechnic Inst., CIRSSE Document #54, 1990.

R. Kelly, “A tuning procedure for stable PID control of robot manipu-
lators,” Robotica,pt. 2, vol. 13, Mar./Apr. 1995, pp. 141-148.

R. Ortega, A. Loria, and R. Kelly, “A semiglobally stable output
feedback PAD regulator for robot manipulators|EEE Trans. Automat.
Contr., vol. 40, pp. 1432-1436, Aug. 1995.

S. Arimoto, T. Naniwa, V. Parra-Vega, and L. Whitcomb, “A quasi-
natural potential and its role in design of hyper-stable PID servo-loop
for robotic systems,” irProc. CAl Pacific Symp. Control and Industrial
Automation ApplicationHong Kong, 1994, pp. 110-117.

S. Arimoto, “A class of quasinatural potentials and hyper-stable PID
servo-loops for nonlinear robotic system3yans. Soc. Instrum. Contr.
Eng.,vol. 30, no. 9, pp. 1005-1012, 1994.

—, “Fundamental problems of robot control: Part I, Innovations in
the realm of robot servo-loopsRobotica,pt. 1, vol. 13, Jan./Feb. 1995,
pp. 19-27.

M. Spong and M. VidyasagamRobot Dynamics and Control.New
York: Wiley, 1989.

14] D. Koditschek, “Natural motion for robot arms,” iRroc. IEEE Conf.

Decision and ControllLas Vegas, NV, 1984, pp. 733-735.
J. J. Craig Adaptive Control of Mechanical ManipulatorsNew York:
Addison-Wesley, 1988.



938 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

[16] R. Gunawardana and F. Ghorbel, “The class of robot manipulatdeast squares (LS) algorithm does not converge to a true parameter

with bounded Jacobian of the gravity vector,” fmoc. IEEE Int. Conf.
Robotics and AutomatioMinneapolis, MN, Apr. 1996, pp. 3677-3682.

[17] L. L. Whitcomb, A. A. Rizzi, and D. E. Koditschek, “Comparative
experiments with a new adaptive controller for robot arniSEE Trans.
Robotics Automatyol. 9, 1993, pp. 59-70.

Robust Estimation Without Positive Real Condition

Ruisheng Li and Huimin Hong

Abstract—T he strictly positive real (SPR) condition on the noise model
is necessary for a discrete-time linear stochastic control system with
unmodeled dynamics, even so for a time-invariant ARMAX system, in
the past robust analysis of parameter estimation. However, this condition
is hardly satisfied for a high-order and/or multidimensional system with
correlated noise. The main work in this paper is to show that for
robust parameter estimation and adaptive tracking, as well as closed-loop
system stabilization, the SPR condition is replaced by a stable matrix
polynomial. The main method is to design a “two-step” recursive least
squares algorithm with or without a weighted factor and with a fixed lag
regressive vector and to define an adaptive control with bounded external
excitation and with randomly varying truncation.

Index Terms—Adaptive control, least squares, robust estimation, sto-
chastic system, unmodeled dynamics.

|I. INTRODUCTION

vector [1]. Even so, some endeavors are taken to relax the SPR
condition for the usual time-invariant ARMAX system, e.g., the
prefilter [2], [5], the overparameterization [6], the “prewhitening” [4],
[13], the ARMA model described by stationary processes [8]-[10],
and so on. Recently, by use of the limit theorems for double array
martingale [15] and a “two-step” LS algorithm where an increasing
(but nonrecursive) lag regressive sequence is defined, the strong
consistency of parameter estimates is established in [14] for the time-
invariant ARMAX system where the SPR condition on the noise
model is weakened to a stable noise polynomial.

However, a real system usually contains unmodeled dynamics
which may cause many adaptive control algorithms to go unstable
if other precautions are not taken [16], [17]. Therefore, it is most
important to analyze the influence of the unmodeled dynamics upon
the system stability and the adaptive control. The SPR condition
is necessary for guaranteeing the robust estimation and the robust
adaptive control in [18]-[20]. Naturally, it is more difficult to weaken
the SPR condition for the stochastic system with the unmodeled
dynamics than for the time-invariant ARMAX system.

In this paper, we design the “two-step” recursive algorithm. The
estimates for the noise process are generated by a fixed lag LS
algorithm with or without a weighted factor in the first step. The
estimates for all unknown parameters in the stochastic system are thus
generated by the other LS algorithms with or without the weighted
factor in the second step, where the regressive vector sequence is
obtained by use of the noise estimates in the first step, and the
weighted factor is chosen the same as in the “two-step” algorithm.

This paper is organized as follows. We state the considered system

It is well known that when the quantity of raw input and outpugnd present the “two-step” recursive algorithm in Section Il. In
data from a complicated system has much oscillation, the modegction llI, we first design the adaptive control both with the bounded
describing a true system should be established as an autoregres¥gmal excitation and with the randomly varying truncation. Second,
and moving average model with extraneous input (ARMAX), whicHe establish the results of robust parameter estimation, robust adap-
means that the system noise is correlated. Further, in the past thdbf§ tracking, and closed-loop system stability. The robust proofs are
work for convergent estimation and/or adaptive control was necess8fyen in Section IV and Appendixes A and B.

to impose the following strictly positive real (SPR) condition:

CT' ™)+ CTT (™) =T >0, VYwelo,2q], i=+—-1
@

on the true system (cf., [2]-[7], [12], [23], and [24]), whef& ) is
a matrix polynomial

Czx)=I+Ciz+---+C.2". 2)

This condition cannot obviously be verifiedpriori. Of course, it
is automatically satisfied in the caseof= 0, i.e., for uncorrelated
system noise. Condition (1) also implies tHgt,_, C; < 1 and
is implied by >'_, |Cs] < 1 in the case ofr > 0 and of one-
dimensional system noise, i.e:, = 1in (3) whereC;(i =1, ---, r)

Il. SYSTEM AND ALGORITHM
Let us consider the following stochastic systems with the unmod-
eled dynamicsy,,:
A(2)Ynt1 =B(2)unt+1 + C(2)wng1 + N, n>0
Yn =Wn =1 =0, up =0, n <0 3)
wherey,,, u,, andw, arem-dimensional output, input, and noise se-

quences, respectively(z), B(z), andC(z) are matrix polynomials
in backward-shift operatot

A) =T+ Aiz+ -+ A0, p>0
B(z) =DBiz+ B22” + -+ + Byz", g>1

are unknown scalar parameters [11]. Hence, it is not satisfied if _ T r .

S_,C? > 1. This means that the existent theory results are Cle)=T+Crz o+ G, rz0

only obtained for a special class of discrete-time linear stochastigth the known upper bound of the ordersq, andr, and with the
systems. However, it is also known that if the SPR condition is nahknown parameter matrix

valid, counterexamples can be constructed such that the estimation of
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