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ABSTRACT:  Endpoint  compliance  strate- 
gies  for  precise  robot  control  utilize  feedback 
from  a  force  sensor  located  near  the  tool/ 
workpiece  interface. The closed-loop  per- 
formance  of  such  endpoint  force  control  sys- 
tems  has  been  observed  in  the  laboratory to 
be  limited and unsatisfactory for industrial 
applications.  This  article  discusses  the  par- 
ticular  dynamic  properties  of  robot  systems 
that  can  lead  to  instability  and  limit  perfor- 
mance.  A  series  of  lumped-parameter  models 
is developed in an effort to  predict  the  closed- 
loop  dynamics  of  a  force-controlled  single- 
axis  arm.  The  models  include  some  effects 
of robot  stmctural  dynamics,  sensor  compli- 
ance,  and  workpiece  dynamics.  The  quali- 
tative  analysis  shows  that  the  robot  dynamics 
contribute to force-controlled  instability. 
Recommendations are made  for  models  to 
be used in  control  system  design. 

Introduction 
Certain  robot  tasks  demand  precise  inter- 

action  between  the  manipulator  and its en- 
vironment.  Among  these are many of  the 
operations  required  in  the  mechanical  assem- 
bly process.  Strategies for  the  execution of 
such  tasks  involve  controlling  the  relation- 
ship  between  endpoint  forces  and  displace- 
ments  under the environmentally  imposed 
constraints. This endpoint compliance can  be 
implemented in  many different  schemes,  and 
Whitney [2] provides  an  overview  of  these. 
Strictly  speaking, compliance is the  inverse 
of stiffness; however,  the  term compliant 
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control is often  used  to  refer  to  any  force 
control  algorithm,  since they use  sensed  force 
to  alter  controller  commands. 

Endpoint  compliant  control  strategies  de- 
pend on  force  signals  measured by a  wrist 
sensor.  The  sensor  output  is  fed  back to the 
controller to  alter  the  system’s  performance. 
Many  such  closed-loop  systems  have  been 
built  using  various  force  control  algorithms, 
and  many stability problems  have  been  ob- 
served.  A  theoretical  treatment  of  environ- 
mentally  imposed  constraints  is  provided by 
Mason [3], who  also  suggests  a  control 
methodology  to  augment  these  ‘.natural” 
constraints  with  an  appropriate  set of “arti- 
ficial”  constraints.  Raibert  and  Craig  [4]  de- 
veloped  a  hybrid  control  architecture  capable 
of implementing  Mason’s  theory.  Salis- 
bury’s  stiffness  control [5] regulates the end 
effector’s  stiffness in Cartesian  coordinates 
using  an  appropriately  formed  joint  stiffness 
matrix.  Other  compliant  control  strategies 
include  Whitney’s  damping  control  [6]  and 
Hogan’s  impedance  control [7]. The  sim- 
plest  force  control  strategy is explicit  force 
control [8], which  makes  no  use  of  position 
feedback  information  in  the  controller, and 
the  servo  loop is based  on  force  errors. 

Active  force  control  systems  implemented 
to test these  strategies  have  demonstrated  dy- 
namic stability problems. In practice,  force- 
controlled  robots do not have  bandwidth  suf- 
ficient  for  most  industrial  applications.  His- 
torically,  some instabilities have  been  caused 
by digital  sampling,  and  Whitney [2] dis- 
cusses  these  conditions.  Researchers  have 
also  observed  the  effects  of  unmodeled  (un- 
compensated)  nonlinearities,  such as friction 
or backlash [9]. Raibert  and  Craig [4] im- 
plemented  their  hybrid  controller  and  found 
oscillations  present  in  the  controlled  system. 
Instabilities  have  been  observed  in the op- 
eration of both  of  the  force-controlled  robots 
currently in use at the MIT Artificial  Intel- 
ligence ( A I )  Laboratory.  These  robots  in- 
clude  a  PUMA  arm  and  the  new MIT Pre- 
cision  Assembly  Robot.  Both  arms  display 
performance  differences  when the workpiece 
(environment)  characteristics are changed. 

Roberts et al. [lo] investigated  the effect 
of  wrist  sensor  stiffness on the  closed-loop 
system  dynamics:  they  also  included  drive 
stiffness (transmission  compliance)  in  their 
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dynamic  model.  Transmission  compliance 
causes the joint  actuators  and  wrist  sensors 
to  be noncolocated, a  condition  discussed  in 
detail by Gevarter [ 1 11. Noncolocation is the 
stability problem  that  occurs  when  a  control 
loop  is  closed  using  a  sensor  and  an  actuator 
placed  at  different  points  on  a  dynamic  stmc- 
ture.  Cannon  [12]  has  investigated  the  sim- 
ilar problem of the position  control  of  a  flex- 
ible  arm  with  endpoint  sensing.  He  has 
shown  that  a  high-order  compensator is able 
to stabilize  the  system, but with  limited 
bandwidth and high  sensitivity to parameter 
changes.  Sweet  and  Good [13] obtained re- 
alistic robotltransmission  system  dynamics 
from  experimental  tests and then  included 
the  influence  of  these  effects  in  the  controller 
design. 

Researchers  have  named many suspected 
causes  of  the  instabilities  observed  in  force- 
controlled  robot  systems.  Among  these are: 
low  digital  sampling  rate, filtering, work- 
piece  dynamics,  environment stiffness, ac- 
tuator  bandwidth,  sensor  dynamics, arm 
flexibility, impact  forces  upon  tool/work- 
piece  contact,  and  drive  train  backlash or 
friction. This  article  addresses  the  effects  of 
arm, sensor,  and  workpiece  dynamics. 

Using  conventional  modeling  and  analysis 
techniques, it is  demonstrated  that  when the 
arm flexibility gives  rise to a  vibratory  mode 
within  the  desired  closed-loop  bandwidth, 
instability  can  occur.  In  particular,  a  simple, 
one-axis  force  control  algorithm  exhibits sta- 
ble  behavior  when  the  higher-order  dynam- 
ics of  the  arm  can  be  neglected,  and it can 
be  unstable if those  effects are significant. 
This is believed to be  the  cause  of  the  in- 
stabilities observed  in the robots at the  MIT 
AI Laboratory. 

Unstable  behavior  often  takes  the  form  of 
a  limit  cycle  where  the  robot is making  and 
breaking  contact  with  the  workpiece.  In  this 
article, the  terms workpiece and environment 
are used interchangeably.  The  workpiece is 
the  component  of  the  environment  contacted 
by the  end  effector of the force-controlled 
robot  system. The discontinuous  nature of 
this response  makes the system difficult to 
model  using  linear  elements.  However,  for 
the  purposes  of  controller  design,  we  will 
neglect  the  discontinuity  and  study  linear 
system  models.  Nonlinear  simulations  (not 
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presented  in this paper)  suggest  that if the 
linearized  system  has  sufficient  damping, 
then  neglecting  the  discontinuity is justified. 
However, if the  linearized  system  has  un- 
stable or highly  oscillatory  closed-loop  poles, 
then  the  discontinuity  should be included  in 
the  model so that  limit  cycles  can be pre- 
dicted  in  simulation. For control  system  de- 
sign,  this  analysis  assumes  that  the  robot 
endpoint  remains  in  contact  with  the  work- 
piece.  Note  that  choosing  control  gains  that 
give  desirable  response  assures  that  we  will 
not  have  unstable or highly  oscillatory  sys- 
tems,  and so the arm is  likely to remain  in 
contact. 

Rigid-Body Robot Model 
To begin  with a simple  case,  let  us  con- 

sider  the  robot  to  be a rigid  body,  with  no 
vibrational  modes.  Let  us also  consider the 
workpiece to be  rigid,  having  no  dynamics. 
The  sensor connects  the two with  some  com- 
pliance, as  shown  in  Fig. 1. Throughout the 
model  development, the  term robot refers to 
the  arm  itself.  The  term robot sysrem refers 
to the total system,  comprised  of  the  robot, 
sensor,  workpiece,  and  controller. 

We model  the  robot as a mass  with a 
damper  to  ground.  The  mass m, represents 
the  effective  moving  mass  of  the  arm. The 
viscous  damper b, is chosen to  give the ap- 
propriate  rigid-body  mode to  the  unattached 
robot.  While  structural  damping is very  low, 
b, includes the linearized  effects  of  all  of  the 
other  damping  in the robot. The  sensor  has 
stiffness k, and damping 6,. The workpiece 
is shown as a “ground  state.”  The  robot 
actuator is represented by the  input  force F, 
and  the  state  variable x, measures  the posi- 
tion  of  the  robot  mass. 

The open-loop  dynamics  of  this  simple 
system are described  by  the  following  trans- 
fer  function: 

X,(s)lF(s) = l/[m,s2 + (b, + bs)s + k,] 

Since this robot  system is to  be controlled to 
maintain a desired  contact  force,  we  must 
recognize  that the closed-loop  system  output 
variable is the  force  across  the  sensor, the 
contact  force F,. 

Fig. 2. Block  diagram for  the  controller  of 
Fig.  1. 

We will  now  implement  the  simple  propor- 
tional  force  control  law: 

F = kf(Fd - F,), 4 5: O 

which  states  that  the  actuator  force  should 
be some  nonnegative  force  feedback  gain kf 
times  the  difference  between  some  desired 
contact  force Fd and  the  actual  contact  force. 
This control  law  is  embodied  in  the  block 
diagram  of Fig. 2. The closed-loop  transfer 
function  then  becomes 

F,(s)/Fd(s) = $k,l[m,s2 + (b, + bs)s 
+ k S ( 1  + $11 

The control  loop  modifies  the  character- 
istic equation  only  in  the stiikess term.  The 
force  control for this simple case works  like 
a position  servo  system.  This  could  have 
been  predicted  from  the  model  in  Fig. 1  by 
noting  that  the  contact  force  depends  solely 
on  robot  position x,. 

For completeness,  let  us  look at the root 
locus  plot for this system.  Figure 3 shows 
the positions  in  the s plane  of  the roots of 
the closed-loop  characteristic equation as  the 
force  feedback  gain kf varies. For this  qual- 
itative  analysis, the model  parameter  values 
have  been  chosen  only to plot  mot locus 
shapes representative  of  robot  systems.  They 
do not  correspond to  data  taken  from  any 
specific  robot. For this reason,  the  plots  do 
not contain  numerical  markings on  the  axes. 
For kf = 0, the  roots are at  the  open-loop 
poles.  The  loci  show  that as the gain is in- 
cteased,  the natural frequency  increases,  and 
the  damping  ratio  decreases,  but the system 
remains  stable. In fact, kf can be chosen to 
give  the  controlled  system  desirable  response 
characteristics. 
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Include Workpiece Dynamics 
The  simple  robot  system  of  Fig. 1 has  been 

shown  to be  unconditionally  stable (for kf B 

0). Force-controlled  systems,  however,  have 
been  observed to exhibit  variations in dy- 
namic  behavior,  depending  upon  the  char- 
acteristics  of the workpiece  with  which the 
r o b o t  is  in  contact. It is with  this  phenome- 
non  in  mind  that  the  robot  system  model is 
augmented to  include workpiece  dynamics, 
as  shown  in  Fig. 4. 

This two-mass  model  includes the same 
robot  and  sensor  models  used  previously, 
with  the  workpiece  now  represented by  a 
mass Q,. The workpiece  is  supported by  a 
spring  and  damper to ground  with  param- 
eters k, and bw, respectively.  The  new  state 
variable x, measures  the  position  of  the 
workpiece  mass. 

The  open-loop  transfer  functions  of this 
two-degree-of-freedom  system  are: 

Xr(s)/fTs) = Nw(s)/D,(s) 

X,(s)lF(s) = [b,s + ks]/D4(s) 

where 

N , ( s )  = [rn,s2 + (b, + b,)s + (k, + k,,,)] 
~ ~ ( s )  = [m,s2 + (b, + b,)s + k,] 

* N , ( s )  - [ b , ~  + k,]’ 

The  output  variable is again  the  contact  force 
F,, which is  the force  across  the  sensor,  given 
by 

F, = k,(x, - x 3  

If  we  now  implement  the  same  simple 
force  controller, the control  law  remains  un- 
changed. 

F = $(Fd - Fc), kf 2 0 

The  block  diagram for this  control  system is 
shown  in  Fig. 5. Note  that  the  feedforward 
path  includes  the  difference  between the two 
open-loop  transfer  functions. 

The  root  locus for this system  is  plotted in 
Fig. 6 as  the  force feedback  gain kris varied. 
There  are  four  open-loop  poles and two open- 
loop  zeros.  The  plot  then still has two 
asymptotes,  at +90 deg . The shape  of  this 

F, = k,x, I I root  locus  plot tells us that  even  for  high 

-- 
ROBOT SENSOR 

--- 
ROBOT SENSOR WORKPIECE 

Fig.  1.  Rigid-body  robot  model  with  com- Fig. 3. Root  locus  plot  shape for  the con- Fig. 4. Rigid-body  robot  model  including 
pliant  sensor  and  rigid  workpiece. troller  of  Fig. 1. workpiece  dynamics. 
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Fig. 5. Block  diagram for the controller  of 
Fig. 4. 
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Fig. 6. Root  locus  plot  shape  for  the  con- 
troller  of Fig. 4. 

values  of  gain,  the  system  has  stable  roots. 
Therefore,  while  the  characteristics of the 
workpiece  affect  the  dynamics  of  the  robot 
system,  they  do not  cause  unstable  behavior. 

Include Robot Dynamics 

Since  the  addition of the  workpiece dy- 
namics to the  simple  robot  system  model  did 
not  result  in  the  observed  instability,  we  will 
augment our system  with  a  more  complex 
robot  model. If we wish to include  both  the 
rigid-body and  first vibratory  modes of the 
arm, then  the  robot  alone  must be repre- 
sented by two  masses. 

Figure 7 shows  the  new  system  model. 
The  totai  robot mass is now split between 
m,  and m2. The  spring  and d a m p e r  with  val- 
ues k2 and b2 set  the  frequency  and  damping 
of  the  robot’s first mode,  while  the  damper 
to  ground, b l ,  primarily  governs  the  rigid- 
body mode.  The  stiffness  between  the  robot 
masses  could  be  the  drive  train or transmis- 
sion stiffness, or it could be  the  structural 
stiffness of a  link.  The  masses mi and m2 
would then be chosen  accordingly.  The  sen- 
sor  and  workpiece are modeled  in  the  same 
manner  as  in Fig. 4. The three state  variables 

ROBOT SENSOR WORKPIECE 

Fig. 7. Robot  system  model  including E- 

bot  first-mode  and  workpiece  dynamics. 

x,, x2,  and x , ~  measure  the  positions  of  the 
masses mi, m2. and in,,. 

This  three-mass  model  has  the  following 
open-loop  transfer  functions: 

xl(s)/F(s) = N.I(s)/D,(s) 

x2(s)/F(s) = N3(s)/D&) 

X,,(s)lF(s) = N2(s)/D&) 
where 

&(s) = [rn2s2 + (b2 + b,)s + (k2 + kJl 

. N,,,(s) - [b,s + k,]’ 

N&) = N,,.(s)[b,s + k2l 

N2(s) = [b2s + k2l [b,s + k,l 

~ ~ ( s )  = [mls2 + (bl + b2)s + k21 

* [m2s2 + (b2 + b,)s + (k2 + k,)I 

. N,.W 

- Nn(s)[bzs + k2I2 

- [mls2 + (b ,  + b2)s + k21 

* [b$ + k,]’ 

N,.(s) = [m,,s2 + (b,  + b,,.)s + (k, + k , ~ ]  

The  contact  force is again  the  force  across 
k, 

F, = k ( x 2  - x,J 

and the  simple  force  control  law  is 

F = kf(F,  - Fc), kf 2 0 

The  block  diagram  for  this  controller,  Fig. 
8, shows  again  that  the  feedfonvard  path 
takes  the  difference  between  two  open-loop 
transfer  functions.  This  time,  however,  both 
of  these  transfer  functions  represent  posi- 
tions  remote  from  the  actuator  force.  Note 
that  the  auxiliary  output is x , .  which is not 
a  measurable  position. 

The root locus  plot,  Fig. 9, shows  a very 
interesting effect. The  system is only  con- 
ditionally  stable.  For  low  values  of kr,  the 
system is stable;  for  high  values  of kf, the 
system is unstable;  and  for  some critical 
value of the  force  feedback  gain.  the  system 
is only  marginally  stable.  The  +60-deg 
asymptotes  result  from  the  system’s  having 
six open-loop  poles, but only three open- 
loop  zeros.  Inspection of the  open-loop 
transfer  functions  confirms this: The numer- 
ator  of  the  transfer  function  relating X&) to 
F(s) is a  third-order  polynomial  in s. 

To  provide  some  physical  interpretation  to 
this effect, note  again  that  the  input  force F 
is applied to m,, which  moves  with xi. The 
sensor is attached to the  robot  at m2. which 
moves  with x?. Here  the  controller  attempts 
to  regulate  the  contact  force through the mz- 

’ -  I 

I I 
Fig. 8. Block  diagram for the  controller  of 
Fig. 7. 

“-h 
Fig. 9. Root locus plot  shape  for the con- 
troller of Fig. 7 .  

b2-k2 dynamic  system.  In  the  preceding  two 
examples,  stability  was  achieved  while the 
controller  regulated the contact  force  on  the 
single-robot  mass.  In  practice,  gains are cho- 
sen  to  give  stable  response  for  nominal  val- 
ues of the  workpiece  parameters.  Unstable 
behavior  can  then  be  observed  with  varia- 
tions in those  parameters.  This  instability  can 
be  predicted by drawing  a  new  root  locus 
plot for the varied  system  parameters. 

Exclude  Workpiece Dynamics 

To determine  the  influence  of  the  work- 
piece  dynamic  characteristics on this  system, 
their  effects  are now removed  from  the 
model.  Figure  10  shows  the  workpiece  mod- 
eled  rigidly as a “wall.”  The robot  model 
still includes  both  the  rigid-body  and first 
vibration  modes.  The  sensor  consists of a 
spring and damper  between the robot  and the 
workpiece. 

This simpler  two-mass  model has only  two 
state  variables, x ,  and x2, which  measure the 
displacements  of  the  two  robot  masses. The 
two open-loop  transfer  functions  are 

Fig. 10. Robot  system  model  including ro- 
bot  first-mode  and  rigid  workpiece. 
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= [mzs2 + (b, + b J s  + (k, + k2)]/Dz 

X,(s)lF(s) = [bzs + kJD,* 

- [b*s + kJ2 

The contact  force is given by 

F, = kSx2 

and  the  control  law  again  will  be 

F = kJF, - Fc), 4 L 0 

The  block  diagram for  this controller,  Fig. 
11, shows  that no differences  in  open-loop 
transfer  functions are being  taken. 

The  root  locus  plot  is  shown  in  Fig. 12. 
Again,  the  system  is  conditionally  stable, as 
this  time  there  is one open-loop  zero  andfour 
poles. The instability is therefore  shown  to 
be  present  regardless  of  the  workpiece  dy- 
namics  (which  may  have  been  suspect  in  the 
preceding case of  the  model  in  Fig. 7 ) .  

Comparison  of  the hvo-mass model  of Fig. 
4 with  that  of  Fig. 10  shows that  the  models 
are basically  the  same  (note  the  different  sub- 
scripts),  and  the  equations are therefore  of 
the  same  form.  One  controlled  system is sta- 
ble  (Fig. 6), however,  while  the  other  is not 
(Fig.  12). The difference is only  in  the  place- 
ment  of  the  sensor. In the  former,  the  feed- 
back  comes  from  the  spring between the 
masses. In the  latter,  the  feedback  signal 
comes  from the spring  at  the  second  mass  to 
ground.  A  typical  industrial  robot  with first 
mode  near 20 Hz and  a stiff force  sensor  may 
have  the  following  parameters: m, = 40 kg, 
m2 = 40 kg, k2 = 400,000 Nlm, k, = 
315,000  N/m, b, = 500 N-sec/m, b2 = 500 
N-sec/m, 6, = 400 N-sec/m.  For  a  very stiff 
workpiece,  the  upper  limit  on  gain  for sta- 
bility is 4 = 1.16. 

Conclusion 
A series  of  lumped-parameter  models  has 

been  developed  in  order to understand  the 

Fig.  11.  Block  diagram  for  the  controller 
of Fig. 10. 

fm ;;plane 

Fig.  12. Root locus  plot  shape  for  the  con- 
troller  of  Fig. 10. 

effects  of  robot and workpiece  dynamics on 
the  stability  of  simple  force-controlled sys- 
tems. An instability  has been shown  to  exist 
for robot  models  that  include  representation 
of a first resonant  mode for  the  arm.  The 
mode  modeled  can  be  attributed to  either 
drive  train or structural  compliance  (or  both). 
The  potential for instability  is  present  be- 
cause  the  sensor  is  then  located  at  a  point 
remote  from  the  actuator.  The  controller at- 
tempts to regulate  contact  force  through  a 
dynamic  system.  Compare the systems  of 
Figs. 7 and 10 with  those  of  Figs. 1 and 4. 

It must be noted,  however,  that  there are 
many  causes of force-controlled instabilities. 
The  effect  presented  in this article,  that  of 
robot s t ~ ~ c t u r a l  dynamics, is an  important 
problem  in  some  systems. If the  desired 
closed-loop  bandwidth is low  compared to 
the first mode  frequency  of  the arm, then the 
target  performance may be achievable. 
However, if we  require  a  machine  capable 
of higher  performance, we must  also  inves- 
tigate  other  issues  carefully.  In  particular, 
the  workpiece  dynamics,  higher  structural 
modes,  actuator  limitations,  and  controller 
implementation  must  be  considered. 

The effect  of  the  workpiece  dynamics  is 
as  yet  unclear.  Observation  of  force-con- 
trolled  robotic  systems  suggests  that  the 
workpiece,  when  coupled  through  the  force 
sensor,  can  significantly  change  the  dynam- 
ics.  Certainly, if the  workpiece  were  very 
compliant  and  extremely  light,  there  could 
be  no  force  across  the  sensor,  degenerating 
the  closed-loop  system to  the open-loop  case, 
which  of  course  is  stable. In this  article,  we 
have  demonstrated  the  opposite  extreme,  that 
when  the  workpiece  is  modeled  as  a  rigid 
wall,  the  system can be unstable. The  sensor 
and workpiece  (environment)  dynamics are 
therefore  important  and  should be  modeled. 
Limited  actuator  bandwidth, filtering, and 
digital  controller  implementation  can  also 
cause  instability.  These  performance  limi- 
tations  must  also be included  in  the  system 
model  used for  controller  design. 

In this  article, we have  not  addressed the 
nonlinear  effects  of  the  discontinuity at  the 
workpiece  contact,  the  associated  impact 
forces  that  occur,  axis  friction,  joint  back- 
lash, or actuator  saturation.  Nonlinear  sim- 
ulations  suggest,  however,  that  these  effects 
can, under  some conditions,  lead to  limit 
cycles in the  otherwise  stable  linear  systems, 
and  under  other  conditions,  they can even 
stabilize  unstable  linear  systems. The stabil- 
ity bounds  derived  using  the  linear  models 
should be used to  set  upper  limits on .the 
controller  gains,  which  should  then be de- 
creased if limit  cycles are observed  under 
operating  conditions. 

The  modeling and analysis  techniques  pre- 
sented are tools to aid in control  system  de- 
sign. For  their  accurate  use,  however, the 
models  must  sufficiently  describe the  actual 
hardware.  A  topic  of  ongoing  research is the 
comparison  of  these  model  predictions  with 
experimental result. . In  particular, it is  not 
clear  how all the  model  parameters  should 
be chosen  in  order  to  assure  agreement  be- 
tween  the  analytical  model  and the experi- 
mental  hardware. 
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1987 CDC 
The  IEEE Conference  on  Decision  and 

Control  (CDC) is the  annual  meeting  of the 
IEEE Control  Systems  Society  and is con- 
ducted  in  cooperation  with  the  Society  for 
Industrial and Applied  Mathematics  (SIAM) 
and  the  Opeiations  Research  Society  of 
America  (ORSA).  The  twenty-sixth CDC 
will be held  on  December  9-  11.  1987, at the 
Westin  Century  Plaza  Hotel ifi Los Angeles. 
California.  The  General  Chairman  of  the 
conference is Professor  William S. Levine 
of the  University of Maryland.  The  Program 
Chairman is Professor  John  Baillieul of  Bos- 
ton  University. The conference  will  include 
both  contributed  and  invited  sessions in all 
aspects of the  theory and application  of  sys- 
tems  involving  decision.  control,  optimiza- 
tion, and adaptation. 

We urge you to attend this premier  control 
conference  held in the  dynamic  and  historic 
setting of Los Angeles. The pictures  here 
illustrate a  few  of  the  many  attractions  of  the 
Los Angeles  area. For further  information, 
contact  the  General  Chairman: 

Prof.  William  Levine 
Dept. of Electrical  Engrg. 
University of Maryland 
College  Park, MD 20742 
Phone: (301) 454-6841 

Warren P. Seering re- 
ceived  the B.S. dempe in 
1971  and  the  M.S.  degree 
in 1972,  both  from  the 
University  of  Missouri at 
Columbia.  He  continued 
his  graduate  work  at Stan- 
ford  University.  receiving 
the Ph.D. degree  in  1978. 
In  Fall  1978,  Professor 
Seering  was  appointed to 
the  faculty  of  the  Depart- 
ment  of  Mechanical  En- 

gineering  at  the  Massachusetts  Institute  of  Tech- 
nology.  His  work has focused  on  machine  design 
and  the  role  of  computation in machine  perfor- 
mance. Professor Seering  helped to establish  the 
MIT Machine  Dynamics  Laboratory,  of  which  he 
is  currently  Co-Director.  Professor  Seering  is  now 
conducting  research  at  the MIT Artificial  Intelli- 
gence  Laboratory. His research  interests are in  the 
areas of  dynamics,  vibration,  system  design,  and 
artificial  intelligence.  His work centers  around  the 
use of computation to extend  the  performance of 
machines,  particularly  robots. 

The  beautiful  Malibu Beach community, 
embraced by the  Pacific  Ocean. 

Hooray for Hollywood!  This  famous  inter- 
section of Hollywood  and  Vine is a focal 
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