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69. Physical Human–Robot Interaction

Sami Haddadin, Elizabeth Cro#

Over the last two decades, the foundations for
physical human–robot interaction (pHRI) have
evolved from successful developments in mecha-
tronics, control, and planning, leading toward
safer lightweight robot designs and interaction
control schemes that advance beyond the current
capacities of existing high-payload and high-
precision position-controlled industrial robots.
Based on their ability to sense physical inter-
action, render compliant behavior along the
robot structure, plan motions that respect hu-
man preferences, and generate interaction plans
for collaboration and coaction with humans, these
novel robots have opened up novel and unfore-
seen application domains, and have advanced the
!eld of human safety in robotics.

This chapter gives an overview on the state of
the art in pHRI. First, the advances in human safety
are outlined, addressing topics in human injury
analysis in robotics and safety standards for pHRI.
Then, the foundations of human-friendly robot
design, including the development of lightweight
and intrinsically "exible force/torque-controlled
machines together with the required perception
abilities for interaction are introduced. Subse-
quently, motion-planning techniques for human
environments, including the domains of biome-
chanically safe, risk-metric-based, human-aware
planning are covered. Finally, the rather recent
problem of interaction planning is summarized,
including the issues of collaborative action plan-
ning, the de!nition of the interaction planning
problem, and an introduction to robot re"exes
and reactive control architecture for pHRI.
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69.1 Classi$cation
Robotics is currently undergoing a fundamental
paradigm shift, both in research and real-world applica-
tions. Classically, it was dominated for the last decades
by possibly dangerous position-controlled rigid robots
carrying out typical automation tasks, such as position-
ing and path tracking in various applications. Recently,
a new generation of mechatronic robots has appeared
on the landscape, including novel concepts in general
robot design within the soft-robotics context. This trend
brings us closer to the long-term goal of safe, seamless
physical human–robot interaction (pHRI) in the real do-
mestic and professional world (Fig. 69.1).

Recent advances in physical human–robot interac-
tion have shown the potential and feasibility of robot
systems for active and safe workspace sharing and col-
laboration with humans. The fundamental breakthrough
was the human-centered design of robot mechanics and
control (soft-robotics), which also induced the novel
research stream of intrinsically elastic robots (series
elastic actuators (SEA) or its generalization variable
impedance actuators (VIA)). By considering the phys-
ical contact of the human and the robot in the design
phase, possible injuries due to unintentional contacts
can be considerably mitigated. Furthermore, taking into
account the human’s intention and preferences will en-

Fig. 69.1 The current paradigm shift in robotics induced by new target domains and robots toward the vision of close
human–robot coexistence (courtesy of Keller und Knappich Augsburg (KUKA), Deutsches Zentrum für Luft- und Raum-
fahrt (DLR), ABB, Rethink Robotics)

able the realization of human-friendly motions and in-
teraction behavior. Some of the most advanced systems
that were developed are now entering into industrial
markets. These technologies serve both industrial and
service-oriented domains. Possible future applications
of these novel devices developed for close interaction
with humans are depicted in Fig. 69.2. They range from
industrial coworkers and mobile servants over robots
in the professional service sector, assistive devices for
physically challenged individuals, to service robots for
the support of general household activities. All of these
applications share the common requirement of close,
safe, and dependable physical interaction between hu-
man and robot in a shared workspace. Therefore, such
robots need to be carefully designed for human friendli-
ness. That is, they have to be able to safely sense, reason,
learn, and act in a partially unknown world inhabited
by humans. In turn, this set of requirements necessitates
the design of novel solutions in various theoretical and
technological developments. In contrast to the classi-
cal modular view on robotics technology, and the role
humans play in this, a fundamental paradigm shift in
robot development has to be pursued.While encompass-
ing safety issues based on biomechanical human injury
analysis as well as on the kinesiologic biomechanics
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Fig.69.2a–f Application examples for pHRI, ranging from shop floor logistics and manipulation (a,b), over professional
service robots and assisitve devices for the disabled (c,d), to service robots in domestic applications (e,f)

of human movements, human-friendly hardware design
and interaction control strategies, learning, perceptive,
and cognitive key components have to be developed
and validated. These need to enable robots to track, un-
derstand, and predict human motions in real time in
a weakly structured dynamic environment. Apart from
developing the capabilities for interactive autonomy in-
cluding self-improvement, human safety and physical
interaction have to be embedded at the cognitive de-
cisional level as well. This will enable the robots to
react or physically interact with humans in a safe and
autonomous way. Biomechanical knowledge, neurome-
chanical insights, and biologically motivated variable
compliance actuators can be used to design manipula-
tion/interaction systems of varying complexity close to
human properties and performance. Further fundamen-
tal insights into novel designs of VIAs for an improved
torque/mass ratio and energy efficiency with new con-
trol methods to exploit the stiffness and damping prop-
erties are required.

Planning and adapting motions and tasks of such
complex systems in real-time require new concepts,
including tight coupling of control, planning, and learn-
ing, which will lead to reactive behaviors capable
of self-improvement. Moreover, self-explaining inter-
action and communication frameworks need to be
developed to enhance the system usability and inter-
pretability for humans. These should, for example,
communicate whether a situation is safe or dangerous
using not only verbal, but also nonverbal communi-

cation cues, such as gestures and emotional feedback.
Finally, the dependability of all system components and
algorithms is a major issue, the systematic treatment
of which is of particular importance for subsequent in-
dustrial commercialization of the technology and also
for the commercial domestic use of robots in every-
day environments. Thus, the foreseeable breakthrough
of the next generation of robotic systems in flexible au-
tomation in both small and medium enterprises (SMEs)
and global market companies depends primarily on
the pHRI development over the next years. Robotic
assistance in manual processes that advantageously
partner human and robot workers has an enormous un-
explored potential to amplify productively in processes
that previously could not be automated due to techno-
logical, cost, or efficiency reasons. Furthermore, very
promising application domains of the technology are
in the professional service sector (e.g., hospital sup-
port systems) and in the logistics domain (food logistics
and quality inspection), which are so far to a large
extent still purely manual work places. As the nat-
ural next step, systems capable of pHRI will enter
the home sector as home assistants, elderly care as-
sist, and assistive devices ( VIDEO 607 , VIDEO 614 ,

VIDEO 618 , VIDEO 623 ) for physically challenged
people ( VIDEO 618 , VIDEO 619 , VIDEO 620 ,

VIDEO 621 , VIDEO 622 ). First, rather basic tasks,
such as fetch-and-carry or environment manipulation,
will be solved followed by applications with increasing
complexity.
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Fig. 69.3 Classification scheme for pHRI, by proximity of the interaction and agency (available autonomy) of the robot

69.1.1 Classi$cation of Interaction

pHRI falls into the category of proximate interaction
where humans and robots are colocated, as opposed
to remote or teleoperated interaction (Chap. 43) [69.1].
Beyond proximity, the nature of the physical interaction
can be understood in the context of the tasks and roles
undertaken by the robot and human actors in a pHRI
scenario. In all of these scenarios, a key feature is the
available autonomy, or agency, of the robot partner for
performing its portion of the task. This agency separates
pHRI from Cobotic devices [69.2] and other passive
robotic lift assists that require, by design, input from
the operator.

Most work in pHRI can be generally classified
across three broad categories of interaction: support-
ive, collaborative, and cooperative. Ordered in this
way we note that these interactions are marked by
increasing frequency and necessity of physical con-
tact with the robot and level of proximity to the user
(Fig. 69.3). Further categories include touch-based, per-
sonally responsive robots, for example, Paro [69.3]
and the Haptic Creature [69.4], and wearable robots
(Chap. 70).

In supportive interactions, we group interactions
where the robot is not integral to the central perfor-
mance of a task, but instead provides the human with
the tools, materials, and information to optimize the
human’s task performance or objectives, for example,
museum tour guide robots, shopping assistant robots for
aiding seniors [69.5], and homecare robots (Chaps. 65
and 73). In this context, pHRI is typically concerned
with safety, that is, preventing and mitigating the effect
of unexpected contacts or collisions, and performing
appropriate proxemic behavior. When required, phys-
ical interaction is infrequent and transitory in nature –
typically limited to handoffs or other infrequent trans-
actional exchanges. To support safety, as well as these
limited physical interactions, well-structured human–
robot communication (Chap. 71) is essential. For ex-
ample, recent work [69.6–11] has demonstrated the
importance of bi-lateral gesture cues in performing
turn-taking, information sharing, close proximity activ-
ities, and precontact handover operations.

In collaborative interactions ( VIDEO 609 ), the
human and robot both work on the task, with the labor
divided between the robot and human, each separately
completing the parts of the task best suited to their
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abilities, but more frequently interacting through turn-
taking and part/tool passing [69.12, 13] ( VIDEO 716 ),
or haptically enabled mode switching where contact is
used to switch the robot’s interactive behavior [69.14]
( VIDEO 717 , VIDEO 632 ). In these scenarios, the
human completes task elements requiring human dex-
terity or decision making, while the robot completes el-
ements not well suited to direct human involvement, for
example, repetitive or high-force applications, chem-
ical deposition, or precision placement. In both sup-
portive and collaborative interactions, physical space
is often shared but planned physical interactions, al-
though much more frequent, are still transactional in
nature.

Cooperative interactions refer to the extension of
cooperative manipulation (see also Chaps. 39 and 70) to
include force interactions with humans. This type of in-
teraction is differentiated from Cobots in that the robot
operates as an independent agent, rather than a passive
assist. That is, the human and the robot work in direct
physical contact, or indirect contact through a com-
mon object, with continuous and cooperative shared
control of the task. Cooperative interactions encompass
tasks, such as cooperative lifting and carrying [69.15–
17] ( VIDEO 613 , VIDEO 820 ), kinesthetic teach-
ing [69.18] ( VIDEO 627 ), coordinated material han-
dling (e.g., managing long and flexible objects), and
rehabilitation therapy (Chap. 64).

69.2 Human Safety
Providing safety in pHRI is a multifaceted challenge
and requires an analysis on various levels of abstrac-
tion. pHRI aims at the coexistence of humans and
robots in a common workspace and at extending their
communication modes by physical means. This spatial
proximity leads to a variety of potential threats, deter-
mined by the current state of the system of interest,
which consists of the human(s), the robot(s), and their
surrounding environment. Understanding the respective
threats, in particular regarding potential human injury
originating from physical robot–human contacts, and
embedding the insights accordingly into safety stan-
dards/regulations is one of the major challenges of

Constrained impact

Clamping in robot structureUnconstrained
impact

Contact scenarios

Partially constrained impact

Secondary impact

Fig. 69.4 Robot–human
impact scenario classes. Un-
constrained and constrained
impacts are considered the
two main scenarios

nowadays robotics (note that this chapter does not cover
functional safety or robot dependability).

69.2.1 Human Injury in Robotics

Impact Scenarios
In order to quantify human injury that may occur
in the context of pHRI, one needs to understand
how mechanical contacts may cause injury in princi-
ple. Figure 69.4 depicts relevant robot–human impact
scenarios. These may involve unconstrained impacts,
clamping in the robot structure, constrained impacts,
partially constrained impacts, and resulting secondary



Part
G
|69.2

1840 Part G Robots and Humans

impacts [69.19]. Apart from such situational defini-
tions, the most urgent question is how to quantify the
human injury level that might occur due to a colli-
sion between human and robot. The understanding of
human injury has been treated in the fields of injury
biomechanics and forensics for several decades and the
respective studies served for the early work on human
injury in robotics. In fact, various injury measures from
biomechanics and forensics were applied to human in-
jury analysis in robotics [69.19–25]. An overview on
the most important existing injury classification met-
rics and biomechanical injury measures can be found
in [69.26] ( VIDEO 608 ). The most important results
from the biomechanics, forensics, and robotics litera-
ture are briefly reviewed now.

Overview Biomechanics Literature
In order to derive the injury characteristics of different
body parts for direct collisions with an impactor, which
is the most relevant case for robotics, countless experi-
ments and publications have been produced over the last
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Fig.69.5a–e Typical impactor primitives with according parameters. (a) Sphere, (b) edge, (c) cuboid, (d) flat circular, (e) sharp
tools

50 years. The investigated impactors used in robotics
and biomechanics experiments vary significantly in size
and shape. However, from the test setups, one can
identify and cluster principal geometric primitives. The
main primitives and their parameters are depicted in
Fig. 69.5. The z-axis of the coordinate frame associated
with each primitive defines the direction of impact u.

Numerous relevant impact experiments with ca-
davers, volunteers, crash test dummies, and biological
tissue for the head, neck, and chest were generated
(Tables 69.1–69.4). There for all selected experimen-
tal campaigns, the collision scenario, impacted body
part, impact parameters according to Fig. 69.5, subject,
and impact velocity are listed. For describing the colli-
sion scenario, we use the following abbreviations: D:
dynamic, QS: quasi-static, U: unconstrained, C: con-
strained, PC: partially constrained. A collision experi-
ment denoted by DU is, thus, dynamic unconstrained,
while quasi-static constrained impacts are labeled QSC
(Sect. 69.2.1, Synopsis). The respective impactor type
and parameters are listed for comparison.
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Table 69.1 Overview of selected impact experiments from biomechanics and robotics literature. Body part: Head

Impactor type Impactor parameters Collision case Subject Mass (kg) Velocity (m=s) References
Flat circular
Maxilla, zygoma, frontal,
temporo-parietal, mandible

14:3mm radius dynamic constrained
(DC)

Cadaver 1:08!3:82 2:99!5:97 [69.27, 28]

Temporo-Parietal 12:7mm radius DC Cadaver 10.6 2.7 [69.29]
Nose 14:3mm radius DC Cadaver 3.2 1:56!3:16 [69.30]
Frontal 35mm radius DU Cadaver 14.3 3:37!6:99 [69.31]
Edge
Nose 12:5mm radius DU Cadaver 32, 64 2:77!6:83 [69.32]
Maxilla, zygoma, frontal 10mm radius DC Cadaver 14.5 2:4!4:2 [69.33]
Frontal 12:7mm radius dynamic partially

constrained (DPC)
Cadaver 1 (human falling

on impactor)
2:23!3:14 [69.34]

Cuboid
Temporo-parietal 50mm length,

100mm width
DC Cadaver 12 4.3 [69.29]

Frontal Size not specified, padded DPC Cadaver 5:31!5:97 3:56!9:6 [69.35]
Frontal size not specified DPC Cadaver 1 (human falling

on impactor)
2:23!3:87 [69.34]

Sphere
Frontal 120mm radius DU, QSC, DPC Hybrid III

dummy
4, 67, 1980 0:2!4:2 [69.36, 37]

Frontal 203.2, 76:2mm radius DPC Cadaver 1 (human falling
on impactor)

2:87!3:5 [69.34]

Table 69.2 Overview of selected impact experiments from biomechanics and robotics literature. Body part: Torso

Impactor type Impactor parameters Collision case Subject Mass (kg) Velocity (m=s) References
Flat circular
Thorax 76:2mm radius, 12:77mm

edge radius
DU, DC Cadaver 1:6!23:6 4:34!14:5 [69.38, 39]

Thorax 76mm radius, rubber padded DU Volunteer 10 2:4!4:6 [69.40]
Thorax 76:2mm radius, 12:77mm

edge radius
DU Cadaver 19.27 4:0!10:6 [69.41]

Abdomen 12:7mm radius DU Cadaver 32, 64 4:9!13:0 [69.42]
Sphere
Thorax 120mm radius DU, QSC Hybrid III dummy 4, 67, 1980 0:2!4:2 [69.36, 37]
Abdomen 5, 12:5mm radius DC Pig tissue 2!10 0:5!4:0 [69.25]
Edge
Abdomen 45ı angle, 200mm length,

0:2mm edge radius
DC Pig tissue 2!10 0:5!4:0 [69.25]

Table 69.3 Overview of selected impact experiments from biomechanics and robotics literature. Body part: Upper extremities

Impactor type Impactor parameters Collision case Subject Mass (kg) Velocity (m=s) References
Edge
Forearm 12:5mm radius, angle 0ı DC Cadaver 9.48 3.63 [69.43]
Forearm size not specified DC Cadaver 9.75 2.44, 4.23 [69.44]
Shoulder, upper arm, forearm 5mm edge radius, 30ı angle DC Volunteer 4.16, 8.65 0:45!1:25 [69.45]
Flat circular
Forearm, hand size not specified QSC Cadaver 1 (velocity

control)
25mm=min [69.46]

Table 69.4 Overview of selected impact experiments from biomechanics and robotics literature. Body part: Lower extremities

Impactor type Impactor parameters Collision case Subject Mass (kg) Velocity (m=s) References
Sharp Fig. 69.5 DC Pig tissue, volunteer 4 0:16!0:8 [69.24]
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Next, some essential characteristics of human–robot
impacts are elaborated for a more general understand-
ing of the underlying dynamics.

Robot–Human Impacts
Let us assume that of a serial chain rigid robot consist-
ing of n joints, there is at most a single link involved in
a collision. Let

Pxc D
!
v c

!c

"
D
!
Jc;lin.q/
Jc;ang.q/

"
PqD Jc.q/Pq 2R6 (69.1)

be the stacked (screw) vector of linear velocity at the
contact point and the angular velocity of the associ-
ated robot link, with an associated (geometric) contact
Jacobian Jc.q/ that is a function of the joint angle q. Ac-
cordingly, the Cartesian collision wrench is denoted by

Fext D
!
f ext
mext

"
2R6 : (69.2)

Robot Collision Modeling. When such a collision oc-
curs, the robot dynamics becomes

M.q/RqCC.q; Pq/PqC g.q/C!F D !C !ext ; (69.3)

where M.q/ 2 Rn!n is the symmetric and positive def-
inite joint space inertia matrix, C.q; Pq/Pq 2 Rn is the
centripetal and Coriolis vector, and g.q/ 2Rn is the
gravity vector; ! 2Rn is the motor torque, and !F 2 Rn

is the dissipative friction torque; !ext 2Rn is the typi-
cally unknown external joint torque given by

!ext D JTc .q/Fext : (69.4)

The effective mass mu of a robot acting in the
instantaneous collision direction u, which has to be con-
sistent to Jc.q/, can be deduced from M.q/ via the
Cartesian kinetic energy matrixƒ.q/. This is defined as

ƒ.q/D
#
Jc.q/M.q/"1Jc.q/T

$"1
; (69.5)

where the inverse of ƒ.q/ is based on the decomposi-
tion of the kinetic energy matrix

ƒ.q/"1 D
%
ƒv .q/"1 ƒv!.q/
ƒv!.q/T ƒ!.q/"1

&
; (69.6)

with ƒv!.q/D Jc;lin.q/M.q/"1Jc;ang.q/T. Finally, mu
is found to be

mu D ŒuTƒv .q/"1u!"1 : (69.7)

It should be noted that the Jacobian has to be the
center-of-mass-Jacobian. Otherwise, the entire inverse
of the Cartesian inertia tensor has to be used, and not
just its translational component block. More details
can be found in [69.47]. We assume the local impact
curvature in the u-direction to be denoted by cu.

Characteristic Robot–Human Impact Force Pro!le.
A physical collision between robot and human is typ-
ically characterized by a distinct force profile that is
composed by two consecutive phases (note that for un-
constrained soft-tissue collisions these two phases can
simplify into a single Phase I impact) (Fig. 69.6):

1. Phase I is characterized by a very short impact, gov-
erned by the robot- and human-reflected dynamics.

2. Phase II is characterized by a quasistatic contact
event. Without clamping, this is a pushing force,
whereas if the human is clamped it is a crushing
force.

Phase I can be treated from a pure impact physics,
almost open-loop point of view, that is, it is determined
by the reflected inertia, velocity, and impact curvature
cu of the robot together with the characteristics of the
respective body part that is being struck. The maximum
contact force is denoted FI.

Phase II, on the other hand, has to be further sub-
divided into either clamping or no clamping incident.
In the case of no clamping, the maximum force is FIIA,
whereas for clamping, the maximum force is FIIB. In
particular, Phase II is highly robot control and design
dependent and is especially important in the case of
clamping:

! Phase IIA: No clamping. Typically, for free impacts
at robot velocities > 0:3m=s, FIIA is significantly
smaller than FI. Otherwise, FI is smaller than FIIA
and is governed by the robot actuator torques (ac-
tive quasistatic pushing) and the reaction of the
human body that is mainly governed by its reflected
impedance.

! Phase IIB: Clamping. In the case of clamping, the
final maximum force FIIB is limited by the maxi-
mum motor torques !max of the robot via Fext D
JT#c !max, where JT#c is the contact Jacobian pseu-
doinverse. If the robot is powerful enough to gener-
ate active contact forces that penetrate or break hu-
man tissue/structure, the contact force is, of course,

Phase IIPhase I

FIIA

FIIB

FI

F

t

Fig. 69.6 Typical robot–human collision force profiles
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Fig.69.7a,b Mass–velocity dependency for (a) human head and (b) chest contact force. A mass–spring-mass model is
used for collisions against the head, where the head massMH is 4:5 kg and the approximate contact stiffness of the frontal
bone KH D 1000N=mm (after [69.33]). For the chest, the model proposed in [69.48] is used

limited by the human maximum tissue resistance.
Please note that singularities need careful treat-
ment, which, however, goes beyond the scope of the
chapter.

Next, the influence of robot mass and velocity for
the unconstrained impact are described. This analysis is
particularly important to understand Phase I.

In"uence of Robot Mass and Velocity. Assume
a simple mass–spring-mass model for the impact be-
tween human and robot. MH is the reflected inertia of
the human. KH is the contact stiffness, which is in the
case of a rigid robot mainly the effective stiffness of the
human contact area. Px0re is the relative impact velocity
between the robot and human. Solving the correspond-
ing differential equation leads to the maximum contact
force

Fmax
ext D

s
mu MH

muCMH

p
KH Px0re : (69.8)

Assume a simplifying decoupling of the head from
the torso, which holds for the short duration of the
impact. For the post-impact phase, neck stiffness and
body inertia have to be considered, which compli-
cates the analysis considerably. The dependency of
frontal bone contact force on the robot mass and
velocity is depicted in Fig. 69.7a. It can be ob-
served that collision force (which is a well-known
bone fracture indicator) generally increases with ve-
locity. For increasing mass, however, a saturation ef-
fect takes place. After a certain robot mass has been
reached (mu " 20 kg in Fig. 69.7), additional weight
has only negligible influence on collision force. This
inertial saturation effect can also be observed for

other impact locations, such as contacts with the chest
(Fig. 69.7b).

If the robot mass is significantly larger than the hu-
man head mass, that is, mu#MH, (69.8) reduces to

Fmax
ext .mu#MH/D

p
KHMH Px0re : (69.9)

This shows that for a robot with significantly larger re-
flected inertia than the human head, only the contact
stiffness, the impact velocity, and the mass of the hu-
man head are relevant but not the robot mass.

The behavior of human tissue during collisions is
complex. Consequently, surrogates cannot reveal the
entire diversity. Accordingly, the conduction of human
voluntary experiments is necessary to fully understand
human injury and pain dynamics in robotics.

Human–Robot Impact Voluntary Testing
The following experimental test was the first systematic
analysis in this direction. The voluntary experiments
were conducted with a healthy young adult in the
year 2011. The collision experiments were performed
with the KUKA/DLR lightweight robot (LWR) and
the following approaches to injury and pain analysis
were carried out: injury severity analysis according to
AO (Arbeitsgemeinschaft für Ostheosynthesefragen),
biomechanical analysis, pain, and imaging meth-
ods. The setup and experiment steps are depicted in
Fig. 69.8. The robotic system allows to conduct con-
trolled robot–human collisions in order to analyze input
parameters and their effect on output parameters, such
as pain and injury. Measured impact characteristics and
quantities included impact force, impact area, tissue
displacement, tissue stiffness, stress, impact velocity,
kinetic energy, and energy density. The reflected inertia
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Fig. 69.8 (a) Flow chart depicting the basic experimental steps. (b) Collision trajectory with subject

was kept constant at mu D 3:75 kg for every test. The
used impactor for the resulting Table 69.5 was a sphere
with a radius of 12:5mm.

The injury was defined using the AO-classifica-
tion [69.49] directly after each test series. Each impact
series was carried out at the same location on the
human body at increasing impact velocity until the par-
ticipant initiated a controlled system stop during the
experiment. The impact areas were then imaged with
a magnetic resonance imaging (MRI) after a time in-
terval of about 4$5 h. The remaining tissue did not
show any pathological signs. Compared to an equiv-
alent drop test in [69.25] with abdominal pig tissue
(large sphere, 4:2 kg, 2:5m=s), the voluntary experi-
ments provide similar results in terms of injury severity.
The maximum velocity of 2:55m=s is at the border
of inducing a contusion. Where there were no marks
immediately after impact, a mild contusion formed at
day 1. For the pain tolerance at a visual analog scale
(VAS) of 6=10, an impact force of FD 272:2N was
measured. The energy density appears to have the most
significant correlation to pain.

Synopsis
An overview of the potential injury threats depending
on the current state of the robot and the human, a clas-
sification of these mechanisms, governing factors of the
particular process and possible injuries are depicted in

Fig. 69.9. Physical contact can be divided into two fun-
damental subclasses: quasi-static and dynamic loading.
Fundamental differences in injury severity and mech-
anisms are observed as well if a human is (partially)
constrained or not, leading to the second subdivision.
For the quasi-static case, it is differentiated between
near-singular and nonsingular clamping as already out-
lined. The last differentiation separates injuries caused
by blunt contact from the ones induced by tools or sharp
surface elements.

Each class of injury is characterized by possi-
ble injuries (PI), worst-case factors (WCFs), and their
worst-case range (WCR). WCFs are the main contribu-
tors to the worst case, such as maximum joint torque,
the distance to singularity or the robot speed. The
worst-case range indicates the maximum possible in-
jury depending on the worst-case factors. In addition to
the classification of injury mechanisms for each such
class, suggestions for injury measures (IMs) are given
as well. They are specific injury measures which are
appropriate, useful for the classification and measure-
ment of injury potentially occurring during the physical
human–robot interaction. Please note that the list of
injury measures is not necessarily complete, but these
ones are certainly suitable to be applied to a more gran-
ular robotics injury analysis. This does not mean that
criteria, such as the well-known head injury criterion
(HIC), do not provide general insights; they are just not
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Table 69.5 Impact data for the lateral surface of the right upper arm

Impact Max.
impact
force (N)

Impact
area
(mm2)

Displace-
ment
(m)

Tissue
stiffness
(N=m)

Stress !
(N=mm2)

Impact
velocity
(m=s)

Kinetic
energy
(J)

Energy
density
(J=mm2)

AO VAS

1 9:5 966 0:03 316:7 0:001 0:2 0:08 0:0001 IC1MT1NV1 0
2 19 966 0:037 513:5 0:002 0:44 0:36 0:0007 IC1MT1NV1 0
3 38:1 966 0:044 865:9 0:039 0:65 0:80 0:0016 IC1MT1NV1 0
4 59:6 966 0:055 1083:6 0:062 0:88 1:45 0:003 IC1MT1NV1 0
5 81:4 966 0:058 1403:4 0:084 1:11 2:31 0:005 IC1MT1NV1 1
6 103:5 966 0:060 1725 0:107 1:34 3:37 0:007 IC1MT1NV1 1.5
7 128:1 966 0:064 2001:6 0:133 1:55 4:50 0:009 IC1MT1NV1 2
8 154:1 966 0:069 2233:3 0:16 1:76 5:81 0:012 IC1MT1NV1 3
9 186:4 966 0:069 2701:4 0:193 2:03 7:73 0:016 IC1MT1NV1 3
10 224:5 966 0:069 3253:6 0:253 2:24 9:41 0:019 IC1MT1NV1 4
11 272:2 966 0:077 3535:1 0:282 2:55 12:2 0:025 IC1MT1NV1 6

necessarily optimal to understand injury on a more dif-
ferentiated lower-injury scale.

For example � in Fig. 69.9 represents blunt clamp-
ing in the near-singular configuration (Fig. 69.9). Even
for low-inertia robots, this situation could become dan-
gerous and is, therefore, a possible serious threat with
almost any robot on a fixed base within a (partially)
confined workspace. Possible injuries are fractures and
secondary injuries, for example, caused by penetrat-
ing bone structures or an injured neck if the trunk is
clamped but the head is free. This would mean that
the robot pushes the head further, while the trunk re-
mains in its position. Another possible threat is shearing
off a locally clamped human along an edge. Appro-
priate indices are, for example, the contact force and
the compression criterion (CC) [69.50]. � in Fig. 69.9
represents the clamped blunt impact in nonsingular
configuration. The injury potential is defined by the
maximum actuation torque !max and can range from
no injury to severe injury or even death for high-inertia
(and torque) robots. The robot stiffness does not con-
tribute to the worst case since a robot without collision
detection would simply increase the motor torque to
follow the desired trajectory. Therefore, robot stiffness
only contributes to the detection mechanism by en-
larging the detection time. Also, the contact force and
CC are well suited to predict occurring injury. � in
Fig. 69.9 denotes the unconstrained impact which was
the first injury mechanism investigated in the robotics
literature. This process is governed by the impact veloc-
ity and (up to a saturation value) by the robot mass. As
shown in [69.22], even a robot of arbitrary mass cannot
severely injure a human head by means of impact-
related criteria from the automobile industry like the
head injury criterion (HIC). However, fractures, for ex-
ample, of facial bones are likely to occur but not all
would be classified as a serious injury. Laceration by

means of crushes and gashes are worth evaluating, espe-
cially with respect to service robotics. The contact force
and CC are well-suited severity criteria for this class. In
order to evaluate lacerations the energy density has to
be considered.

The preceding overview is intended as a worst-case
analysis for the described contact cases. The next step is
to ask which actions can be taken against each particular
threat [69.19]. At this point, however, it shall be noted
that instead of quantifying injury in terms of a mea-
surable injury criterion, injury evaluation by a medical
expert, for example, via the AO-classification can al-
ways be applied and would presumably result in a more
exhaustive and precise judgement.

69.2.2 Safety Standards for Human–Robot
Interaction

Robotics standardization made significant progress to
establish the underlying regulations for co-working
cells in the real world. Safety for industrial robots is
addressed in a variety of general standards [69.51–
53]. The most important industrial robotics standards
is the International Organization for Standardization
(ISO) 10218. It was established in the recognition of
the particular hazards that industrial robots and indus-
trial robot systems may pose. The machinery concerned
and the extent to which hazards, hazardous situations,
and events are covered are indicated in the scope of
ISO 10218. In recognition of the variable nature of
hazards with different uses of industrial robots, ISO
10218 is divided into two parts. It provides a de-
tailed analysis of mechanical hazards, such as impacts,
crushing, shearing, entanglement, drawing-in or tap-
ping, cutting or severing, and contact of persons with
live parts (direct contact) [69.54]. In particular, the
introduction of collaborative robots has been a ma-



Part
G
|69.2

1846 Part G Robots and Humans

Quasi-static loading

Constrained Unconstrained

Blunt contact Sharp contact

Near-singular configuration

Blunt contact Sharp contact

Nonsingular configuration

Blunt contact Sharp contact

No injury

Blunt injury

1. Fractures
2. Secondary injuries*

3. Shearing*

PI
W

CF
W

CR
IM

1

F, CC, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

PI
W

CF
W

CR
IM

2

F, σ , AO

Blunt injury

1. None
2. Fractures

3. Secondary injuries*

τmax

PI
W

CF
W

CR
IM

3

F, CC, AO

Soft-tissue injury

1. Laceration (cut)*
2. Laceration (stab)*

τmax

PI
W

CF
W

CR
IM

4

F, σ , AO

Soft-tissue injury

1. None
2. Laceration (cut)*

τmax

PI
W

CF
W

CR
IM

5

F, σ , AO

Dynamic loading

Constrained

Blunt contact Sharp contact

Unconstrained

Blunt contact Sharp contact

Blunt injury

1. Fractures
2. Internal injuries

3. Shearing*
4. Secondary injuries*
5. Laceration (crush)*
6. Laceration (gash)*
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Fig. 69.9 Safety tree showing possible injury (PI), major worst-case factors (WCF) and the possible worst-case range
(WCR). * indicates still ongoing topics of research. Additionally, relevant injury criteria are given for the head, chest,
and soft-tissue injuries

jor acknowledgment to the advances made in robotics
research in pHRI over the last decade. The recent up-
dates to ISO 10218 (safety requirements for industrial
robots) led to the development of the new technical
specification (TS) 15066. It is regarded as a comple-
mentary information that concretizes the content of
ISO 10218. Generally, ISO/TS 15066 provides guid-
ance for collaborative robot operation where a robot and
a person share the same workspace. It considers collab-

orative modes and requirements, such as minimum sep-
aration distances, safety-rated monitored stops, speed
and separation monitoring, and power and force lim-
iting. In collaborative operations, the integrity of the
safety-related control system is of major importance,
particularly when process parameters, such as speed
and force, are being controlled. A comprehensive risk
assessment is required to assess not only the robot
system itself, but also the environment in which it is
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placed, that is, in the workplace. A key process in the
elimination of hazards and reduction of risks is the
design of the collaborative robot system and the as-
sociated cell layout. Various considerations about the
access and clearance of the collaborative workspace are
provided. During the design of a robotic system, the
maximum space and the restrictions of the collabora-
tive robot system have to be considered. Furthermore,
the need for clearances around obstacles and the acces-
sibility for operators should influence the design. The
intended contact(s) between parts of the robot system
and an operator plays a major role toward a possi-
bly intrinsically safe design. In order to identify the
risks resulting from the collaborative action, an appro-
priate set of collision incidents that can occur during
the collaborative work activities and foreseeable mis-
use has to be determined. This has to include affected
body regions and the involved collision areas of the
robot. The limit values that may not be exceeded dur-
ing the collision incident depend on the affected body
regions. The geometry of the involved areas of the
robot and the biomechanical properties of the affected
body regions influence the forces occurring during
the collision incident. Therefore, the ISO/TS 15066
describes injury severity criteria that consist of maxi-

mum allowable limit values on individual body regions.
These limit values are established to prevent the occur-
rence of skin/tissue penetrations that are accompanied
by bleeding wounds, fractures, or other skeletal dam-
age [69.55].

In addition to the industrial standardization efforts
in the pHRI domain, the ISO 13482 [69.56] is the first
nonindustrial robot safety standard that allows/regulates
close pHRI. This international standard specifies re-
quirements and guidelines for the inherent safe design,
protective measures, and information for the use of so
called personal care robots. It focuses on three types
of personal care robots (mobile servant robots, physi-
cal assistant robots, and person carrier robots). These
robots typically perform tasks to improve the quality
of life of intended users irrespective of age or capabil-
ity. The standard describes hazards associated with the
use of these robots and provides requirements to elimi-
nate or reduce the risks associated with these hazards to
an acceptable level. Significant hazards are presented
and this standard describes how they are to be dealt
with for each personal care robot type. Robotic de-
vices used in personal care applications are also covered
by this standard and are to be treated as personal care
robot.

69.3 Human-Friendly Robot Design
Designing robots for interaction has become a chal-
lenging subdomain in pHRI, leading to novel devices
that have one thing in common: active and/or pas-
sive compliance together with lightweight design being
the central design paradigms. A number of research-
focused robots have been designed specifically for
pHRI. The most important design guidelines, represen-
tatives, and modeling basics are outlined in this section.
Apart from robots that are designed to act as general
purpose co-workers, large robot assists with balanced,
inertia reducing, cable-driven gantry systems can be
used to create large payload robots that may be oper-
ated next to human workers [69.57].

69.3.1 Lightweight Design

In the process of making robots inherently suitable for
close physical interaction with humans or only partially
known environments, a design paradigm shift mov-
ing away from heavy, stiff, and rigid designs toward
lightweight and highly integrated mechatronics designs
has taken place. Low inertia and high (active) compli-
ance have become desirable features, as has the use of

redundant sensing principles on the proprioceptive level
(position, velocity, and torque).

General Characteristics
Generally, two major design approaches for light-
weight robots have proven successful over the last
years [69.58], namely the mechatronics approach and
the tendon-based approach, respectively. Their com-
monalities are as listed:

! Lightweight structures: Lightweight, high-strength
metals, or composite materials for the robot links.
Moreover, the design of the entire system (con-
trollers, power supply) is optimized for weight re-
duction to enable mobility.

! Low power consumption: This is mainly achieved
by small moving inertias and accordingly designed
motors.

Typically, mechatronic robots integrate electronics
into the joint structure for allowing highly modular
units. Such a design enables the assembly of different
kinematics with increasing complexity, while keeping
the respective joint philosophy. In terms of actuation,
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a) b) c) d)

Fig. 69.10 (a) Barrett arm (after [69.59]), (b) Mitsubishi PA10 arm, (c) DLR lightweight robot III (after [69.60]),
(d) KUKA LBR iiwa (after [69.61]) (courtesy of Barret Technology Inc., DLR, KUKA)

the combination of high power/torque motors with high
transmission ratio gears is usually applied. From the
proprioceptive sensing side, these systems are typically
equipped with additional sensors, such as joint torque,
force, and current sensing in addition to basic motor
side position and current sensing only (Sect. 69.3.3).

Tendon-based robots have three major character-
istics. First, they are typically equipped with remote
direct drives. This reduces the overall weight of mov-
ing parts for a fixed base manipulator as the actuators
are located in the robot base. For placing the actuators
remotely from the base, cable-pulley systems are usu-
ally applied. Finally, low reduction ratios are used for
keeping the system backdrivable. In turn, larger motors
have to be selected, which adds additional total weight.

Another interesting class of compliant actuators is
of note that implements compliance quite differently.
They use rheological fluids such that they can alter their
characteristic properties under the influence of either
a magnetic or an electric field. A clutch between link
and motor is operated in such a way that the output
torque can be controlled. These actuators were also mo-

a) b) c) d)

Fig. 69.11 (a) NASA Robonaut 2, (b) DLR Rollin’ Justin, (c) Rethink Robotics Baxter and (d) Boston Dynamics Atlas
(courtesy of NASA, DLR, Rethink Robotics Inc., Boston Dynamics)

tivated and discussed from a human-safety perspective
in [69.62].

Lightweight Robotic Systems
The most prominent robots that fall into the category
of lightweight robots are depicted in Figure 69.10. The
Barrett arm is a classic example of a tendon-based de-
sign, where the actuators are placed in the manipulator
base and the joints are backdrivable due to the low
reduction ratio. The Mitsubishi PA10 arm was a com-
mercially available lightweight redundant arm, with
a weight of 38 kg and a payload of 10 kg. The fully
torque-controlled KUKA LBR iiwa is based on the DLR
lightweight robot technology [69.61]. Its third genera-
tion DLR LWR-III weighs 13:5 kg and is able to handle
loads up to 15 kg, so an approximate unitary payload-
to-weight ratio is achieved. The robot is equipped with
joint torque sensors in each joint and has redundant po-
sition measurement (on motor and link side) [69.63].

Apart from single-arm robots as described above,
various lightweight designs were also successfully inte-
grated into research and commercial humanoid systems
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(Fig. 69.11). The NASA (National Aeronautics and
Space Administration) Robonaut 2 [69.64], equipped
with SEA, was originally designed for teleoperation
and exploration in space [69.65]. The fully torque-
controlled humanoid robot TORO [69.66], based on
the DLR lightweight robot technology, has its ori-
gins in the upper body bimanual system Justin [69.67]
( VIDEO 626 ). Rethink Robotics Baxter is a commer-
cial two-arm upper body system for pick and place tasks
that is equipped with SEA for torque measurement pur-
poses. The hydraulically actuated humanoid,Atlas from
Boston Dynamics, is one of the systems that entered the
DARPA (Defense Advanced Research Projects Agency)
Robotics Challenge.

Modeling Lightweight Robots
For a robot with n viscoelastic joints, the so-called re-
duced model of Spong [69.68] has become the standard
way of modeling lightweight robots. When including
also the presence of joint torques due to contact forces
(on the link dynamics), we shall consider the following
dynamic model of robots with viscoelastic joints:

M.q/RqCC.q; Pq/PqC g.q/D !JC !ext ; (69.10)

B R"C !J D ! : (69.11)

The generalized coordinates are doubled since there will
be a dynamic displacement ı D " $ q between the mo-
tor positions " 2Rn, as reflected through the gear ra-
tios, and the link positions q. The matrixBD diag.Bi/ 2
Rn!n is the diagonal, positive definite motor inertia
matrix. We define the elastic joint torque transmitted
through the joints and coupling (69.10) and (69.11)

!J DKJ." $ q/CDJ. P" $ Pq/ ; (69.12)

where KJ D diag.KJ;i/ 2Rn!n is the diagonal, positive
definite joint stiffness matrix, and DJ D diag.DJ;i/ 2
Rn!n is the diagonal, positive semidefinite joint damp-
ing matrix. The quantity !J in (69.12) is also the
output of joint torque-sensing devices, when available.
In many practical cases, the mechanical design of the
transmission/reduction elements is such that one can
neglect the joint damping, that is, DJ ' 0. Joint elas-
ticity has long been addressed for lightweight robot
systems, however, more as an undesired consequence
that the control has to handle [69.69]. This requires ad-
vanced control techniques in order to obtain accurate,
performant motion. For a complete overview on the
properties of robots with joint elasticity effects, please
refer to Chap. 11.

69.3.2 Intrinsically Flexible Design

Recently, the class of intrinsically flexible actuators and
robots have become increasingly popular. Inspired by
the flexible properties in biological muscles, compli-
ant joints are designed with the aim of imitating human
or animal motions during various tasks. The main idea
of intrinsically flexible actuation is to come closer to
human capabilities in terms of speed and shock absorp-
tion. This is not realizable with todays rigid industrial
robots, when assuming approximately the same torque
range or weight as humans have. By storing and releas-
ing energy in the joints, one aims for improvement in
tasks, such as running or throwing [69.70–73] where
humans still clearly outperform robots. In Chap. 21
and [69.74], a more in depth review of intrinsically flex-
ible actuation is presented. In this chapter, we review
only the relevant insights for placing the technology in
the pHRI context.

General Characteristics
Roughly speaking, intrinsically flexible actuators can
be divided into two categories:

! Actuators with fixed mechanical impedance, where
the effective joint impedance is altered via active
control. The most well-known example is the series
elastic actuator (SEA) [69.75], whose acronym be-
came a generic term for this class of actuators.

! Actuators where the impedance can be adjusted
by altering mechanical joint properties, such as
stiffness and damping. There exist various cate-
gories like variable stiffness actuators (VSAs) that
allow stiffness changes or variable impedance ac-

KJ,x

FJF Fext

KH

MHmuBx

xθ xq xH

Fig. 69.12 Human–robot collision in operational space,
which is defined by the reflected flexible dynamics of the
robot and the local contact stiffness/mass properties of the
human head
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tuators (VIAs) that enable more general impedance
changes, including damping adjustment.

The original motivation for introducing VSA and
VIA, for example, in [69.20], was to make robots safer
during unforeseen collisions due to dynamic decoupling
of the motor and link-side inertia from each other. This
effect reduces the collision danger by alleviating the
impacting robot inertia. In [69.20], it is, for example,
shown that HIC could be reduced by introducing elastic-
ity in the joint. This idea was generalized and systemat-
ically analyzed in [69.76, 77], and is summarized here.

In order to simplify the human robot collision anal-
ysis basic models in operational space coordinates were
used for this analysis (Fig. 69.12). For this, operational
space coordinates and reflected inertias/stiffnesses
along an arbitrary instantaneous impact direction u are
considered [69.47]. The masses MH;mu;Bx 2 RC are
the reflected human, link, and motor mass. KH;KJ;x 2
RC are the reflected (human) contact stiffness and
joint/structural elasticity. The projected human, motor,
and link impact position are denoted by xH; x! , and
xq 2R, respectively. x! D pu.T."// and xq D pu.T.q//
are defined via the respective forward kinematics maps
projected in the u-direction.

As pointed out in [69.20], a robot with quite low
reflected link inertia mu D 0:1 kg is able to reduce the
impact forces significantly if a contact stiffness ofKH D
5 kN=m is assumed. Similar to the work in [69.21], it
was shown that a decrease in joint stiffness can signif-
icantly reduce the impact characteristics and, thus, is
a powerful countermeasure against large contact forces.
In [69.78], it was deduced that for the case of a 2-
DOF (degree of freedom) planar intrinsically compliant
robot, already slightly touching a rigid wall with its
second link, the compliant mechanism can limit the
maximum static force/torque effectively if the motor
torque is slowly increased. It is, of course, unquestion-
able that joint elasticity decouples the motor from the
link. However, as was indicated in [69.22], a reduction
in joint stiffness cannot reduce the impact characteris-
tics during very rigid, fast, and blunt crash-test dummy
impacts for a lightweight system, such as the LWR-III
(which is basically an SEAs type robot from a mod-
eling perspective). This was proven by measuring the
decoupling of motor and link inertia via the integrated
joint torque sensors and the additionally recorded exter-
nal contact force.

Figure 69.13 depicts the experimental evidence for
a collision at 1m=s between a DLR LWR-III and a sta-
tionary unconstrained Hybrid III dummy (HIII) head
on the frontal area [69.22]. The contact force fext was
measured with a high-speed force sensor fext;fs and for
consistency check with a triaxial accelerometer fext;as.

As one can see, the simulation and experimental sig-
nals show very good consistency. Clearly, the projected
elastic joint force fJ reacts delayed to the collision,
thus proving the desired decoupling property already
for such an intrinsically very stiff robot. For the im-
pact simulation, a reflected stiffness of 6:72%104 N=m
is chosen, which represents a realistic joint stiffness and
structural elasticity value. The reflected motor inertia is
Bx D 13 kg and the reflected link side inertiamu D 2 kg.
The dummy head mass is MH D 4:5 kg and the contact
stiffness is KH D 3:2%105 N=m.

This result showed that already the compliances of
the built in gear and the joint torque sensor is suffi-
cient to decouple the motor from the link, making it
entirely unnecessary to further reduce joint stiffness for
the given robot for this purpose. There are two main as-
pects, which have to be considered to fully understand
this result. On the one hand, the contact stiffness of the
crash-test dummy used is significantly larger than the
reflected elasticity of the DLR LWR-III; however, it is
also realistic for the human frontal area [69.27]. Fur-
thermore, the reflected motor and link inertia for the
DLR LWR-III are the same order of magnitude as for
the human head mass. This is quite reasonable for a full-
scale lightweight robot arm.

Two further benefits of inherent compliance are
as follows. First, the robot itself is able to resem-
ble compliant behavior without the inherent need for
high-performance force/torque feedback. Please note
that it is not possible to display arbitrary Cartesian
stiffness behavior for a robot with diagonal stiffness
matrix only [69.80]. Second, the joint elasticity acts in
combination with the link inertia as a mechanical low-
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Fig. 69.13 Impact experiment and simulation of a LWR-
III with a Hybrid III Dummy. The experimental contact
force is measured for consistency check with a high-speed
acceleration (as) and force sensor (fs) simultaneously
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a) b) c)

Fig.69.14a–c Passively flexible anthropomorphic robots: compliant humanoid platform (COMAN, (a)) from IIT (af-
ter [69.79]), Valkyrie (b) from NASA, and hand arm system (HASY, (c)) from DLR (courtesy of IIT, DARPA,
DLR)

pass filter, thus protecting the drive train from impact
shocks; that is, it makes the system inherently more ro-
bust [69.72, 81].

Another interesting use of elasticities in the drive
train of a manipulator relates to the fact that it can serve
as a storage mechanism for potential energy, and be
used to increase a robot’s link speed beyond the max-
imum motor velocity [69.71, 72, 81–83]. This ability
strongly influences the safety of intrinsically elastic sys-
tems, as a robot’s impact speed determines its inherent
collision danger to a large extent. However, we refer
to [69.76] for further details on this matter, where the
effect of a robot’s elastic speed increase on potential
danger in terms of HIC is derived.

Intrinsically Flexible Robotic Systems
Figure 69.14 shows some of the most prominent recent
anthropomorphic/humanoid devices that employ pas-
sively compliant actuators. The COMAN system of IIT
( VIDEO 624 ) is a full-scale SEA robot, as is NASA’s
Valkyrie. Both system’s ability to measure torques re-
sults from the ability to flex around their joint axes and
then relate this elastic deflection to the joint torque. The
DLR hand-arm system [69.73] is fully equipped with
VSA in every joint, while having approximately human
size, strength, and dexterity.

Modeling Passively Flexible Robots
From a formal modeling point of view, lightweight
robots and robots with fixed mechanical impedance are

very similar. The main difference lies in the respec-
tive torque sensor measurement principle. The joint
elasticity in lightweight robots is rather high and al-
lows only for small deflections between the motor and
link position. The stiffness in compliant actuators, how-
ever, is intentional and typically at least an order of
magnitude lower, thus enabling significantly larger de-
flections. Consider the elastic joint model (69.10) and
(69.11) from Sect. 69.3.1, which under certain mild
conditions also holds for intrinsically elastic robots. The
main difference is that for lightweight robots, KJ;i is
large compared to SEA-like systems. For many VSA
systems, the transmitted torque can be expressed as

!J D f.ı; # / ; (69.13)

where # denotes a stiffness adjustment control in-
put (typically the position of a second motor).
The torque–displacement curve f.ı; # / may exhibit
different characteristics, such as being strictly in-
creasing @f.ı; # /=@ı > 0 and convex @2f.ı; # /=@ı2 >
0. More details on implementations can be found
in [69.74].

69.3.3 Perception for Interaction

The recent advances in pHRI benefit greatly from previ-
ous achievements in contact and noncontact sensors and
sensing techniques. In the current chapter, we shortly
review the essential sensing techniques that had strong



Part
G
|69.3

1852 Part G Robots and Humans

a) b)

Fig. 69.15 (a) Furry robot skin utilizing piezo-resistive fabric and conductive sensors provides a low cost design concept
with high tactile gesture recognitions rates (after [69.84]). (b) The hand of TWENDY-ONE with integrated distributed
pressure sensors (courtesy of Karon MacLean, UBC, Shigeki Sugano Lab., Waseda University)

impact on pHRI and focus on the underlying main con-
cepts. Chapters 28 and 32 give a full view and can be
consulted for further details.

69.3.4 Proprioceptive Force/
Torque Sensing

Many robot arms have the option to include a six-
axis force/torque sensor at the wrist, enabling not only
force control-based manipulation, but also symbolic
haptic interaction [69.85, 86], possibly also based on
joint torque sensing. More recently, torque sensors
have been integrated into the joints of commercial
robots, for example, into the KUKA LWR [69.87].
This allows for contact sensing along the entire robot
structure with measurements of contact magnitude,
direction, and knowledge of which link was con-
tacted [69.88].

Essentially, two major sensing principles for joint
torque measurement exist: either by directly measuring
the torque which is typically done via strain gauges,
or by measuring it implicitly via the deflections ı
between link and motor position. For this, it is as-
sumed that ı directly relates to torque typically by
a constant multiplier, the joint stiffness KJ;i. For the
latter, both link- and motor-side position sensors need
to be mounted. The first works that aimed at devel-
oping and minimizing torque-sensing devices can be
found in [69.89–91]. The torque-sensing principle has
also a strong relation to the design classification in
Sect. 69.3.

69.3.5 Tactile Perception

Several tactile skins have been developed over the years
such as, for example, [69.92–95]. In the latter work, for
example, the human skin served as a design metaphor.
Therein, a solution of the goal conflict between the
desired high sensitivity and the required mechanical ro-
bustness is in the focus. Furthermore, beyond providing
the required sensory capability, the mechanical defor-
mation and damping properties necessary for the opera-
tion of the robotic system are considered as well. Using
whole-arm tactile sensing across the manipulator sur-
face explicitly allows the sensing of multiple contacts;
for example, in [69.96], the authors operate a robot in
a cluttered environment in order to successfully reach
a goal that is occluded by obstacles using a model pre-
dictive controller. Other recent examples of localized
sensors include touch pads placed at key points on the
robot [69.97], and force-sensitive resistors distributed
over the robot [69.98]. The latter example is used in
a novel haptic robot designed to both read and dis-
play emotion mediated through cues sensed primarily
through physical interaction. These methods have the
advantage of using reliable and fairly precise sensors,
but are capable of measuring contact only at discrete
locations. For more extensive contact sensing, several
researchers have developed various types of robot skin;
that is a distributed sensor network that covers exten-
sive areas and measures diverse qualities of contact
events, including location, magnitude, orientation, and
temperature. Hard robot skins or shells have been used
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Fig. 69.16 Low cost 3-D-RGB-D cameras: (a)Microsoft Kinect (Wikipedia Commons), (b) Asus Xtion (courtesy Asus)

to detect collisions [69.99], while soft robot skins that
can conform to different robot shapes have been used
for more complex, often social or affective, human–
robot interaction, for example, [69.100]. While robot
skin can add significant sensing capability to robots, it
may also add to the complexity and cost, and thus com-
promises the robustness of the robot. However, recently
a furry creature skin (Fig. 69.15) was created [69.84]
using a combination of low-resolution piezo-resistive
fabric, and conductive fur sensors to create a low-cost
robot covering with 90% interaction gesture (stroking,
patting, poking, hitting) recognition rates when trained
on an individual and 68$80% recognition rates when
trained on groups ( VIDEO 615 ). A detailed review of
tactile sensing technology for human–robot interaction
can be found in [69.101]. Other examples can be found
in Chap 28.

69.3.6 Visual Perception

Visual (noncontact) sensing is very important for
preparing for pHRI. Tracking and planning for the
location of a human partner and predicting, for exam-
ple, the motion of the partner’s hand is an important
precursor to a successful handover operations [69.12].
While well-known marker-based systems, such as Vi-
con and Optotrak systems, provide very high resolu-
tion tracking systems, they are impractical for day-
to-day use. The development of low-cost 3-D-RG-
B-D (three-dimensional red green blue depth) cameras
(Fig. 69.16) permits the 3-D tracking of full body
models in large and partially occluded spaces, with on-
going improvements toward robustness in body pose
tracking and for tracking of hand gestures [69.102,
103].

69.4 Control for Physical Interaction
For soft and safe pHRI, the question arises how to gen-
tly handle physical contact in robotics from a control
point of view. As impedance control [69.104] became
the most popular interaction control paradigm in the
pHRI world, this particular scheme will be one fo-
cus of this section. Its generalization to multipriority
impedance control laws allows the realization of sophis-
ticated robot compliance with multiple objectives via
active control. A major advantage of impedance con-
trol is that discontinuities like contact–noncontact do
not create stability problems as they occur, for exam-
ple, with hybrid force control [69.105]. Its extension to
impedance and feed-forward learning and adaptation,
for which the first works can be found in [69.106, 107],
is discussed after introducing the concept of multiprior-
ity impedance control. Apart from nominal interaction
control, a robot sharing its workspace with humans
and physically interacting with its environment should
be able to quickly detect collisions and safely react
to them. In the absence of external sensing, relative

motions between robot and environment/human are un-
predictable and unexpected collisions may occur at
any location along the robot arm. The state-of-the-art
schemes for collision detection and reflex reaction are
introduced. Finally, the last part of the section deals
with the shared manipulation problem, one of the stan-
dard application examples of pHRI.

69.4.1 Interaction Control

Originally developed for robust and compliant object
manipulation, impedance and the related admittance
control ( VIDEO 610 ) form a paradigm to treat robotic
systems from an energetic point of view such that
motion and force can be controlled in a unified man-
ner. They offer the advantage over hybrid force-motion
controllers to provide a framework independent from
kinematic work space constraints. These control types
popularized by [69.104] are also especially advanta-
geous in terms of uncertainties and disturbances in
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unknown environments due to their inherently robust
nature [69.108]. The terms impedance and admittance,
are derived from electrical system theory where they de-
scribe the relationship between voltage and current as
input/output pairs. To generalize impedance and admit-
tance such pairs can be defined domain-independently
as effort and flow variables. For robotics, the me-
chanical analogies, that is, mechanical impedance and
admittance are of particular interest.

More details on the conceptual basics of impedance
and the dual admittance control can, for example, be
found in [69.109, 110]. Furthermore, Chap. 9 gives
a more thorough basis on force control strategies in gen-
eral and impedance control in particular.

The mostly used version of impedance control is
to impose a second-order dynamics of a mass–spring–
damper system (so-called target impedance [69.104]) on
the closed-loop equations. Typically, the control objec-
tive is expressed in operational space coordinates x as

Mx RQxCDx PQxCKx QxDFext ; (69.14)

where Qx WD x$ xd is the position error and xd is called
equilibrium position. Mx denotes the desired inertia,
whileDx andKx are the according closed-loop damping
and stiffness matrices in operational space.Fext denotes
the external wrench acting at the end-effector of the
robot. Assuming rigid body dynamics, the control law
to obtain the aforementioned behavior is

!C# D g.q/C J.q/TŒƒ.q/RxdC$.Px; x/!

$ J.q/T
h
ƒ.q/M"1

x .Kx QxCDx PQx/
i

C J.q/T
#
ƒ.q/M"1

x $ I
$
Fext : (69.15)

In order to fully implement this scheme, a wrist force
torque sensor is necessary for the inertia shaping part.
In [69.111], a modified impedance controller was de-
signed that uses angle/axis representations for the ro-
tational components of the operational space. For its
derivation, energy contributions with physical interpre-
tation are considered and the end-effector orientation
displacement representation is chosen to be in terms of
a unit quaternion to avoid singularities.

For redundant robots, it is typically desired to also
control the nullspace behavior in order to embed other
control objectives !N;i into a stacked hierarchy of tasks
(Chaps. 17 and 36). For the case of a single nullspace
controller !N , this torque has to be projected via the
nullspace projector matrix N.q/ into the nullspace of
the task, leading to the overall control law

!C D !C# CN.q/T!N : (69.16)

The nullspace projection matrix can be chosen in dif-
ferent ways. The simplest case is N.q/D I$J.q/#J.q/,

where J.q/# denotes theMoore–Penrose pseudoinverse.
Alternatively, one may chose the dynamically consis-
tent generalized pseudoinverse

J.q/# DM.q/"1J.q/Tƒ.q/ : (69.17)

In particular, in the pHRI domain, a multitude of dif-
ferent subtasks !N;i are meaningful to be executed
simultaneously. These may, for example, involve:

! Safety (collision anticipation and avoidance, self-
collision avoidance, . . . )

! Physical constraints (joint limits, geometric task
constraints)

! Task execution (tracking control, . . . )
! Posture primitives (in particular for humanoids).

To realize consistent behaviors, task hierarchies are
constructed such that certain tasks are prioritized over
others [69.112]. In [69.113], a hierarchy is realized
by null space projection techniques, which also pre-
vents discontinuities concerning unilateral constraints
by smoothing out transitions.

Extensions to the basic schemes for flexible joint
dynamics [69.114–116] and for the SEA case [69.117]
were developed as well. Furthermore, Cartesian imped-
ance control has been applied to grasping and multiple-
arm robotic systems in [69.118]. For a more in depth
treatment of multipriority impedance control, please
also refer to Chap. 67.

69.4.2 Learning and Adaptation

Close physical interaction between human and robot
is a complex evolving process with high uncertainty
and is hard to be modeled explicitly. Therefore, sev-
eral learning and adaptation approaches were proposed
to enhance a robot’s capability and account for the
inherently present uncertainty and unpredictability. In
this sense, the extension of impedance control toward
adaptive controllers that are able to learn and/or adapt
the controller’s impedance and feed forward torques is
a challenging and rather recent research problem. Ob-
viously, also the learning of the desired trajectories,
for example, in terms of motion patterns became an
important problem in this context. Generally, also col-
laborative tasks (Sect. 69.4.4) require learning either the
impedance properties and/or certain trajectories such
that the robot gains the ability to adapt its behavior to
the human counterpart, or even guides it to guarantee
successful collaboration. An important aspect of learn-
ing physical interactions is how to choose the right task
coordinates and (meta-)parameters. This is essential to
reformulate the otherwise high-dimensional problem
spaces in a tractable form.
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Since impedance control has already shown to be
a valuable technique in cluttered and complex manip-
ulation tasks, recent research focuses on the adaption
of the impedance characteristics to further improve the
robot capabilities during interaction. Iterative learning
control techniques belong to the first methods that
have been investigated to tackle difficult manipulation
problems [69.119, 120]. However, they do not only
require the exact same repetitive motion of the manip-
ulator, but also to account for unforeseen changes in
the environment due to force inconsistencies which are
particularly present in pHRI. Other early approaches
include, for example, the use of neural networks in
impedance control to counteract disturbances and envi-
ronmental uncertainties [69.121]. An approach to adapt
force, trajectory, and impedance simultaneously has
been presented in [69.122] as a biomimetic controller.
It is constructed based on studies in neuroscience that
show that humans adapt feedfoward and feedback
forces as well as their impedance in order to learn
unstable tasks in daily life. According to [69.123], the
principles of motor learning are:

1. Motor commands to perform a desired action are
composed of both feedforward commands, defined
as the component of the motor command learned by
repeating an activity, and feedback commands.

2. Learning is performed in muscle space.
3. Feedforward increases with the muscle stretch in

previous trial.
4. Feedforward also increases with antagonist muscle

stretch.
5. Feedforward decreases when the error is small.

Mathematically, these principles can be expressed
as follows [69.106]. Generally, the central nervous sys-
tem tends to minimize the motion error as well as the
metabolic cost such that no extra effort will be spent on
the learned impedance and feedforward torques. This
can be expressed by minimizing the joint-level cost
function

V.t/D 1
2

tZ

t"T

Q̊ T."/Q"1 Q̊ ."/d"

C 1
2
%.t/TM.q/%.t/: (69.18)

Therein, Q is a positive definite weighting matrix cor-
responding to the learning rates; Q̊ is defined as the
difference between the instantaneous value

˚ D
#
vec.Kq.t//T; vec.Dq.t//T; !ff.t/T

$T
(69.19)

and the required optimal value ˚#, that is, Q̊ D˚ $
˚#. The quantities %, Kq, Dq, and !ff denote the track-

ing control error [69.124] and the values to be learned,
namely, the closed loop joint space stiffness, damping,
and feed forward motor torques. For the joint stiffness
adaption law, this leads for example to

•Kq.t/DKq.t/$Kq.t$T/
DQKq

#
%.t/e.t/T$ #.t/Kq.t/

$
; (69.20)

where #.t/ > 0 is a constant forgetting factor and QK ,
which is contained inQ, is a symmetric positive definite
matrix corresponding to the learning rate of the stiff-
ness. T is a time constant to denote task: periodicity. In
an analog manner, adaption for feedforward torque and
damping can be deduced, which results in the following
control law,

!C.t/D !ff.t/$Kq.t/e.t/$Dq.t/Pe.t/
$L.t/%.t/C!r.t/ (69.21)

%D Pe.t/C $e.t/ ; (69.22)

where !r.t/ compensates for robot/arm dynamics and
bounded noise. The term L.t/%.t/ ensures a certain sta-
bility margin. The overall control law flow chart is
depicted in Fig. 69.17. A stability proof of this approach
can be found in [69.106]. An open problem with this
method that remains to be unsolved is how to automat-
ically select the meta parameters, such as the forgetting
factor # . A similar approach was developed in [69.125],
where impedance adaptation laws were tested on a two-
robot collaboration task. The robots lift together a beam
after a task model was learned. A different approach
based on the perturbations of the robot imposed kines-
thetically by a human teacher such that the stiffness of
the robot is adapted is investigated in [69.126]. Finally,
the so-called teleimpedance paradigm [69.127] aims to
remotely controlling the robot via the human arm refer-
ence position and impedance.

Learning task trajectories has been a rather well-
studied field for several years now. For example,
in [69.128], the authors examined the task of learning
collaborative lifting of an object using hidden Markov
models (HMM) and Gaussian mixture regression. Task
demonstration was done via a haptic interface that con-
trolled the robot hand. HMMs are also used in [69.129]
in order to learn semantic task structures during a joint
task execution. A semantic label of recognized task seg-
ments is acquired from a human partner by using speech
recognition. Tasks in pHRI where transitions from con-
tact to noncontact situations arise have been examined
in [69.130]. Therein, marker data is used to obtain mo-
tion primitives. These are then updated with contact
time information, comprising a low-level layer of learn-
ing. In addition, there is a high-level layer, which selects
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Fig. 69.17 Control diagram
of the biomimetic adaptive
impedance controller from
(after [69.106])

a motion primitive and an end-effector reference po-
sition. Again, both layers are encoded via HMMs to
provide a suitable abstraction, which is a key when
dealing with high-dimensional spaces.

In [69.17], dimensionality reduction for learning
was employed to realize assistive tasks, such as helping
a robot to stand–up or walk. This principal compo-
nent analysis (PCA)-based reduction lets the learning
take place in a low-dimensional joint manifold instead
of the original high-dimensional space. It reduces the
complexity of the learning domain for multidegree-of-
freedom systems such as humanoids. A recent approach
to learning trajectories based on human preferences was
proposed in [69.131], where machine-learning tech-
niques were applied to derive the optimal behavior
from human action ratings during runtime. Figure 69.18
shows how the robot learns to handle a knife safer
by receiving low rewards from the human if the dan-
gerous tool is moved in undesired orientations and/or
trajectories.

69.4.3 Collision Handling

One of the core problems in pHRI is the handling of
collisions between robots and humans, with the pri-
mary motivation of limiting possible human injury due
to physical contacts. Various monitoring signals can be

Fig. 69.18 The robot Baxter learns to safely handle a knife ([69.131]; courtesy of Saxena’s Robot Learning Lab)

used to gather context independent information about
the event.

The collision detection phase, whose binary output
denotes whether a robot collision occurred or not, is
characterized by the transmission of contact wrenches,
often for very short impact durations. The occurrence
of a collision, which may happen anywhere along the
robot structure, shall be detected as fast as possible.
A major practical problem is the selection of a threshold
on the monitoring signals, so as to avoid false positives
and achieve high sensitivity at the same time. A heuris-
tic approach is to monitor the measured currents in
robot electrical drives, looking for fast transients pos-
sibly caused by a collision [69.132, 133]. Another pro-
posed scheme compares the actual commanded torques
(or motor currents) with the nominal model-based con-
trol law (i. e., the instantaneous torque expected in the
absence of collision), with any difference being at-
tributed to a collision [69.134]. This idea has been
refined by considering the use of an adaptive compli-
ance control [69.135, 136]. However, tuning of collision
detection thresholds in these schemes is difficult be-
cause of the highly varying dynamic characteristics of
the control torques.

Knowing which robot part (e.g., which link of a se-
rial manipulator) is involved in the collision is an
important information that can be exploited for robot
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reaction. Collision isolation aims at localizing the con-
tact point xc, or at least which link ic out of the n-body
robot collided. One way to obtain both collision detec-
tion and isolation is to use sensitive skins [69.92–95].
However, it would obviously be more practical and
reliable to detect and possibly isolate a collision with-
out the need of additional tactile sensors. On the other
hand, the previously mentionedmonitoring signals used
in [69.132–136] are in general not able to achieve reli-
able collision isolation (even when robot dynamics is
perfectly known). In fact, they either rely on computa-
tions based only on the nominal desired trajectory, or
compute joint accelerations by inverting the mass ma-
trix and thus spreading the dynamic effects of collision
on a single link, or use acceleration estimates for torque
prediction and comparison, which inherently introduces
noise (due to double numerical differentiation of posi-
tion data) and intrinsic delays. The common drawback
of these methods is that the effect of a collision on a link
propagates to other link variables or joint commands
due to robot dynamic couplings, thus affecting the iso-
lation property.

Other relevant quantities about a collision that are
deduced during the collision identification phase are the
directional information and the intensity of the general-
ized collision force, either in terms of the acting Carte-
sian wrench Fext.t/ at the contact, or of the resulting
joint torque !ext.t/ during the entire physical interaction
event. This information characterizes (in some cases,
completely) the collision event. The first method that
simultaneously achieved collision detection, isolation,
and identification was proposed in [69.137]. The basic
idea was to view collisions as faulty behaviors of the
robot actuating system, while the detector design took
advantage of the decoupling property of the robot gen-
eralized momentum pDM.q/Pq [69.138, 139].

During the collision reaction phase, the robot
should react purposefully in response to a collision
event, that is, taking into account available contextual
information. Because of the fast dynamics and high un-
certainty of the problem, the robot reaction should be
embedded in the lowest control level. For instance, the
simplest reaction to a collision is to stop the robot. How-
ever, this may possibly lead to inconvenient situations,
where the robot is unnaturally constraining or blocking
the human [69.19]. To define better reaction strategies,
information from collision isolation, identification and
classification phases should be used. Some examples of
successful collision reaction strategies have been given
in [69.88, 140].

Collision Detection and Identi!cation
A recent overview on standard techniques to esti-
mate !ext can be found in [69.26]. In this chapter,

we focus on the main method, namely the monitoring
method based on the observation of the generalized mo-
mentum that was introduced in [69.137]. The scheme,
which is regarded as the standard algorithm, was mo-
tivated by the desire of avoiding the inversion of the
robot inertia matrix, decoupling the estimation result,
and also eliminating the need of an estimate of joint ac-
celerations. The according disturbance observer-based
estimator for the rigid case is defined as

r.t/DKO

8
<

:Op.t/$
tZ

0

Œ! $ Ǒ .q; Pq/C r!ds$ Op.0/

9
=

; ;

(69.23)

with OpD OM.q/Pq, Ǒ .q; Pq/D Og.q/C OC.q; Pq/Pq$ POM.q/Pq,
and KO D diag.kO;i/ > 0 being the diagonal gain ma-
trix of the observer. Under ideal conditions, OMDM
and Ǒ D ˇ, the dynamic relation between the external
torque !ext and r is

PrDKO.!ext $ r/ : (69.24)

In other words, r is a stable, linear, decoupled, first-
order estimation of the external collision torque !ext.
Large values of kO;i give small time constants TO;i D
1=kO;i in the transient response of that component of
r, which is associated with the same component of the
external joint torque !ext. In the limit, we obtain

KO!1 ) r" !ext : (69.25)

Collision Re"ex Reactions
After a collision has been detected, suitable collision re-
flex reaction is needed. Four basic context-independent
joint-level collision reflexes are discussed next. They
lead to significantly different reflex behavior after
a contact was detected. In the third and fourth schemes,
the directional information on contact torques provided
by suitable identification schemes such as (69.23) may
be used to safely drive the robot away from the collision
location.

Robot Stop. The most obvious strategy to react to
a collision is to stop the robot. This behavior can, for ex-
ample, be obtained by setting qd D q.tc/, where tc is the
instant of collision detection or by simply engaging the
robot’s brakes. More elaborate braking strategies can be
found in [69.141].

Torque Control with Gravity Compensation. One
may also react to a collision by switching the con-
trollers. Typically, prior to the collision incident, the
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robot moves along a desired trajectory with a position
reference-based controller (e.g., position or impedance
control). After detection, the control mode is switched
to a compliance-based controller that ignores the pre-
vious task trajectory. A particularly useful variant is to
switch to torque control mode with gravity compensa-
tion ! D Og.q/ ( VIDEO 611 ). Note that this strategy
does not explicitly take into account any information
about !ext.

Torque Re"ex. This strategy extends the torque con-
trol-based strategy by explicitly incorporating the esti-
mation or measurement of !ext into the motor torque !
via

! D Og.q/C .I$Kr/!ext ; (69.26)

where Kr D diagfkr;ig > 1. It can be shown that, under
sufficiently accurate estimates or measurements, such
a law is equivalent to scaling of the robot dynamics by
K"1

r . The closed-loop dynamics become

K"1
r M.q/

„ ƒ‚ …
M0.q/

RqCK"1
r C.q; Pq/PqC !ext D 0 ; (69.27)

where M.q/ >M0.q/ holds component-wise.

Admittance Re"ex. Reference trajectory modifica-
tion via an admittance-type strategy that uses the mea-
surement or estimation of !ext can easily, for example,
be realized via

qd.t/D$
TZ

tc

Ka!ext dt ; (69.28)

where Ka D diagfka;ig > 1. With this scheme that re-
quires no control switching the robot quickly drives
away from the external torque source and decreases the
contact forces till they decay to zero.

69.4.4 Shared Manipulation Control

Collaborative carrying, particularly of a long, large,
heavy or flexible object, is a common scenario in pHRI
research (Fig. 69.19). As discussed earlier, Cobots rep-
resent the parallel case where passive robotic devices
control the path along which a shared load will be trans-
ported, but give their operator full control of load mo-
tion along that path (Chaps. 39 and 70; VIDEO 821 ).
Most shared manipulation schemes utilize some form
of impedance control [69.143]. In an early work, the
authors of [69.144, 145] proposed an impedance con-
troller with speed-dependent damping coefficients. The

authors of [69.146] employed a similar approach (with
fixed virtual impedance) to control the horizontal move-
ment of their Mobile Robot Helper’s mobile base in
response to applied forces of a human user on the other
end of a cooperatively carried load ( VIDEO 606 ). The
authors of [69.145] also described a lifting controller
employing a pair of cascaded second-order virtual ad-
mittance controllers. Due to the raising/lowering of
a cooperatively carried load the applied torques on
an admittance-controlled, high-stiffness wrist generate
a wrist deflection that translated (via a fixed gain)
into a virtual vertical force. This force raised or low-
ered the robot end effector via a second admittance
controller. In [69.142], an admittance controller was
presented that was tuned for human preference, which
is typically slightly underdamped. In [69.147], an ad-
mittance strategy was used to translate user force input
into robot steering commands within a constrained
trajectory.

Ideally, in cooperative manipulation, robotic and
human partners will naturally take turns with leading
and following roles depending on the state of a shared
task. A switching model for haptically linked human–
robot pairs that allows the robot to continuously vary its
behavior from completely following to completely lead-
ing was introduced in [69.16]. In [69.148], the authors
presented a mathematical treatment of the cooperative
load manipulation problem to allow one or more robots
to carry a load with a human user along a desired trajec-
tory. They also incorporated variable leading behavior
in the robots, enabling them to just steer the load (fol-
lowing) or completely control the load’s axial motion
(leading).

More recently, Evrard’s homotopy approach was
applied to load lifting, enabling the robot assistant to
vary its behavior between leading and following based
on its confidence in its predictions of the human user’s

Fig. 69.19 Collaborative lifting experiment with a long
object (after [69.142])
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intentions [69.15] ( VIDEO 617 ). These are monitored
through the kinematics of the shared load. Recently,
an admittance control law that guarantees the stability
of the robot during constrained motion and also pro-
vides a quite intuitive human interaction was designed
in [69.149]. The admittance law uses the time deriva-
tive of the contact force between the human and the
robot to estimate human intent and an online estimate
of the interaction stiffness resulting in very accurate
shared-control of the robot system. In [69.150], the au-
thors developed and user tested an interactive controller

for a collaborative carrying task, utilizing a strategy to
model effort sharing between the robot and the user.
A generalized schematic for admittance-based collabo-
rative task control is depicted in Fig. 69.20. On the mo-
tion planning side, minimum jerk trajectories [69.151]
have been used to generate robot trajectories that are
well matched to the motion of the human partner, and
require the human to use less energy in the interaction,
for example, [69.152]. Results from [69.153] indicate
that a simpler quintic trajectory was also suitable for
this purpose.

69.5 Motion Planning for Human Environments
The definition and quantification of injury, pain, or gen-
eral risk are essential to express what safe behavior
really means. The according insights can also be ap-
plied to generate safer robot motions such that injury
and risk prevention are explicitly taken into account at
this level. Two main branches of motion planning algo-
rithms for danger reduction were developed, which are
described hereafter.

69.5.1 Biomechanically Safe
Motion Planning

As mentioned in the beginning of the chapter, hu-
man collision safety has to be ensured from an injury
biomechanics perspective. Safety could, for example,
be defined as ensuring that only mild contusions may
occur in worst case scenarios. The natural question that
arises is now how to formally respect such a metric,
that is, how should a robot be controlled so that an un-
foreseen contact remains subcritical according to the
underlying injury biomechanics or pain data. For this
the authors of [69.25] gave the schema, termed safe
motion unit (SMU), to link basic data to intrinsically
safe robot velocity. The basic idea is to represent any
data or general insight in a (possibly purely data driven)
functional relation, linking impact properties to human

injury or pain. With this, it is possible to calculate the
instantaneous safe robot velocity given the robot’s in-
ertial properties, surface curvature, and possible human
body parts it might collide with

.mass; velocity; geometry; body part/

! observed injury/pain : (69.29)

For the injury/pain metric, multiple international clas-
sifications exist from which one may choose from.
In [69.25], for example, the AO-classification was used.
Thereafter, a careful set of experiments, or if possible
simulations, can be generated to deduce the relation
of interest. Each experiment should be designed such
that the impacting mass, its velocity, and curvature are
known in addition to any supplementary sensory read-
ings of interest. Furthermore, the observed, measured,
or calculated injury and/or pain level of the involved
body part has to be quantified according to the se-
lected scale. To restrict the amount of experiments to
a feasible number, the impactor geometry is assumed
to be composed of different basic geometric primitives
(spheres, cuboids, corners). Thus, a finite set of so-
called safety curves can be constructed, which represent
fitted threshold curves for a given injury indicator in
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the mass–velocity space parameterized by the body part
(Fig. 69.21).

This idea can now be applied to a robot for safe ve-
locity generation (Fig. 69.22). The concept is to scale
any desired velocity command Pqd by ˛ to a biomechan-

Transformations, dynamics & Jacobians

Interaction zones

Effective masses

SMU algorithm

Dynamic/kinematic parameters,  
incl. end-effector & loadparameters

Environment model
Robot model, incl. all POIs 

{mPOI (q)}

q, qd

Ti(q), Ji(q), M(q)

{POI}

qd = αqd
*

Fig. 69.22 Pipeline for
creating biomechanically safe
velocities based on the SMU
algorithm (after [69.25])

ically safe value Pq#
d . The scalar ˛ is computed from

evaluating the instantaneous robot inertial and local sur-
face properties with respect to their injury potential.
For this, the effective mass mPOI in the respective u-
directions of the relevant points of interest (POIs) are
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evaluated via (69.7). Each POI is associated with a sur-
face geometry primitive that is then used to link the
respective POI to some underlying biomechanical in-
jury, pain, or risk safety curve.

69.5.2 Risk-Metric-Based Motion Planning

As discussed in Sect. 69.4.3, there are numerous tech-
niques for detecting impacts or potential collisions
during pHRI. Collisionmonitoringmethods can be used
to ensure that forces and torques, or more simply the en-
ergy, of the robot system are limited during a collision
event. To ensure safe and human-friendly interaction in
unstructured environments, additional safety measures,
utilizing system control, and planning are required.

Since physical interaction itself is a collision, a key
problem of human-safe planning and control methods
is to identify when human safety is actually threatened.
In [69.155], a danger evaluation method was developed
using the potential impact force as an evaluation mea-
sure. In this work, several danger indices were proposed
based on the design properties of the robot. This dan-
ger index can be defined as a product of factors which
affect the potential impact force between the robot and
the human, such as distance, relative velocity, robot iner-
tia, and robot stiffness. The authors applied this index as
an objective function for improved mechanical design,
control, and motion planning. A danger index based
on estimated impact forces for a potential collision be-
tween a robot and a human was computed in [69.156]
and used as an input to a real-time trajectory generation
system, which balances the goal seeking with potential
danger. In [69.154], the same authors combined their
system with a vision based and physiological monitor-

Robot
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control Classical

control

Command
interpreter

User
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monitoring

User intent
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Trajectory
planner
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control

Recovery
evaluator
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Fig. 69.23 Schematic of motion planning system with user intent and safety monitoring input (after [69.154])

ing system, which allows the robot to respond to the
user’s real-time position and attentiveness. During the
interaction, the user is monitored to asses his level of ap-
proval of the robot’s actions while the trajectory planner
monitors safety factors, such as robot velocity and user
intent. Finally, the safety controlmodule provides a real-
time response to short-term horizon factors evaluated by
a safety measure estimation module (Fig. 69.23).

For mobile service robots, the authors of [69.157]
proposed a collision avoidance controller based on es-
timates of user behavior, using a social force model
to determine whether the user intends to avoid the
collision or not so that the robot can respond accord-
ingly. In [69.158], the authors introduced a method
using so-called kinetostatic danger fields as a metric
for the danger which the current posture and velocity
of a robot pose to objects in its environment. The work
presented in [69.122] shows an algorithm which maxi-
mizes the productivity of an industrial robotic manipu-
lator while guaranteeing a safe human–robot distance.
In addition to the relative human–robot distance, it takes
also dynamic and control characteristics into account.
In [69.159], the authors proposed a method based on an
intuitive physical interpretation, namely, an impedance-
like second-order motion generation. It is designed to
provide safe motion in complex environments, taking
into account both proximity to objects, and external
forces. A method that achieves collision avoidance for
a redundant robot while permitting the end-effector task
to continue is presented in [69.160]. Using data from
a 3-D-RGB-D camera, this method is purely based on
computations of distances between the robot body and
dynamic obstacles in the workspace (e.g., the user) that
are processed through a risk function to adjust the joint
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Fig. 69.24 Human-aware motion planner of Laboratoire
d’analyse et d’architectures des systèmes (LAAS) (af-
ter [69.161]; courtesy of Rachid Alami)

velocities. The motion task of the end effector is modi-
fied by an artificial potential field-type method.

69.5.3 Human-Aware Motion Planning

Applying and extending classical motion planning tech-
niques to the problem of human-robot interaction was
originally done in [69.161]. The authors developed
a human aware mobile robot motion planner, which
incorporates humans accessibility, their vision field,
and their preferences in terms of relative human–robot
placement (Fig. 69.24). Human dynamics were inte-
grated into the algorithm.

Extensions of the original work toward a motion
planner for pHRI scenarios were elaborated in [69.162].
Therein, certain constraints, such as distance, visibil-
ity, and comfort are taken into account to generate safer
motions and were demonstrated within a handover sce-
nario. The algorithm has been extended to cluttered
environments in [69.163], where a randomized cost-
based exploration method provides an initial path that
is relevant with respect to pHRI and workspace con-
straints.

69.6 Interaction Planning
In order to profit from the collaboration of human and
robot by combining the flexibility, knowledge and sen-
sory skills of a human with the efficiency, strength,
endurance, and accuracy of a robot, according inter-
action planners need to be designed to plan their joint
actions for a common goal. In the interaction planning
domain, the central question is how to plan robot human
joint actions and reactions in a certain interaction pro-
cess, involving also unexpected environmental changes,
one of the most basic ones being the human entering
the robot’s workspace. The definition of the interaction
planning problem and the integration of reflex reac-
tion schemes that potentially lead to an abrupt deviation
from nominal course have to be elaborated. On an ar-
chitectural level, the incorporation of reactivity has to
be systematically represented.

69.6.1 Collaborative Action Planning

Approaches to subproblems of the full interaction
planning problem were addressed in the literature.
In [69.164], for example, the system SHARY for
human-aware task planning was introduced. It produces
social plans of a task by implementing communication
schemes to negotiate the task solution with the human
partner.

In [69.165], dynamic neural fields (DNFs) were
used to build a decision-making system for interac-

tion in cooperative human–robot tasks. The main idea
is to let the robot imitate human behavior in order
to make the cooperation between robot and human
appear rather intuitive. A structural overview of the
system is depicted in Fig. 69.25. A vision system ob-
serves the scenery and recognizes task-related objects
and gestures of the human coactor. Object positions
are stored in the object memory layer. The action ob-
servation layer decides which type of known action
was executed by the coactor. The expected outcome
of this action is then simulated by the action simula-
tion layer and thereafter passed to the intention layer.
Here, the intention of the coactor is determined. The
knowledge about the coactor’s intention and the ex-
pected outcome of his actions is used by the common
subgoal layer. It contains prior knowledge about the
task structure and the subgoals to be achieved for task
completion. The common subgoal layer is responsi-
ble for enabling actions that lead to the fulfillment
of a currently achievable subtask only. Based on the
information coming from the intention layer and the
object memory layer, the action execution layer de-
cides to perform an action, which supports the human
in the intended subtask or leads to the completion of
an independent subtask and does not interfere with the
current human intention. Each layer of the system is
formalized by one or more DNFs. The activity ui.x; t/
at time t of a neuron x is described by the differential
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Fig. 69.25 Structural overview of the decision-making system from (after [69.165]; courtesy of Estella Bicho)

equation

%i
•ui.x; t/
•t

D $ui.x; t/C Si.x; t/

C
Z

wi.x$ x0/fi.ui.x0; t//dx0$ hi ;

(69.30)

where %i > 0 and hi > 0 denote the timescale and the
resting level of the field dynamics, respectively. Si is
the summed input to a local population. The output
function fi is chosen to be a sigmoid function and
the interaction strength wi.x$ x0/ is a Gaussian curve,
which depends only on the distance between x and x0
(Fig. 69.26).

In [69.130], a mimetic communication model for
pHRI is introduced, where the according motion prim-
itives are taught by human demonstration via marker
control. These are subsequently encoded into hidden
Markov models (HMMs) and allow the robot to exe-
cute them and even to recognize the motion primitives
executed by the human partner. Based on the motion
primitives, interaction primitives are then learned as
chains of actions and reactions. The flow of interac-
tion primitive learning is depicted in Fig. 69.27a. First,
the robot executes a motion primitive, followed by ob-

serving the human’s respective reaction in order to
learn the correct interaction pattern sequence. After this
step, the motion primitives are updated and the pro-
cess is repeated. The underlying scheme of interaction
is shown in Fig. 69.27b. The learned motion primi-
tives are encoded as continuous HMMs (CHMMs) and
form the middle layer of the system. They are then
used to recognize the motion primitive executed by

0

1

0,5

0 u0 u x

w(∆x)f (u)

a) b)

winhib

Fig. 69.26 (a) Nonlinear threshold output function that maps activ-
ity to a sigmoidal with threshold u0. (b) Synaptic weight function
for modeling the interaction strength between any two neurons x
and x0 in (69.30) (after [69.165]; courtesy of Estella Bicho)
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Fig. 69.27 (a) Learning of interaction primitives. (b) Scheme of interaction. (c) Adaption of robot motion via virtual spring
(after [69.130]; courtesy of Dongheui Lee)

the human and to generate the motion of the robot
according to the interaction primitives encoded as dis-
crete HMMs (DHMMs) at the top. The robot motion
(more precisely its behavior in the context of the au-
thors’ work) may then be modified to adapt to human
motion in the real world (expressed by the thin hori-
zontal arrow). The bold horizontal arrow represents the
assumed adaption of the human to the robot behav-
ior. The adaptation strategy of the robot movement is
depicted in Fig. 69.27c. For this, an impedance con-
troller is used in combination with a virtual spring
connected to the robot hand to attract the device into
the correct position. Figure 69.28 depicts an applica-
tion of the interaction scheme, where the robot high-
or low-fives a human coactor with one or two hands,
respectively.

69.6.2 Interaction Planning Problem

In order to formalize the interaction planning problem,
one needs to be able to describe the entire scenario,
the system state of the robot, the state of the human(s)
(possibly including future behavior prediction of both),
the environment state including all relevant objects and
the overall abstract task state. This information about
the world state comprises the concept of an interaction

Fig. 69.28 pHRI using the mimetic communication model (after [69.130]; VIDEO 625 ; courtesy of Dongheui Lee)

world, which builds the basis for formulating the gen-
eral interaction planning problem.

De!nitions
The set of world states WS is defined as

WSD RS%HSn %OBSm %TS ; (69.31)

where RS;HS;OBS;TS denote the set of the robot
states, n humans, m obstacles, and an overall task state,
respectively.

The set of robot states

RSD S%RAn % IR (69.32)

contains information about the internal state s 2 S of
the robot, the robot awareness ra 2 RA, and the inter-
action state ir 2 IR. The interaction state of the robot
may, for example, take the values autonomous, collab-
orative, or cooperative. The robot awareness indicates
its ability to predict human actions. The set of internal
states SD Sac % Sb % Sp contains information about the
set of actions carried out by the robot Sac. Furthermore,
the behavior set Sb, which includes, for example, con-
troller choices and respective parameterizations, reflex
reactions, and type or parameterizations of trajectory
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planners. Such a reflex reaction which can be thought
of as an analogy to human reflexes, intends to bring
the robot to a safe state or even a reflex cascade R
(Sect. 69.6.3). Finally, the physical state sp 2 Sp con-
tains, for example, the robot’s instantaneous position,
velocity, and momentum.

The set of human states

HSD PSH%PA%HA% IH%D (69.33)

combines the sets of physical state PSH (position,
velocity, etc.), personal attributes PA (fitness, age, ex-
perience, etc. ), human awarenessHA (the ability of the
human to predict the robots actions), interaction states
of the human IH (for example, waiting for robot, work
with robot or work without robot), and the distances D
between human and robot. In its most simple nontriv-
ial case, D could, for example, consist of the elements
in workspace, in perception, out of perception, and lost
perception.

The set of task states

TSD A%TC% IS (69.34)

contains A, TC, IS that denote the sets of possible ac-
tions, task criticality, and expected interaction between
human and robot, respectively. The task criticality spec-
ifies the effect of potential task failure on human safety.
A task consists of the meaningful composition of ac-
tions and/or more complex skills such as grasp object
or simply move to pose according to a particular cre-
ation process.

The Interaction Planning Problem
The interaction planning problem then denotes the
problem of selecting a suitable, and if possible opti-
mal, robot action and associated behavior in every time
step based on the information contained in the world
state, the history of the process HIS, and available (dy-
namic) knowledge stored in a knowledge base KB (for
example, safety knowledge, object properties, world
grounding rules, . . . ). Formally, this can be expressed
by the select action mapping

sa WWS%HIS%KB! Sac % Sb : (69.35)

Optimality could, for example, be expressed in the
following reinforcement learning sense, where the se-
lected behavior shall lead to a maximum reward. This
is obtained as follows:

1. A task evaluator evaluates the suitability of a partic-
ular action/behavior for fulfilling the desired task.

2. A safety evaluator evaluates the overall safety of
the situation by taking into account different biome-
chanical injury criteria, the expected interaction

between human and robot, human–robot–related
geometric quantities, such as minimal distance, as
well as the task criticality.

3. Finally, additional rewards may be given by the hu-
man in order to capture human-friendly behavior.

4. The overall reward is then a suitable combination of
the basic rewards.

69.6.3 Robot Re-exes

Human reflexes are involuntary reactive body move-
ments in response to a perceived input, the so-called
stimulus, that is, one does not even have to think about
what to do. In humans, reflexes aim for body protec-
tion. Based on built-in heuristics, they automatically
protect the human body from injury. However, the exact
separation in terms of hybrid system-like theory is not
yet clear. Thus, the line between discrete reflex states
and according systemic responses on both electrical and
mechanical levels is somewhat blurred. In robotics, on
the other hand, it is possible to separate these levels and
extend the concept of basic nominal robot actions by
reflex reactions [69.9, 86, 140]. These concepts system-
atically incorporate the possibilities one gains from the
already described collision detection and reflex reaction
schemes (Sect. 69.4.3). Other work in similar directions
for developing human-like withdrawal reflexes can be
found in [69.166].

In contrast to the classical planning and execution
pipeline, the activation of reflexes that are able to over-
ride the nominal task plan due to environmental or
internal conditions that do not comply with nominal
task behavior have to be considered. In contrast to hu-
mans, these reflexes do not necessarily have to be fixed
(or slowly time-varying over learning cycles). On the
contrary, they may be tailored to every nominal ac-
tion such that local context dependency (in particular
instantaneous sensory input) may be taken into ac-
count. After instantaneous reactions are executed, the
main problem is to decide what to do next. Either lo-
cal re-entry into the previous plan or entire re-planning
have to be executed. Figure 69.29 depicts the over-
all concept also in the context of task and interaction
planning.

Formally, a robot reflex is associated with a suit-
able activation signal. Typically, this represents either
the indication of a certain stimulus or a fault. Stimuli are
general perception inputs, whereas faults are detected
either by processed stimuli (observation of external
torques, proximity information, etc.) or general system
malfunctions as, e.g., communication collapse or run-
time violations. Even rather complex reflex patterns can
be activated that may be represented as directed reflex
graphs, i. e., a decisional component in the inner most
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Fig. 69.29 Conceptual sketch of robot reflexes; f1 and f2 indicate the update rates, or alternatively the system bandwith
of the nominal planning and execution as well as the reflex reaction level. Typically, the former acts at a much lower
frequency than the latter one (after [69.86, 140])

control loop of the system. A still relatively open re-
search problem is how to resolve potential failures after
reflexes were triggered by planning suitable re-entering
and continuation of the task.

69.6.4 Reactive Control Architecture

Obviously, the diverse methods and complex require-
ments in the pHRI domain and more specifically from
interaction control, reflex planning, human-centered
motion planning, and interaction planning make new
architectural concepts necessary. The central require-
ments to an according control architecture become
rather different from the classical ones (Chap. 12) due
to the demands for very responsive behavior not only
on control but also on planning level. Figure 69.30
depicts such a reactive control framework [69.167]
( VIDEO 616 ). One of the main questions to address
is how to adapt dynamically, safe, and task consistent,
while keeping the overall plan and the respective con-
text in mind. The control framework is composed of
three layers of abstraction operating at different time
scales:

1. On the highest level of abstraction a global task
planning module builds global task plans that con-
tain temporo-logical concatenations of robot skills,
which are derived from any suitable task planning
language. Typically, this module runs either offline,
in particular when building an entire nominal task
plan that contains interaction schemata, or at very
slow update rates of several seconds or minutes, de-
pending on the complexity and novelty of the respec-
tive task. Skills are topologically invariant capabil-
ity structures, which instantiations can be modified
in terms of skill parameter vectors. The most basic
skill is the atomic robot action that represents the
formal interface to the robot real-time control core
and mechatronics. More complex skills can, e.g., be
grasp an object or hand over an object. Each skill
itself is aware of the current task state and which
atomic action is currently being executed. This in-
formation is then sent to the dynamic planning layer.

2. The second layer of abstraction, the dynamic plan-
ning level is capable of executing and/or modifying
plans dynamically, which means that it shall run at
least in the range of " 1$10Hz. It is responsible
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Fig. 69.30 Reactive and human-friendly control frame-
work for acting in partially known environments and
interaction I

for selecting the best action under the premise of the
current task state, human state and behavior, as well
as the environmental state. In a learning and adap-
tion unit the global task knowledge is translated
into the respective dynamic planning domain lan-
guage, i. e., global knowledge and plans are encoded
into a dynamic level such that dynamic adaptation
can make use of global context and the respective
mission. The according reactive planning unit is
then able to (re-)plan the robot’s desired nominal
actions such that safe, yet task consistent actions,
are executed if possible. In particular, instantaneous
perception may cause alterations of the original
global plans. A major task on this abstraction level
is to change the preplanned course of action safely
and task consistently. However, finding its way back
into the task is at least equally challenging and re-
quires careful treatment (re-entry planning).

3. The lowest architectural layer is the low-level (real-
time) control layer. Typically, this is subdivided into
multiple hierarchical layers, involving also the re-
flex machine (Fig. 69.29). However, for sake of
clarity, we consider it to be a single consistent
representation that is accessible via a desired ac-
tion/behavior complex .ad; bd/ that is sent to the
system for execution. As the desired behavior may
alter due to reflex behaviors in case of acciden-
tal events such as unforeseen collisions, the control
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layer feeds back the currently active action/behavior
pair .a;b/, such that the dynamic planning layer is
able to react accordingly.

Fundamental to the aforementioned architecture is
the capacity to observe human actions on various lev-
els of abstraction. In this sense, a human observer that
gathers all relevant information and knowledge about
human agents is essential. In particular, it provides
human-related information that can be of further use.

69.7 Conclusions and Challenges
pHRI has become a central discipline in robotics over
the last decade. This is due to the significant progress
made in the fields of mechatronics, interaction control,
motion planning, and 3-D sensing toward highly inte-
grated and sensorized lightweight systems that are able
to physically interact with their surrounding. In direct
consequence the learning, planning, and execution of
safe and legible interactions has become a widely taken
research direction. Clearly, the rise of a new generation
of commercial robots capable of physical interaction
has also contributed to the large interest in the field.
The robotics research and industrial community expects
these systems to open up new markets and to push
robotics further toward domestic applications that may
also involve even more complex and possibly mobile
manipulators.

However, despite this recent success in research
and also in the commercialization of assistance robots,
there are many open research questions that need to
be tackled before this class of systems can become
a commodity not only in early adopter industrial appli-
cations but also on a broader scale: Continuing the road
toward safe robotics by tightly coupling injury biome-
chanics and safe interaction control with lightweight
and compliant robot design will further push the bound-
aries and build the foundation of pHRI. On the other
hand, learning interaction controllers and planning in-
tuitive and safe interactions are still very young fields,
however, they are the key to solving the long-term
physical interaction problem. Furthermore, the current
application of assistance robots in real-world problems
will bring further novel research questions. The recent
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use of these robots clearly underlines that the pro-
gramming models and paradigms of interaction and
soft manipulation are very different from classical in-
dustrial robot programming. In particular, they go be-

yond simple pick and place models toward models of
force based programming, an interesting research ques-
tion currently being investigated by various researchers
worldwide.
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