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Real-Time Computation of Distance to Dynamic
Obstacles With Multiple Depth Sensors

Flacco Fabrizio and Alessandro De Luca

Abstract—We present an efficient method to evaluate distances
between dynamic obstacles and a number of points of interests
(e.g., placed on the links of a robot) when using multiple depth
cameras. A depth-space oriented discretization of the Cartesian
space is introduced that represents at best the workspace mon-
itored by a depth camera, including occluded points. A depth
grid map can be initialized off line from the arrangement of the
multiple depth cameras, and its peculiar search characteristics
allows fusing on line the information given by the multiple sen-
sors in a very simple and fast way. The real-time performance of
the proposed approach is shown by means of collision avoidance
experiments where two Kinect sensors monitor a human-robot
coexistence task.

Index Terms—RGB-D Perception, Distance Computation,
Sensor Fusion, Collision Avoidance, Motion Control of
Manipulators, Physical Human-Robot Interaction.

I. INTRODUCTION

HE most common approach for an artificial system to per-

ceive the real world is by vision [1], one goal being to let
a robot see the environment in the same way (e.g., stereo or in
motion) as we do. Apart from perception capabilities, humans
have also a huge information background that allows recog-
nizing objects and estimating qualitatively spatial information,
such as regions of free space or relative distances. Computer
vision methods are being combined with machine learning tech-
niques, using large information databases (say, from Google) to
recognize objects and reconstructing the environment for dif-
ferent purposes and goals. Unfortunately, with the available
computing power of standard robotic systems, most of these
approaches are not suitable for hard real-time applications that
require fast and reliable detection of dynamic objects, such as
in human-robot collision avoidance.

Recently, there has been a spread in the use of depth
(RGB-D) camera sensors, like the Microsoft Kinect [2], as a
mean to provide 3D information about the environment in a
compact form and at low cost. In these devices, each pixel
in the 2D sensor image is associated to the shortest distance
between the camera and an object point along the projection
ray through that pixel, namely a depth information. However,
points along the same ray that are behind the objects (i.e., with
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Fig. 1. Illustration of the gray area generated by a single depth sensor (with a
human, a robot, and a table in the environment).

a greater depth) will remain unobserved, and may belong to
the free space or not. At a given time, the collection of all these
Cartesian points related to a view by the RGB-D sensor is called
gray area (Fig. 1).

To reduce the gray area, multiple views of the same scene
can be acquired [3]. By combining the depth information from
different points of view it is possible to decrease the amount
of unobserved space. In some applications one can use a single
camera that moves around the scene (as for object reconstruc-
tion [4]), while multiple (depth) cameras are simultaneously
needed in other cases, in order to monitor a dynamic environ-
ment. In general, the latter situation includes all applications
with moving objects (e.g., robots, humans).

When dealing with multiple dynamic obstacles, a basic
requirement in applications using RGB-D sensors is the on-line
estimation of distances between the obstacles and some control
points (or points of interest), where a control point may either
belong to a real object (e.g., attached to a robot link) or be
a virtual one. Interested applications include: augmented
reality, where simulated objects have to interact with a real
environment [5]; virtual fixtures in tele-manipulation, where
objects and shapes should generate force feedback to the
operator via a haptic device [6]; collision avoidance of a robot
moving in a dynamic environment cluttered with obstacles [7];
object recognition, when a mobile robot has to be distinguished
from other moving objects [8]; simultaneous localization and
mapping (SLAM), where a map of the environment is built
and used to localize the pose of a moving camera [9]; and
human-robot collaboration, when a robot and a human have
to share a common workspace, possibly getting in physical
contact and exchanging forces [10].

A most desirable characteristic of methods that evaluate
time-varying distances is real-time performance. In fact, too
slow updates of estimated distances could easily impair the
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correct behavior of an application, e.g., obstacles will not be
avoided or virtual fixtures badly simulated. In this respect, a
common misconception is to consider as the upper bound for
the rate of distance evaluation simply the camera frame rate
(usually, 30 Hz). However, in the case of dynamic agents, con-
trol points may continue to move (in a commanded way) during
the time interval between two camera frame acquisitions, while
scene information is not updated. Thus, actual distances may
still change faster than the video rate and their evaluation should
be updated as fast as possible.

The actual bottleneck in the distance evaluation process
based on multiple depth cameras is not in the distance compu-
tation itself, which usually requires few simple equations, but is
the on-line merging of data coming from all sensors in a com-
mon representation, which allows then computing distances
easily. One of the favorite approaches for estimating distances
from depth sensor data uses the cloud of points that are obtained
by projecting the depth image in the Cartesian space [11], and
often relies on the availability of open libraries such as the Point
Cloud Library (PCL) [12], possibly speeded up using parallel
processing on GPU [13]. While this approach suits the natural
reasoning about distances in Cartesian space, it does not fully
exploit the information associated to pixels in RGB-D sensors.
For instance, occluded points in space, which should be con-
sidered part of an obstacle, are not taken into account directly,
requiring an extra computational load.

In [14], the point cloud information coming from multiple
depth cameras is clustered in objects, which are represented
as convex hulls; then, the convex hull representation is used
to compute distances between the robot and the obstacles. As
an alternative, an octree representation [15] is used in [16]. The
main drawback of these methods is the time wasted in order to
represent (dynamic) obstacles in the Cartesian space, whereas
all information needed for computing distances is already avail-
able in the so-called depth space of the sensors. Moreover, the
geometry about rays of projection associated to each pixel is
lost in this way, an information that can be used instead to speed
up the sensor integration process. A different idea is explored
n [17], where information merged from multiple Kinect sen-
sors is used to improve the tracking of a human and then to
compute distances from the robot to a bubble model represen-
tation of the human. Good real-time performance is achieved,
but the method does not evaluate distances to obstacles other
than the human. For instance, collision with an object carried
by the human will not be considered.

We have presented in [7], and more recently improved in
[18], a different approach that evaluates point-to-object dis-
tances working in the depth space of the sensor. This results in a
large improvement of the overall computation time. Moreover,
the method allows a correct consideration of the pixel frustum
in the Cartesian space, i.e., of the portion of a pyramid left after
its top part has been cut off by a (skewed) plane. Despite of its
merits, a straightforward extension to multiple cameras is not
possible because every camera has its own depth space.

In this letter, while inheriting from [7] the idea of using
directly the depth space, we propose a new method that allows
an efficient data fusion from multiple depth sensors with real-
time performance. The main ingredients are: i) the introduction

of a discretization of the Cartesian space that we call Depth
grid; ii) a method to compute the shortest distance between an
occupied cell of the depth grid and a control point; iii) an off-
line procedure that creates the depth grid map relations between
the different cameras; iv) a fast on-line method to check whether
a cell in the grid is free or not, taking into account the data
from all depth cameras. The basic assumptions under which the
proposed method is applied are:

1) atleast one camera monitors the whole space of interest;

2) the relative pose between all cameras does not change

over time.

The letter is organized as follows. In Sec. II, the math that
rules a depth space is recalled. The depth grid is introduced in
Sec. III, while in Sec. IV we show how to compute the distance
between a cell of this grid and a Cartesian point. Sections V
and VI present, respectively, the off-line phase needed to build
a map based on the depth grid and the on-line phase where the
depth grid map is used for computing distances. In Sec. VII, we
consider a human-robot collision avoidance problem as a pos-
sible application of the presented method. Experimental results
using a KUKA LWR-IV robot are reported in Sec. VIII (and in
the accompanying video).

II. DEPTH SPACE

A RGB-D sensor provides a 2D color image and a depth
image. The depth image represents the perceived environment
in the depth space, a non-homogeneous 2.5-dimensional space
where two elements are the coordinates of the projection of an
observed Cartesian point on the sensor plane and the third ele-
ment is the depth of this point, namely its distance to the sensor
plane along a ray. The depth sensor is modeled as a pin-hole
camera with two sets of parameters: the intrinsic parameters
(the focal length f, the size s, and s, of a pixel, the coordi-
nates c; and c, of the focal axis in the image plane) model the
projection of a Cartesian point on the image plane, while the
extrinsic parameters (a rotation matrix R and a translation vec-
tor t) specify the pose of the sensor frame Cs with respect to
a reference (world) frame C... The representation in the sensor

frame of a Cartesian point ©» P = (“x ©ry € 2)T expressed
in the reference frame is
CGp=(%r%y )T =R P+t (1)

while its projection PP = (p, p, dp)” in the depth space is
given by

c c,
sxfs syfs
pzzciz+0m pyziy

= o dy = %2 (2)

+cy7

In the reverse direction, a point in the depth space is mapped in

the Cartesian (sensor) space as

(py — cy)dp
Isy ’

Cop = P2 )y,

I

Cop = dp.

3)

y:

Starting from the depth image of the environment, when a point
sensed in the depth space is mapped back to the Cartesian space
it represents only the closest point of an object to the image
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(a) b)

Fig. 2. Workspace discretization with Cartesian grid (a) or Depth grid (b).

plane along the projection ray. However, another simple infor-
mation is coded in the depth space, namely that all Cartesian
points generated by (3) with depth greater than d,, compose the
uncertain gray area (see Fig. 1). Without extra information, this
gray area should be considered (in a conservative way) as part
of the perceived object.

Indeed, the image plane of the depth sensor is discretized in
pixels, and each pixel contains a single depth information. For a
given point P P = (p, py d,)T in the depth space, only its pixel
discretization P = (p,. p, d,)T will be considered, with the
truncation p; = |p; |, i = x,y.

III. DEPTH GRID

Data coming from multiple depth sensors should be merged
in a common space, in order to infer if a 3D region is free or not.
A natural choice is the Cartesian space, which is common to all
cameras, and the most popular approach performs a workspace
discretization using a Cartesian grid (also referred to as voxel
grid) of cells with fixed size (Fig. 2a). This discretization is the
one used, e.g., in [16], [19], where an octree provides a hier-
archical way to represent the grid with different resolutions.
Then, the information coming from the different depth cam-
eras is fused to distinguish free from occupied cells. Despite
its simple structure, the main drawback of this Cartesian grid
is that it is not ‘pixel oriented’, namely the pixel discretization
of the depth image is not used. For instance, many pixels may
be represented in the same cell, resulting in a loss of resolu-
tion. Moreover, the information contained in the depth along
the ray of projection of a pixel is not exploited. This is particu-
larly important, because knowledge of the Cartesian region that
belongs to the same pixel can speed up the process.

Based on these considerations we introduce the Depth grid,
see Fig. 2b. We have assumed that at least one of the depth cam-
era covers the whole space we are interested to monitor (space
of interest). We refer to this sensor as the principal (or mas-
ter) camera. All other cameras will monitor in general only a
region of the space of interest (and some extra space that will
be discarded). Clearly, each camera will contribute only for that
region.

The reference frame of the depth grid is set on the frame of
the principal camera (we use a prime to denote data in the prin-
cipal depth space, e.g., ” 'P). The shape of the depth grid is
ruled by the pin-hole model (2)-(3) of the principal camera. Just
as for the depth space, for a cell in the depth grid the first two
coordinates (g, Gy ) € N x N represent a pixel in the image
plane. Thus, the quantization is intrinsically given by the pixel
dimension. The third coordinate g4 € N is related to a depth d
by means of a suitable discretization function g; = r(d). The
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function r(d) may take into account that the depth sensor has
higher resolution for lower depths, varying then the depth quan-
tization linearly with the depth value. For the sake of simplicity,
we use here a fixed quantization Ad. Considering that the grid
starts from a minimum depth d,,,;,, (according to the workspace
to be monitored), we have

ga =r(d) = VdmmJ :

Ad “

The peculiar characteristics of this grid are that: i) all cells
belonging to the same ray of projection (associated to a pixel
of the principal camera) have the same first two coordinates;
ii) given an object point observed by the principal depth camera
D'Q = (6, 6, d,)", the coordinates of the associated cell in the
depth grid are straightforwardly (g, Gy §a) = (0 0y 7(do)).

IV. EVALUATION OF POINT-TO-CELL DISTANCE

The second needed ingredient is a method to compute the
shortest distance between a generic cell of the depth grid and a
control point. For this, we use the approach in [7], [18].

Consider the cell (6, 0, 04), with 64 = 7(d,), associated to
the object point O and the point of interest P, which is rep-
resented in the depth space as PP = (p, p, d,)T, using egs.
(1) and (2). In order to evaluate the Cartesian distance between
the obstacle point O and the point of interest P, we take into
account the pixel dimension by considering the edge of the cell
(04 0y) nearest to (py py):

6y =< 0, + 1 Py > 0y + 1
Pz otherwise,
Oy Py < 0y

Oy =< 0,+1 Dy > 0y +1 5)
Dy otherwise.

The depth covered by the cell spans from d; = d,in + 04 Ad
to dy = dynin + (04 + 1)Ad. The surface nearest to the point
P has depth

dq dp, < dy
éd ~ d2 dp > dg (6)
dp otherwise.

Thus, we assume 6, = d,, when the depth of the point of inter-
est is between dy and ds. This is not the nearest surface, but the
difference is negligible.

Finally, the distance D(P, O) is evaluated as

_(éx - Cx)éd - (px - Cﬂc)dp
Vg =
[z
. _(éy _cy)éd - (py _Cy) dp
v =
fsy

Vy Zéd — dp

D(P,0) ~Dp(PPPO) =\ /v2 +v2+v2. (T
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Fig. 3. Depth space distance evaluation from a cell of the depth grid to three
points of interest. Three possible cases are shown of points of interest whose
depth is within the depth spanned by the cell (P1), before the cell (Ps), or
beyond the cell (P3). The pixel dimension is taken into account, in order to
consider the real frustum associated to the pixel.

Fig. 4. Ilustration of the off-line mapping between cell (1 1 1) in the depth
grid and the additional depth camera D{1}

An illustrative example of distances between a cell of the depth
grid and three points of interest is shown in Fig. 3.

V. OFF-LINE PHASE: BUILDING THE DEPTH GRID MAP

The depth grid is built considering only the principal camera,
and maintains its useful properties only for this camera. Having
a depth grid for each camera is not a solution for merging infor-
mation from multiple cameras, since each grid would create a
different representation of the Cartesian space. The idea is to
use then the depth grid as a map between the depth space of the
principal camera and the depth spaces of the other cameras. In
this map, each cell contains a reference to depth pixels of other
cameras that monitor the same cell (i.e., part of the cell is pro-
jected in those pixels). In this phase, no specific assumption is
made on the presence of static or dynamic obstacles in the envi-
ronment, and no depth information from the sensors is used.
The only needed data are the intrinsic and extrinsic parameters
of the cameras.

Assume there are [ depth cameras, in addition to the
principal one. Each cell of the depth grid map has an
associated list of pixels, each pixel being represented by

D{k}]j pik}y . pik} pik}y _ pik} _
T

Dy dstm), where ( Dz, py) are

the pixel coordinates in the kth image plane where the cell is
projected, with & € {1,...,1}, and D{k}dstm,t is the minimum
depth of the cell in the kth camera frame. The latter information
is needed to infer whether camera k is seeing an object before
the cell, thus if the kth camera is assuming that the cell is part
of an object. An illustration of the mapping for a single depth
grid cell and an additional depth camera D!} is given in Fig. 4.

When the relative pose of the cameras remains constant (e.g.,
all cameras are stationary or are mounted on board of the
same vehicle), as we have assumed and as it is common in
many robotic applications, the depth grid map does not change.
Therefore, it can be computed completely off line. One can
consider this as a third phase of the calibration process of a
monitoring system, determining: i) intrinsic parameters; ii)
extrinsic parameters; and iii) depth grid map, i.e., the relation
between the depth spaces of the cameras.

Note that, in our framework, the issue about decay of reso-
lution and the associated larger uncertainty at higher depths are
not addressed for secondary cameras.

VI. ON-LINE PHASE: DISTANCE EVALUATION
USING THE DEPTH GRID MAP

During the execution of a task, we have a depth grid map ini-
tialized off line and a point of interest P (or many of them),
projected in the depth point of the principal camera P P=
(px py dp)T. We would like to evaluate on line the distance
of P to the obstacles in the environment, inferring informa-
tion from all depth cameras. At each time step', we use the last
available depth image of each camera.

Depending on the application, we may be interested in the
whole monitored space or wish to consider only a region close
to the point of interest. In the former case, all pixels of the prin-
cipal depth image have to be evaluated. In the latter, we consider
a Cartesian region of surveillance S, made by a cube of side 2p
centered in P, where the possible presence of obstacles should
be detected. The associated region of surveillance in the image
plane has its size specified by

dp—p dp —p
Thus, the distance evaluation should be applied to all pixels in
the depth image plane within the region of surveillance

Ts=p s Ys=0p ®)

xS ‘TS ys yS
X |dp = p,dp + p]. )

Only those pixels in the principal camera that belong to the
region of surveillance (9) will be evaluated. The choice of a
specific size for the region of surveillance is indeed a trade off
between computational burden and the need of monitoring a
larger region, e.g., in order to start a robot reaction earlier.

Consider a pixel (5, §,) of interest in the image plane of the
principal camera, and let d,, be the measured depth information
at this pixel. Different decisions are taken, depending on the
relative values of dy and d,,, the depth of the control point in the
principal camera. For illustration, in Fig. 5 we use a simplified
planar representation limited to row 5, of the image plane. All
cells of the depth grid associated to the pixel (5, ;) should be
taken into account in the distance evaluation. However, thanks
to the peculiar features of the depth grid, this will not be strictly
necessary.

Images are updated at a common frame rate for all cameras. As already

mentioned, distance to obstacles can and should be computed at a faster rate, in
order to consider also the possible motion of the point of interest.
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Fig. 5. Illustration of the depth grid associated to row 5, of the image plane.
Cells associated to the pixel (5, 5y ) are highlighted in bold blue.

Fig. 7. Distance evaluation when do, < dp.

The following situations should be considered:

i) If the observed obstacle and the related occluded points
are outside the region of surveillance, d, > d, + p, we
conclude, without using other cameras, that no obstacle
should be considered for these grid cells. The distance
evaluation continues to the next pixel.

ii) If the observed obstacle is in the region of surveillance
and d, > d,, (Fig. 6), we determine, again without using
other cameras, the smallest distance to the obstacle by
eqs. (5)—(7), with (6, 6,) = (55 §,) and 64 = d,.

iii) Finally, if d, < d,, information from the other cameras
is needed (Fig. 7). First, the nearest cell in the depth grid
(52 5y r(dp)) is considered, and the presence of an obsta-
cle has to be confirmed using the other cameras. If this
presence is not confirmed by other cameras, we proceed
checking other cells in both directions along the third
component (ray direction) in the grid, setting r(d,) +

Jod =T [&y) and j = <1, | x|, unil the
possible confirmation of the presence of an obstacle. If a
cell is confirmed to be part of an obstacle, egs. (5)—(7) are

used to compute the distance.
For the core step of confirming the presence of an obstacle in
a cell, a very simple procedure is used. Thanks to the informa-
tion stored in the depth grid map, we know in advance which
pixels of the other cameras monitor the current cell. Camera k
confirms the presence of an obstacle if the current depth mea-

(D{k}ﬁz D{k}ﬁy) associated to the cell

"y, . .
sure P d,, in the pixel
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Fig. 8. Small distances to a shadow obstacle are obtained when the human
moves between the camera (placed inside the circle in the top left picture) and
the robot, even when still far away from it. Evaluated distances from control
points on the robot links are represented by robot-to-human lines in the mon-
itor frame. Here and in the following Fig. 9, the larger image is a low-quality
magnification of the screen in the smaller image, which is presented to highlight
the camera view.

. {k} {r} . .
verifies P d, < P dgrare. The existence of an obstacle is

considered only if all involved cameras do confirm its presence.

While by using information from multiple sensors one
can decrease the amount of gray area, it is still not possi-
ble to remove in general the possibility of having occluded
points. Thus, a correct positioning of the cameras is crucial
[3]. However, we remark that our approach uses only a two-
dimensional scan, with (part of) the third dimension being
considered only when needed, contrary to the classical case
of Cartesian grids, where a three-dimensional scan is always
needed?.

As described in [18], depending on the specific application,
one could be interested in finding only the minimum distance,
in which case an even smarter scanning process is possible, or
in collecting distances generated by all obstacles. The second
approach is used in the following application example.

VII. APPLICATION EXAMPLE: ROBOT COLLISION
AVOIDANCE

Collision avoidance of a robot moving in a dynamic environ-
ment is one of the applications in which multiple depth sensors
are convenient. The use of our integration method preserves
real-time performance, while producing the usual benefits of
multiple cameras. In fact, in this application the presence of
gray (unobserved) areas typically result in undesired behaviors.
Without additional information, occluded points must be con-
sidered as part of an obstacle for safety reasons, especially when
the robot is sharing its workspace with humans. The drawback
of this conservative approach is that the robot avoids collisions
also with ‘shadows’ of obstacles.

Figure 8 shows an example of an extreme situation, with a
human moving far from a robot, but between the robot and a
single depth camera, in such a way that the generated gray area
falls close to the robot. With this partial information, the robot
would abandon its task so as to avoid a shadow obstacle which

’In the case of methods using octrees, the hierarchical structure of the
octree allows to simplify the search for occupied cells, but data insertion in
the structure requires (in principle) a complete three-dimensional scan.
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Fig. 9. In this screenshot of an experiment, the human hand is right behind the
robot and thus is not detected. As a result, a collision may occur.

Fig. 10. Distance evaluation when a robot part is present at depth d-.

Fig. 11. Points of view of the two depth cameras used in the experiments
(infrared images).

is in fact not there. A similar problem is caused by the pres-
ence of the robot in the scene. Obviously, the robot has to be
removed from the depth image captured by the camera, oth-
erwise it would try to avoid itself just as any other obstacle.
As a result, actual obstacles that are behind the robot (from a
single camera view) are not visible and will not be avoided (see
Fig. 9). Because of the critical real-time aspects of human-robot
interaction, the above two major problems were the main moti-
vations for extending our efficient depth-space based approach
for collision avoidance to the case of multiple depth sensors.

Since part of the image is being removed (to avoid a fictitious

robot self-collision), this should be taken into account during
the distance evaluation. With reference to the pixel example in
Sec. VI, a fourth case has to be considered:

iv) If the robot has been removed at depth d,., the only cer-
tain information from the principal camera is that there
are no obstacles up to a depth d,.. The possible pres-
ence of an obstacle behind the robot has to be verified
using the other cameras, checking only the grid cells with
third coordinates between r(d,) + 1 and r(d,) + ||
(Fig. 10).

While in some applications, e.g., in collision checking,

retrieving the information on distance to obstacles would be
sufficient, for collision avoidance we need to compute also the

Fig. 12. Thanks to the fusion of information coming from the two depth sen-
sors, the problem of a false detected obstacle when using a single camera shown
in Fig. 8 is solved. Here and in the following Fig. 13, the larger image is a low-
quality magnification of the screen in the smaller image, which is presented to
highlight the camera view.

Fig. 13. The second camera allows detecting obstacles that the principal
camera is not able to see, avoiding the dangerous situation of Fig. 9.

N | |
‘\\ ‘,\4\ h g N /

Fig. 14. Screenshots of depth maps of two Kinect cameras monitoring the same
space. Due to interference of infrared textures, the depth images display noise
effects(in the form of black spots) [top], which are reduced when one of the two
sensors is vibrating [bottom].

normalized direction from the control point to the nearest point
on the frustum. This unit vector is simply given by

T
V(PP O) = (e vy vz)” (10)
Dp(PP,PO)
When implementing a reactive control scheme for robot col-
lision avoidance, neither the minimum distance obstacle point
alone nor the mean of the distances to all detected obstacles
are convenient choices. In fact, using a reaction method based
on minimum distance could drive a robot control point toward
a second object, which would become then the nearest one
pushing thus the robot back toward the first object, with an
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Fig. 15. Collision avoidance experiment. Screenshots of robot and human during motion [top]. End-effector trajectory (in red) and evaluated distances (in blue
for the end-effector, in green for the other control points) [middle]. Evolution in time of the repulsive action applied to the end-effector [bottom-left] and of the

evaluated distances for the other 8 points on the robot body [bottom-right].

undesirable oscillating effect due to switchings. On the other
hand, the mean distance depends on the global topology of
obstacles, being affected by the ratio of the numbers of near
to far obstacles. This is also undesirable, since the presence of
a close object should always provide the same robot reaction,
no matter if other obstacles are near or far. Based on this qual-
itative analysis, we propose to use egs. (7) and (10) in a hybrid
method as in [7] with

Dhybrid(P) = Dmin(P) = Dgleig DD(DpaD O)<p
D

o ZDOGSD V(D‘PvD O)

N N

where [V is now the number of object points detected by the
multiple depth sensor system inside the surveillance area Sp.
Use of (11) allows the robot to react to the nearest object
in terms of intensity, while considering all objects in the
surveillance area for choosing the direction of reaction.

Vhybrid(P) = Vmean(P) P (11)

VIII. EXPERIMENTAL RESULTS

To illustrate the practical effectiveness and real-time perfor-
mance of the proposed method, we have run experiments on
a 7R KUKA LWR-IV robot. The LWR is controlled using
the Fast Research Interface (FRI), which allows commanding
desired joint positions at high frequency rates —500 Hz in our
experiments (7' = 2 ms). All techniques have been developed in
C++, on a Intel Core 17-2600 CPU 3.4GHz with 8 Gb of RAM.

Two Kinect cameras are used to monitor the robot workspace
from different points of view, as shown in Fig. 11, placed
at a relative distance of about 4 m. The image plane of
each sensor is composed by 640 x 480 pixels captured at
30 Hz. The robot workspace being monitored is [—1.5,1.5] x

[—1.5,1.5] x [-0.5,1.5] [m], with origin at the robot base.
The principal camera is the Kinect placed on the right, meet-
ing the robot workspace at a distance d,,;,, = 0.2882 m. With
Ad = 0.01 m as quantization, the resulting depth grid has
640 x 480 x 343 cells.

The performed experiments are fully reported in the accom-
panying video. We show first how the double sensor arrange-
ment, in combination with the proposed depth space fusion
method, solves both problems raised in Sec. VII. Figure 12
illustrates that when an obstacle (the human arm) is placed
between the principal camera and the robot being still far from
the robot, the second camera does not confirm the presence of
an obstacle —all the distance lines to the shadow obstacle that
were present in Fig. 8 have disappeared. Similarly, when the
principal camera is not able to see an obstacle that is hidden
by the robot, the processing of the depth data by the second
camera with the proposed method allows to detect the obstacle
(Fig. 13).

When multiple Kinect sensors are used to monitor the same
space, the structured infrared textures used by each device to
infer the depth of the objects overlap, making it harder to distin-
guish which infrared points belong to the correct texture. This
interference produces noise on the depth images, as shown in
the top part of Fig 14. To cope with this, we used the method by
[20] with a motor producing a small vibration in one of the sen-
sors. In this way, the vibrating Kinect continues to see correctly
its own texture (emitter and receiver move together), while the
other sensors are no longer affected by the infrared points of the
vibrating device that are seen just as unfocused lines (bottom
part of Fig. 14).

In the collision avoidance experiment, the robot executes a
continuous task by moving its end-effector at a nominal speed
of 40 cm/s through the six vertex points of an hexagon in the
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vertical plane. A human enters in the robot workspace and
carries objects around, getting very close to the robot and inter-
fering with its Cartesian or joint trajectories. Collisions are
avoided by reactive robot motions, while the end-effector task
resumes as soon as it becomes feasible again.

Using the two depth sensors, the proposed method is used
to evaluate on line the distances between 9 control points
(including the end-effector) placed along the robot body and
every static or dynamic obstacle in the workspace. Following
our method in [7], the evaluated distance between the robot
end-effector and the obstacles is used to generate a repulsive
velocity to avoid collision, while distances between the other
points of interest and the obstacles are used to generate and
impose virtual Cartesian constraints that the robot cannot vio-
late, exploiting also its redundant degrees of freedom. The
algorithm is able to aggregate the distance information from
multiple obstacle points, without any further assumption (e.g.,
on the number of obstacles or on human presence). The whole
algorithm is performed at around 300 Hz (ten times the cur-
rent sensor frame rate), a result that is currently beyond the
capability of other state-of-the-art methods. Figure 15 shows a
portion of this experiment. The high performance achieved with
the proposed approach for the safe and long-term coexistence of
human and robot can be appreciated better in the accompanying
video.

IX. CONCLUSIONS AND FUTURE WORK

A new method for distance evaluations in dynamic environ-
ments has been presented that fuses efficiently the information
of multiple depth cameras. Excellent real-time performance is
obtained by introducing in the monitored workspace a con-
venient depth grid, which can be initialized off line from the
arrangement of the multiple cameras and then easily searched
in the on-line phase of distance computation. The method has
been successfully tested using two depth sensors in human-
robot collision avoidance experiments, where both the robot
and the human were moving fast and the overall algorithm was
running every 3.3 ms. In view of the obtained linear growth of
computations with the number of cameras, more depth sensors
can be accommodated to cover complex environments crowded
with dynamic obstacles and agents.

Current work aims at removing the two basic assumptions
in Sec. I. When the workspace of interest is covered by multi-
ple cameras, and not every camera has part of its field of view
in common with a single master camera, an independent depth
grid map can be computed off line for each camera as if it were
the principal one. In the on-line phase, the current camera play-
ing the principal role is chosen according to the position of the
control points, and the related depth grid map is used for fus-
ing sensor information. Considering relative motions between
cameras is somewhat harder, and we will work on developing a
description of the depth grid map as a function of the position
of the moving cameras.
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