2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 24-28, 2017, Vancouver, BC, Canada

Human-Robot Coexistence and
Contact Handling with Redundant Robots

Emanuele Magrini

Abstract— We present further computational tools and con-
trol results in the framework of human-robot coexistence and
collaboration. A GPU parallel processing algorithm is intro-
duced for real-time monitoring of dynamic distances between a
robot and generic obstacles moving in its environment, taking
advantage of the handling of RGB-D data directly in the depth
space of the sensor. Combined with the use of model-based
residual signals, this approach allows efficient detection of
contact points on the robot with simultaneous estimation of
the exchanged contact forces. When the robot is kinematically
redundant for the original task and undergoes a physical
contact, a control scheme accommodates collaboration trying
to preserve task execution, or reacts by abandoning the task
if the estimated contact forces exceed some safety threshold.
Experimental results are reported for a KUKA LWR.

I. INTRODUCTION

Taking advantage of recent exciting research results, the
domain of physical Human-Robot Interaction (pHRI) is
booming. Friendly lightweight robots with the capability
of safely sharing their workspace with humans are ap-
pearing in service and industrial environment. However,
the realization of truly collaborative applications, merging
the adaptive skills of humans with the high precision of
robots, remains still a big challenge. Within the European
research project SAPHARI [1], we have proposed a control
architecture devoted to pHRI, based on a hierarchy of con-
sistent robot behaviors organized in three layers addressing,
respectively, human-robot safety, coexistence, and collabora-
tion [2]. Safety issues in physical interaction being of pri-
mary concern, we implemented strategies for collision detec-
tion, isolation, and reflex reaction based on the residuals [3]-
[5] in the safety layer. To limit as much as possible undesired
collisions, the coexistence layer includes algorithms for mon-
itoring the shared workspace with external sensors (cameras,
RGB-D, laser) and for preventing and avoiding collisions in
real time [6]-[8]. A real-time collision avoidance algorithm
based on 3D Point Clouds has been presented in [9]. The
data are processed taking advantage the Graphics Processing
Unit (GPU) and the Compute Unified Device Architecture
(CUDA) implemented on NVIDIA graphics cards.

The upper layer is devoted to physical collaboration
tasks, in which a continuous and intentional contact may
(or needs to) take place with a controlled exchange of
forces/torques. In many applications, contacts are assumed

The authors are with the Dipartimento di Ingegneria Informatica,
Automatica e Gestionale, Sapienza Universita di Roma, Via Ariosto
25, 00185 Roma, Italy ({magrini,deluca}@diag‘uniromal.it). This work
is supported by the European Commission, within the H2020 projects
FoF-637080 SYMPLEXITY (www.symplexity.eu) and ICT-645097 CO-
MANOID (www.comanoid.eu).

978-1-5386-2681-8/17/$31.00 ©2017 IEEE

Alessandro De Luca

to happen only at the robot end-effector, usually equipped
with a 6D force/torque sensor to measure the interaction. In
order to extend the robot collaborative capability, contacts on
the entire robot body should also be considered. This raises
the additional issue of reconstructing the exchanged forces
at generic contact points along the robot structure, either
by measuring them, e.g., by placing patches of conformable
tactile skin in different locations [10], or by estimating them
in an indirect way, e.g., combining model-based methods
with a force/torque sensor mounted at the robot base [11]
or with machine learning techniques [12]. In [13], a first
example of a method that estimates contact forces occurring
at a generic point (a priori unknown) of the robot surface in
contact with the human hand(s) was given. This was obtained
by a virtual force sensor, which combines the proprioceptive
information of the residual signals with the localization of
the human hands provided by Microsoft Kinect. By removing
the assumption of contacts limited to human hands (thus
the dependency on Kinect built-in skeleton tracking algo-
rithm), we present a novel approach for localizing in real-
time contact points between a robot and generic obstacles
moving in its workspace. The algorithm is based on distance
computation in the depth space [7], taking advantage of the
CUDA framework for mass parallel GPU programming.

In our recent works, the estimated contact force was used
in a series of human-robot interaction experiments based on
admittance, impedance, direct force, or hybrid force/velocity
control schemes in order to assign a desired robot behavior
at or around the current contact point, where the exchange
of forces is taking place [13]-[15]. In this paper, we add
another element to the portfolio of control laws developed
for physical human-robot collaboration. Following the ideas
presented in [16], we propose a control scheme that uses
robot redundancy for preserving a Cartesian task despite the
possible occurrence of (un)desired contacts. By exploiting
redundancy, the robot can preserve the execution of an end-
effector motion task, while still reacting to a detected contact
so as to keep the contact forces below a defined threshold.
As soon as the contact force exceeds the threshold, the
robot should abandon the task and realize an admittance
control scheme at the contact point. Note that, thanks to the
collaboration layer, contacts with robot are allowed and can
be dynamically controlled using an estimate/measure of the
contact force. On the contrary, at the safety layer, contacts
are not allowed and only evasive reactions are provided.

The paper is organized as follows. Section II recalls the
contact force detection and estimation method, including the
generalized admittance control [13]. Section III details how

4611

the proposed contact point estimation algorithm is able to
localize contacts between obstacles and robot, combining the
information provided by a depth sensor and the use of model-
based residual signals. The control scheme for reacting to
the estimated contact forces while preserving the robot task
is presented in Sec. IV. Section V reports on experimental
results obtained with the proposed method, using a 7-dof
KUKA LWR robot and a Kinect sensor. Conclusions are
drawn in Sec. VL.

II. PRELIMINARIES

We consider robot manipulators as open kinematic chains
of n+1 rigid links, connected by n joints and with associated
generalized coordinates ¢ € R". Let F. € R3 be an
interaction force acting on robot surface in x.. Its dynamic
model is given by

M(q)g+C(q.q)qa+9(q) =7+ T, (1)

where M (q) > 0 is the robot inertia matrix, the Coriolis
and centrifugal terms are factorized using the matrix C(q, q)
of Christoffel symbols, g(g) includes gravitational terms,
T € R™ is the control torque, and 7. = J.(q)F. is the
joint torque associated to the interaction force F'.. Using
external sensing, the location of the contact point x. can be
determined, and the associated 3 x n contact Jacobian J.
can be computed.

A. Collision detection and contact force estimation

Following [3], for a robot with dynamics (1), the residual
vector r € R" is defined as

t
r(t) = K (p - [(r+c"@aa-g@-+r) ds) :
’ @)
where p = M(q)q is the generalized momentum of the
robot and K; > 0 is a diagonal gain matrix. The dynamic
evolution of r is that of a stable, first-order low-pass filter,
7 = K (1. —r). Therefore, for sufficiently large gains, we
can assume that

r~1,=J (q)F.. 3)

Equation (3) shows that r is observing the joint torque
resulting from a contact or a collision. In fact, during free
motion, 7 = 0 up to unmodeled disturbances and measure-
ment noise. To avoid false detection due to spurious spikes in
noisy signals, collisions are detected if there exists at least an
index k, with k € {1,...,n}, for which |rg| > riowr > 0,
namely when
LY

, } > 1. “4)

Tlow,n

CD = max { ,
Tlow,1

The linear system (3) forms the basis for the estimation of
the unknown contact force F'.. Depending on which link of
the serial kinematic chain is involved in the contact, this may
have a square, under-, or over-determined coefficient matrix
J CT In any case, by pseudoinverting (3) the contact force is
estimated as

F.- (J?(q))#r- s)

Indeed, the estimate F'. will be limited only to those compo-
nents of F'. that can be detected by the residual r, namely
those contact forces that do not belong to the null space
N (JT(q)). For further details and for the analysis of cases
when the contact Jacobian is not full rank, see [13].

B. Admittance control scheme at contact point

In [13], we have used the estimated contact forces within
an admittance control in presence of one or two contacts.
For simplicity, we consider from now on only single contact
situations. Let q, ; = q(t.) € R” an d x. g = x.(t.) € R?
be respectively the robot configuration and the position of
the contact point when the interaction with the environment
begins, namely at ¢ = ¢.. In admittance control, the desired
velocity &, of the contact point is assigned to be proportional
to the (real and/or virtual) force F', acting on that point, or

-’tc:KaFa; Fa:ﬁc+Ke(mc,d*mc)a (6)

where K, > 0 is the admittance gain matrix, K, > 0 is
the stiffness gain matrix, and F', is the total active force on
the contact point x.. In this way, an equilibrium may arise
(F4 = 0) between an obstacle pushing continuously on the
robot and the virtual spring pulling the contact point back to
its initial position x 4.

Since we are only considering positional motion tasks,
in a dual fashion the robot will be redundant for contact
force tasks that occur on link ¢ > 4, so that an extra null-
space motion contribution can be considered. Thus, the joint
velocity command to the robot will be defined in general as

g=J%&,+ P.q, (7

with the projector P, =1 — J f“J ¢ in the null-space of the
contact Jacobian J.. The additional joint velocity in (7) is
specified as q,, = K,(q., — q), with K,, > 0, and helps
driving the robot back to its initial configuration q. ;.

III. CONTACT POINT ESTIMATION ALGORITHM

In order to estimate the force (5) applied by the environ-
ment to the robot, we need to localize the point on the robot
surface where a contact happens. In [13], Cartesian distances
between all vertices of geometric surfaces of a robot CAD
model and the human hand(s) were computed. As soon as
a contact was detected, the point at minimum distance was
taken as the contact point. The method is effective but has
some limitations: i) it relies on the Kinect skeleton-tracking
algorithm which is quite noisy, especially if more than one
human appears in the scene; ii) it is only able to localize
contacts with human hands and joints; iii) it is not optimized
from a computational point of view, since vertices that are not
visible by the camera should not be included in the distance
computation.

To overcome these limitations, we propose a contact point
estimation algorithm based on the visual feedback provided
by a RGB-D sensor. In this kind of sensors, each image pixel
contains also the information about the distance from the
camera image plane to the 3D point in the Cartesian space
associated to the pixel along a given ray. Moreover, such

4612

sensors are able to localize contacts with any kind of obstacle
(possibly, a human), taking into account only those parts of
the robot which are visible to the camera, maximizing thus
the computational performance.

A. Overview

The proposed contact localization algorithm has been
implemented as GPU program and it is able to exploit the
parallelism of a graphic board. In particular, it is based on the
OpenGL library that provides hardware accelerated rendering
functions, and on the CUDA framework for mass parallel
programming within the NVIDIA architecture. With respect
to a common CPU, in a graphics processing unit each core
has the capability to execute at the same time hundreds of
processes. This high degree of parallelism gives to any GPU-
based application huge performance improvements, thanks
also to a high-speed memory closely interconnected to the
GPU’s cores. The CUDA architecture provides to developers
the access facilities to the GPU resource, with the possibility
of writing programs similarly to the CPU.

Our method consists in processing three 2.5D images,
having the same resolution:

e Real depth image is an image of the environment as
captured by the depth sensor, see Fig. 1(a).

o Virtual depth image is an image containing only a
projection of the robot in a virtual environment. The
image is created using OpenGL to load a CAD model
of the robot. Once the CAD has been loaded, by using
direct kinematics, we move the virtual model to match
the real robot configuration, see Fig. 1(b).

o Filtered depth image is an image of the environment
containing only the obstacles. It is obtained subtracting
to the real depth image the virtual depth image of
the robot. It is a common practice to load a slightly
expanded CAD model of the robot in the virtual depth
image, as in Fig. 1(c).

(b)

Fig. 1.
depth image (right).

Real depth image (left), virtual depth image (center), and filtered

B. Robot filtering by CUDA

The robot filtering process is needed to remove the robot
from the depth sensor image so as to obtain a filtered image
in which there are only obstacles. The entire processing
scheme is shown in Figure 2.

The depth sensor provides a new frame (here, at 30 Hz) of
the environment and loads the data into the GPU memory. In

real depth
image

depth sensor

|0t 2] o5t i
parallel image filter processing
Ivm]|vm|v[21|v[31|v[41|v[5] »'[61|

e

filtered depth
image

robot CADJ:nodel virtual depth
configuration calibration image
Fig. 2. Robot filtering processing scheme.

the meantime, a CAD model of the robot has been loaded in a
virtual environment, combining the information of the direct
kinematics and the capabilities of OpenGL library. At this
stage, a sequence of matrix transformation have been applied
in order to obtain a virtual environment point of view that is
the same of the depth sensor point of view. In this way, the
virtual robot will overlap to the real one.

The first transformation T',,,,;4 maps the coordinates of a
point poap = (px Py p-) from a local reference frame
(defined in the CAD model) to a world reference frame
(often placed at the robot base). Next, a calibration matrix
T camera between the world and the camera sensor provides
a second transformation to express the world coordinates in
the camera frame. A perspective transformation matrix T'¢;;,
projects then these coordinates into clip-space coordinates. In
particular, this transformation determines whether an object
is too close to the camera or too far away to be handled.
The last transformation Tgep¢r, determines the depth space
coordinates of the point.

Summarizing, the coordinates of a point in the virtual
depth image can be determined applying the above trans-
formations to the 3D CAD model as

Pov,x

P, = Du,y
dy

- Tdepth . Tclip . Tcamera : Tworld ‘PcAD>

®)
where p, . and p, , are the pixel coordinates in the image
plane, d, is the corresponding depth.

Once the two 2.5D images are ready, they are loaded
into the GPU memory as two row vectors with depth
information. Components in two vectors having the same
index correspond to the same pixels in depth images. A
parallel comparison of the depth information for any pair
of corresponding components is then performed to filter out
the robot. In particular, if a pixel belonging to the robot
has a shorter depth than its corresponding pixel in the real
depth image, then a maximum depth value is assigned to the
corresponding pixel in the filtered depth image. Thus, for
each pair of pixel coordinates (x,y) we have

dT‘ (‘Tv y)
max depth

if d,(z,y) < dy(z,y)
if d,(z,y) > dy(z,y),

where d¢(z,y), dr(z,y), and d,(z, y) are the depth values in

dy(z,y) = {

4613

pixel coordinates (x,y) of the filtered, real, and virtual depth
image, respectively. The resulting filtered image is shown in
Fig. 1(c).

C. Contact localization in depth space

In our previous work, we used to localize the contact point
by computing the minimum Cartesian distances between the
robot CAD vertices and the human hand(s). We propose here
a revised depth space approach for distance computation
between obstacles and the robot. In [7], distances were
computed between an obstacle point O and a set of ‘control’
points P; distributed along the robot kinematic chain. Rely-
ing on this method and exploiting the parallel computation
capabilities of CUDA architecture, we can now compute
distances between all robot points Pp = (puz Doy do)T
projected in the virtual depth image and all obstacle points
Op = (pre pry dy)T in the filtered depth image belong-
ing to a region of surveillance centered in P. Recalling the
formulas in [7], we have

d(O, P) = /v +v2 +vZ,

with
v, — (pf,w - Cm)df - (pv,z - Cm)dv
’ f sz
- (pf,y - Cy)df - (pv,y - Cy)dv
y =
fsy
Vy = df — dv

where (pf,z,Pf.y) and (pu.a, Pv,y) are the coordinates in the
depth space of the points O and P respectively, dy and d,
are their depth w.r.t. the camera, ¢, and c, are the pixel
coordinates of the center of the image plane (on the focal
axis), f is the focal length of the camera and s, and s, are
the dimensions of a pixel in meters. The last five parameters
constitute the intrinsic parameters of the camera and can be
usually retrieved by the device manufacturer. Since we do
not know how long an obstacle is, if the obstacle point has
a depth smaller than the point of the robot (dy < d,) we
assume the depth of the obstacle to be dy = d,.

The Cartesian surveillance region, constituted by a cube
of side 2p centered in P, will have dimensions in the image
plane given by

er Yo = p [y
’ s dv_p-

Therefore, all pixel in the filtered depth image within the
region S = [pro — 5,052+ 5] X [Pry — 5o0py + %]
will be considered for distance computation.

As soon as a contact is detected by the residual, the point
of the visible robot surface which is at minimum distance
from the obstacles is considered as contact point. Let p, =
(Pez Pey de)T be the contact point expressed in the 2.5D
image plane. The corresponding contact point x.. in the robot
frame is computed as

Lo = (Tdepth . Tclip . Tcamera)_lpc- (9)

Note that we want the contact point expressed in the world
frame, not in the model frame. Thus, the model transforma-
tion matrix T",,,14 does not appear in (9). The contact point
localization processing is illustrated in Fig. 3.

filtered depth
image

If[o]lf[l]lf[z] If[S]lf[4] f[s]lf[ﬁ]l .

|parallcl distances computation
4 contact

|v[o]|v[1]|v[z]|v[3]|v[4] vi5) V[G]I point

CAD model

. + .
calibration

robot
configuration

virtual depth
image

Fig. 3. Contact point localization processing scheme.

D. Contact Jacobian computation

The presented algorithm is able also to identify which
robot link is in contact with the environment. Consider a
generic contact point on the surface of the i-link, whose
absolute position is given by x.,. Its Cartesian velocity is
given by

Lo, =V + Wi X Ty, =Vj — L, X Wy

(I —S(zic)) (ZZ) =(I —S(zi.,))Jiq,

(10)
where v; € R? and w; € R? are, respectively, the linear
and the angular velocity of the frame ¢, matrix J; is the
6 x n geometric Jacobian associated to link ¢ (having the last
n — i columns identically zero), S(.) represents the skew-
symmetric matrix for vector (x) product, and x; ., is the
position of the contact point with respect to the origin of
frame ¢. This is computed as x; ., = ., — x;, being x;
the position of the origin of frame 4. From (10), the 3 X n
contact Jacobian matrix is finally computed as

— S(zi,)) Jis

Jo = (I

remembering that ., = J.,q. From now on, we will drop
for compactness the index ¢ of the link under consideration.
Remark 1. In this paper, we handle only one contact
point. However, the algorithm discussed here can be easily
extended to the case of multiple contact points. In fact,
when (4) is verified, instead of considering only the robot
point at minimum distance, we can classify as contact points
all those points which have a distance d(O, P) < dy,, for a
given threshold d;, > 0. Thanks to the parallel computing
offered by the CUDA framework, the time needed to localize
one or more the one contact point is exactly the same.
Remark 2. In some cases, obstacles get in surface contact
with the robot and not only at a single point. In such
situations, even if we could localize multiple contact points,
these would often be so close to each other (e.g., a human
hand interacting with the robot) that it is more convenient

4614

to assume still a point-wise contact. In [13], we verified that
the error introduced by this assumption is negligible, at least
for our purposes.

Remark 3. Discarding the occluded points of the robot
leads to benefits in terms of computational time. On the other
hand, we are not able to localize contacts (and thus obstacles)
behind the robot. This is the main limitation of using just
one depth sensor. Occluded areas can be reduced introducing
more than one depth sensor in the framework, as in [8].

IV. MOTION CONTROL

In this section, we discuss how the estimated contact point
between (human) obstacle and robot, and thus the estimated
contact force, can be used in a simple way to modify the
robot behavior.

The main task for a robot is typically to control the
motion of its end effector. Without loss of generality, we
consider a 3D-positional task, i.e., with m = 3, and assume
that the robot is commanded at the joint velocity level.
Kinematic control with exponential error recovery is obtained
by choosing the joint velocity commands as

Y

where x4 and x4 are, respectively, the desired end-effector
position and velocity, K, > 0 is a diagonal gain matrix,
and P = I — J#J is the orthogonal projection matrix
in the null space of J. Due to redundancy, the (n — 3)-
dimensional auxiliary velocity vector g, can be arbitrarily
specified without affecting the main task.

q=J%(&y+ K,(xq—x)) + Pqy,

A. Combined contact reaction and task preservation strategy

Following the paradigms of robot redundancy exploitation
in [16], we will define a law for the choice of g, so that
the robot is able to react safely to external forces while
continuing to execute as much as possible the original task.

As long as there is no contact (or no contact is detected),
the null-space velocity vector is chosen as ¢, = Ko(g,;—q),
with Ky > 0, in order to limit self-motions of the redundant
arm and keep the robot as much as possible close to a desired
configuration g,. This leads to the commanded joint velocity

qg=J%x+ PKy(q,—q).

Consider next the occurrence of a contact between an ob-
stacle and the robot. The momentum-based observer (2) will
output a residual vector r and, as soon as (4) is verified,
the contact force estimation (5) will generate an estimate of
the contact force F', = (J f)#r. This contact force estimate
will be included in the null-space term ¢,. However, to filter
out contact forces erroneously produced by uncertainties in
the dynamic model (and thus, in the residual computation)
a threshold Fjcjn: > 0 ha/s\ been introduced on the norm of
estimated contact force || F'.||. The null-space velocity will
then be defined as

. Ko(qd - q)v if HF('H S Frelam
qdo =

Ko(qd - q) =+ Jfoﬁ‘m if Hﬁ‘cH > Frelazs
(12)

with K¢ > 0. The contact point will be forced away from
the collision area along the direction of the estimated force
F'., whereas the robot end-effector continues to accomplish
the original trajectory.

Nevertheless, if the contact persists despite the robot self-
motion and the estimated contact force will increase too
much due to the specific task (e.g., the contact force is
oriented against a desired motion direction), the robot should
abandon the trajectory execution. To this end, it is useful
to introduce a further threshold Fpor¢t > Frelqr. This
upper threshold avoids damages to a (human) obstacle in the
workspace and/or to the robot itself. When the contact force
exceeds F,pore the task is completely abandoned, and the
generalized admittance control scheme (6—7) will be realized
at the contact point .. The control strategy is summarized
in the following expressions:

J*& + PKo(q, — q), if | Fell < Fretaa

J*i+ P(Ko(qq—q) + J¥KF.),
if Frelax < HFCH S Fabort

if ||Fc|| > Favort-
(13)
When the robot abandons the task and switches to admit-
tance control, there is in general a discontinuity at the joint
velocity level. This would lead to a jerky behavior of the
robot that is not recommended, especially when the robot
arm is physically interacting with a human. To avoid this,
we use a very simple transition strategy. Let q 0,4 = q(ta)
be the velocity of the robot when the norm of the contact
force || F¢|| = Faport, namely at t = t,, and q,,4,, be the
velocity provided by the admittance control at ¢ > ¢,. The
transition velocity g, will be

qtr(h’TC) = a(h)qadnt(hTC) + (1 - a(h))qabort?
with 0 < o« < 1 defined as

J?E:BC + PcK’ﬂ(qc,d - q)a

N h=1,...
where N, is the number of cycle times after which the
transition will be completed, and 7 is the robot sampling
interval. The larger the number N of the cycles is, the
smoother and longer will be the transition.

s Ns, (14)

B. Discrete-time implementation

The user-defined control law (13) has been implemented
in discrete time, with control samples applied uniformly
over time at t = ¢, = k7,.. It has been shown in [17]
how to determine a discrete-time joint velocity command
for a redundant robot that executes a desired task while
optimizing an acceleration/torque norm. This optimization
can be achieved by introducing a forgetting factor || < 1
in a discrete-time velocity control. Thus, the velocity used

to command the robot joints becomes
qc,k’ = qk + APkQC,k’—lv (15)

where q,, is the joint velocity (13) and Py, = I — Jk#Jk,
both evaluated at ¢t = kT..

4615

V. EXPERIMENTS
A. Experimental setup

The scenario is composed by a robot that executes tra-
jectories in the Cartesian space, while unknown obstacles
may enter in contact with the manipulator arm. Experiments
have been performed on a 7R KUKA LWR robot controlled
though FRI at a cycle time of 7, = 5 ms. The workspace
is monitored by a Microsoft®Kinect V2 depth sensor, posi-
tioned at a distance of 2.2 m behind the robot. The Kinect
provides 512 x 424 depth images at 30 Hz rate. The hardware
platform is a 64-bit Intel®Core i7-4790 CPU @4 Ghz,
equipped with 16 GB DDR3 RAM. The implementation
of our runs on a high-performance graphic board with a
NVIDIA GTX970 GPU, organized in 1884 CUDA cores and
capable of 26624 concurrent threads.

Three different processes coexist, running at different
frequencies:

1) The vision process writes the GPU memory buffer with
a new image as soon as a new depth image is provided
by the Kinect (30 Hz).

2) The robot process produces the velocity command
needed to control the robot (200 Hz).

3) The contact point estimation process, running on GPU,
removes the manipulator from the depth image starting
from its CAD model, and provides a new contact point
(=~ 170 Hz). Note that, even if a new image is provided
only at 30 Hz, the robot is moving during this interval
and the contact point may change.

To obtain more robust results, we have applied a scaling
along the normal directions to the CAD model surfaces of the
manipulator, enlarging them by about 3 cm. The main reason
is to filter out the Kinect noise on depth images during the
robot filtering process. Moreover, the vision sensor cannot
capture very fast movements of the robot so that it could
happen that the CAD model is not perfectly overlapping with
the real robot. In such situations, the robot may recognize
itself as an obstacle. Last but not least, for this robot in
particular, we considered a reduced CAD model in which
the first and second link of the manipulator are missing.
In fact, even if we had localized the contact point on one
of these two links, we would not be able to move away
any of them. By doing so, we increase the performance
of the algorithm. Obviously, for the robot filtering scheme
we consider the entire CAD model. Having evaluated the
average time needed to localize a contact point (~ 6 ms),
we can classify this approach as real time for our purposes.

B. Results

During the experiments, moving obstacles (or human
parts) touch the robot and push at different contact points.
Our purpose is to illustrate how the original task is preserved,
relaxed, or aborted by the proposed method. The control law
is given by (13), with the contact force thresholds set to
Fireioe = 5 Nand F,port = 25 N. The other parameters were
chosen as Ko =517 and Ky = 0.05- I3. The admittance
control parameters are K, = 0.5- I3, K. = 3.5 - I3, and

K, = 0.6 I;. The surveillance region size has been set to
p = 10 cm. To complete the velocity transition in (14) the
number of samples needed has been set to Ng = 20. Finally,
the forgetting factor in (15) has been chosen as A = 0.8.
Making reference to the plots of the signals in Fig. 5, in the
first part of the experiment, a moving (human) obstacle enters
the workspace, while the robot is executing an hexagonal
trajectory on a vertical plane placed at x = —0.55 m, with a
velocity of 20 cm/s. During normal operation, the robot is in
its idle state (idle with respect to the more demanding contact
handling and collaboration). When a contact is recognized
on link 3 /(\at t = 2.6 s), the contact force increases and as
soon as || F.|| € (Freiax, Fabort) the robot will enter in the
relax state. Thus, the obstacle will move the contact point
along the pushing force direction, without perturbing the task
trajectory. Figure 4 shows few snapshots of this situation.

Fig. 4. Image flows when the robot reacts to a collision without perturbing
the task. As soon as the contact breaks, the robot recovers its initial posture.

In the following part of the experiment, a human pushes
the robot on link 6 and link 3 (at ¢t = 13 s and ¢ = 26 s,
respectively) generating contact forces that lead the robot
to its abort state, being || F.|| > Fuport- In both cases, an
admittance error arises and it will be completely recovered
as soon as the contact breaks. Note that, the contact point
. moves along the contact force direction, as shown in the
admittance error plot in Figure 5. When the admittance error
is recovered, the robot goes back to the idle state, resuming
its original motion task.

The algorithm is not strictly related to human obstacles.
In the second part of the experiment a box enters in contact
with the robot on link 5 (at ¢ = 46 s). For few seconds the
robot remains in the relax state, continuing task execution
without noticeable perturbations. As soon as the estimated
contact force exceeds Fiport, the robot enters again in its
abort state realizing the admittance control scheme at the
contact point. Snapshots of this situation are shown in Fig. 6.

The complete experiment can be seen in the accompanying
video clip. The plots can be much better appreciated when
looking in parallel to the video. In particular, at ¢ = 73 s
the box is positioned between link 3 and table, and the robot
goes into a stall position. It will enter and remain in its abort
state due to the continued presence of the box that prevents
admittance error recovering. When the box is removed, the
robot recovers the error and resumes its original task.

4616

EE Position [m]

—10} g
0 10 20 30 40 50 60 70 80 90
0.1 T T T T T T T T T
—. 005 i
Nz 4
= o w7
o
= -0.05 R
()
g -o1 E
3
+ -0.15 -
-
E -0.2 R
< -0.25 . -
€ €y €
-0.3 L ”
40 50 60 70 80 90
4 T T T T T T T T T
351 -
3
[
Ses
=
%
= 2
=}
=
Q15
=
1
05
1 = idle:state 2 = relax state 3 = abort state
0 10 20 30 40 50 60 70 80 920
Time [s]
Fig. 5. Interaction control experiment. From the top: end-effector Carte-

sian position components, estimated contact force components, Cartesian
components of the admittance error, and robot state monitor.

Fig. 6. Image flows when the robot reacts to a collision by abandoning
the task. When contact is removed, the robot resumes its task.

VI. CONCLUSIONS

Relying on our previous results on contact point local-
ization, contact force estimation, and generalized control
schemes for robots interacting with humans, we have pre-
sented a new contact localization algorithm based on GPU
parallel processing. A novel enhancement is the capability
to localize in real time a contact on the entire robot surface
and with all possible obstacles that could be present in the

scene, without distinguishing their nature (humans, objects,
other robots, etc.) and/or geometry. Once the contact point
has been localized, the corresponding estimated contact force
has been used in a kinematic control scheme that exploits
redundancy in order to accommodate the physical contact
without perturbing the original task that the robot was exe-
cuting. Based on a simple logic, a trade-off has been obtained
between limiting contact forces and preserving accuracy in
continuous task execution. The idea to abandon and later
resume the task, realizing an admittance control scheme at
the contact, proved to be useful for keeping a safe interaction
with unknown dynamic environments. Experiments with a
KUKA LWR robot confirmed the practical applicability.

REFERENCES

[1] SAPHARI. Safe and Autonomous Physical Human-Aware Robot
Interaction. [Online]. Available: www.saphari.eu

[2] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in Proc. IEEE Int.
Conf. on Biomedical Robotics and Biomechatronics, 2012, pp. 288—
295.

[3] A. De Luca, A. Albu-Schiffer, S. Haddadin, and G. Hirzinger, “Col-
lision detection and safe reaction with the DLR-III lightweight robot
arm,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2006, pp. 1623-1630.

[4] S. Haddadin, A. Albu-Schiffer, A. De Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2008, pp. 3356-3363.

[5] M. Erden and T. Tomiyama, “Human-intent detection and physically
interactive control of a robot without force sensors,” IEEE Trans. on
Robotics, vol. 26, no. 2, pp. 370-382, 2010.

[6] S. Kuhn and D. Henrich, “Fast vision-based minimum distance deter-

mination between known and unknown objects,” in Proc. IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 2007, pp. 2186-2191.

F. Flacco, T. Kroger, A. De Luca, and O. Khatib, “A depth space

approach for evaluating distance to objects — with application to

human-robot collision avoidance,” J. of Intelligent & Robotic Systems,

vol. 80, Suppl. 1, pp. 7-22, 2015.

F. Flacco and A. De Luca, “Real-time computation of distance to

dynamic obstacles with multiple depth sensors,” IEEE Robotics and

Automation Lett., vol. 2, no. 1, pp. 56-63, 2017.

[9] K. Kaldestad, S. Haddadin, R. Belder, G. Hovland, and D. Anisi,
“Collision avoidance with potential fields based on parallel processing
of 3D-point cloud data on the GPU,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 2014, pp. 3250-3257.

[10] A. Cirillo, F. Ficuciello, C. Natale, and S. Pirozzi, “A conformable
force/tactile skin for physical human-robot interaction,” IEEE Robotics
and Automation Lett., vol. 1, no. 1, pp. 4148, 2016.

[11] G. Buondonno and A. De Luca, “Combining real and virtual sensors
for measuring interaction forces and moments acting on a robot,” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016,
pp. 794-800.

[12] L. Manuelli and R. Tedrake, “Localizing external contact using pro-
prioceptive sensors: The contact particle filter,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2016, pp. 5062-5069.

[13] E. Magrini, F. Flacco, and A. De Luca, “Estimation of contact
forces using a virtual force sensor,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2014, pp. 2126-2133.

, “Control of generalized contact motion and force in physical
human-robot interaction,” in Proc. IEEE Int. Conf. on Robotics and
Automation, 2015, pp. 2298-2304.

[15] E.Magrini and A. De Luca, “Hybrid force/velocity control for physical
human-robot collaboration tasks,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2016, pp. 857-863.

[16] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2008, pp. 3299-3305.

[17] F. Flacco and A. De Luca, “Discrete-time redundancy resolution at
the velocity level with acceleration/torque optimization properties,”
Robotics and Autonomous Systems, vol. 70, pp. 191-201, 2015.

[7

—

[8

[t

[14]

4617

