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Abstract—Robot dynamic identification techniques rely on the
quality and completeness of the signals available as inputs,
typically joint positions and motor currents or joint torques.
These signals are often noisy and filtering operations are required
before using them for identification. Moreover, some robot control
units (e.g., in the KUKA KR5 Sixx) return the user only the
absolute values of the motor currents (or of the torques), thus
preventing a correct dynamic estimation. We present a method
for the identification of the robot dynamic model when the
motor torques/currents have unknown signs. The method consists
in solving a sequence of constrained optimization problems,
exploiting physical feasibility constraints. A tree of solutions
is built, and the branches leading to unfeasible solutions are
pruned. As output, the torque signs are estimated together with
the resulting robot dynamic model.

Index Terms—Identification, Dynamics, Optimization

I. INTRODUCTION

An accurate dynamic model is of paramount importance
for the design of robot control laws with superior perfor-
mance [1]. To set up a reliable estimation of the dynamic
model, regression techniques are widely employed [2], [3],
using the linear dependence of the robot equations on a set
of dynamic coefficients πR ∈ Rρ [4], also known as base
parameters [5]. These are (possibly nonlinear) combinations
of the standard dynamic parameters of the robot, i.e., the mass,
the position of the center of mass (CoM), and the elements
of the symmetric inertia tensor of each of its links. For a n-
dof robot, one has p ∈ R10n dynamic parameters. In general,
the dynamic parameters are not individually identifiable: some
do not appear in the model, while most of them affect the
dynamics only in combinations. Only these combinations (i.e.,
the dynamic coefficients) are identifiable quantities.

Identification of the robot dynamic coefficients is sufficient
for motion control, when using the dynamic model in the
Euler-Lagrange form. In other situations, it is necessary to
know the values of the robot dynamic parameters: for instance,
when performing dynamic simulations via a CAD-based robot
software (like CoppeliaSim [6]) or when using the recursive
numerical Newton-Euler algorithm to implement torque-level
control laws (such as feedback linearization) under hard real-
time constraints.

There are several approaches that address the problem of
retrieving a feasible set of dynamic parameters from the
identified dynamic coefficients, employing semi-definite pro-
gramming techniques with Linear Matrix Inequalities [7]–
[9] or nonlinear optimization methods (e.g., using Simulated
Annealing, as in [10]). Feasible parameters are those that
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preserve some physical consistency properties, such as positive
link masses, positive definite link inertia tensors that satisfy the
triangular inequality, and link CoMs inside a geometric convex
hull. In [10], we proposed a flexible optimization framework
to retrieve a set of feasible dynamic parameters that is capable
to deal also with nonlinear or conditional constraints and
with user-defined bounds, which are treated as penalties in
the objective function (henceforth, Penalty-Based Parameters
Retrieval or PBPR algorithm).

These approaches require reliable measures from robot
encoders and motor current/torque sensors, collected during
the execution of sufficiently exciting trajectories. There are,
however, some special cases in which only a partial infor-
mation is made available by the closed architecture of the
robot controller. For instance, the KUKA KR5 Sixx robot, a
6R small-size industrial manipulator, as well as the equivalent
DENSO robot return only the absolute values of the motor cur-
rents. This might be an intentional choice by the manufacturer
(e.g., to provide a simple monitoring signal for emergency), or
may be due to the output being taken from the PWM devices
driving the motors (typically, positive-encoded signals only).

In this paper, we propose a method to identify the dynamic
coefficients and retrieve a feasible set of dynamic parameters
for robots whose motor current/torque sensors do not return the
sign of the measured quantity. This approach takes advantage
of the PBPR algorithm, generating a tree of solutions with a
number of possible motor information, which is progressively
pruned during the identification phase, discarding the physi-
cally unfeasible sets of parameters.

The paper is organized as follows, Section II recalls the
general procedure for identifying the dynamic coefficients
and retrieving a set of feasible dynamic parameters. The
additional steps needed to deal with the problem of missing
current/torque signs are described in Sec. III. Validation results
on a simulated KUKA KR5 Sixx are reported in Sec. IV and
conclusions are drawn in Sec. V.

II. PRELIMINARIES

For each link `i, i = 1, . . . , n composing a n-dof rigid
robot, let mi be the mass and let

iri,ci =

 cix
ciy
ciz

, iJ `i =

 Jixx Jixy Jixz
Jixy Jiyy Jiyz
Jixz Jiyz Jizz

 , (1)

be the position of the CoM and the symmetric inertia tensor
with respect to the i-th link frame, respectively. Collecting
the dynamic parameters of all links in three vectors p1 (with
the masses mi), p2 (with the first order moments of inertia
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mi
iri,ci) and p3 (with the second order moments of inertia,

i.e., the elements of the inertia tensor iJ `i ), it is possible to
express the robot dynamic model as

Y (q, q̇, q̈) π(p1,p2,p3) =Ki = τ , (2)

where q, q̇, q̈ ∈ Rn are the joint position, velocity and
acceleration vectors, i ∈ Rn and τ ∈ Rn are the motor current
and torque vectors, and K = diag(K1 . . .Kn) ∈ Rn×n is the
matrix of current-to-torque gains. The n× p regressor matrix
Y , depending on time-varying functions, multiplies the vector
π(p1,p2,p3) ∈ Rp of dynamic coefficients, which appear
linearly in the dynamic model (2).

The classical dynamic identification procedure is performed
by collecting, at times t = tk, a number m � np of joint
torque samples1 with associated m joint position samples,
while joint velocities and accelerations are obtained by off-line
differentiation. For each numerical sample (τ k, qk, q̇k, q̈k),
with k = 1, . . . ,m, we have

Y k(qk, q̇k, q̈k)π = τ k. (3)

By stacking these quantities in vectors and matrices, one has

Y π = τ , (4)

with τ ∈ Rmn and Y ∈ Rmn×p. According to [5], we prune
the stacked regressor Y so as to obtain a mn× ρ matrix Y R

with full column rank ρ ≤ p, and then identify the associated
(minimal) dynamic coefficients πR ∈ Rρ by solving an
Ordinary Least-Squares (OLS) problem via pseudoinversion

π̂R = Y
#

Rτ . (5)

The dynamic coefficients π̂R are sufficient for inverse dy-
namics computations on a given motion q(t) via eq. (2).
In order to retrieve feasible values for the original dynamic
parameters p providing the estimated π̂R, and thus achieving
the same identified robot dynamics, one may use the PBPR
algorithm [10]. This requires solving a nonlinear optimization
problem (with bounding boxes) whose cost function is aug-
mented by penalties activated by constraint violations:

min
p
f(p) = φ(p) + γ(p) s.t. LB ≤ p ≤ UB. (6)

In (6), γ(p) provides an additive penalty for each violated
problem constraint, LB and UB are the lower and the upper
bounds for the parameter vector p, and the objective function
φ(p) can be chosen as

φ1(p) = ‖πR(p)−π̂R‖2 or φ2(p) =
∥∥Y RπR(p)−τ

∥∥2 ,
(7)

where πR(p) are the symbolic expressions of the (minimal)
dynamic coefficients in terms of the dynamic parameters p.

III. ESTIMATING THE TORQUE SIGNS AND IDENTIFYING
THE ROBOT DYNAMICS

Assume now that each component of the stacked vector τ
of joint torques is known only in absolute value. In vector
format, this means that we know only the non-negative values
τ s = |τ |. In such situation, it is impossible to retrieve

1We collect equivalently motor current samples, assuming thatK is known.

a reliable estimation of the dynamic coefficients with the
available methods in the literature. In order to retrieve from
τ s the correct signs of the original torques, and thus properly
estimate the dynamic coefficients πR, we take advantage of
the features offered by the PBPR algorithm [10] that is capable
of extracting a feasible set of dynamic parameters p.

Algorithm 1: Tree Penalty-Based Parameters retrieval
(T-PBPR)

1 Collect the retrieved data during an exciting trajectory: qj(t),
q̇j(t), q̈j(t), |τj(t)|, j = 1, . . . , n;

2 Extract all the s torque segments;
3 Build an initial regressor matrix s0Y R by evaluating Y R

with the smallest number s0 ≤ s of segments such that
s0Y R is well-conditioned;

4 Build an initial measurements vector s0τ , whose elements
are related to the rows of s0Y R;

5 Choose a convenient number of nodes w ≤ s0 to be
expanded at each iteration;

6 for k = s0, . . . , s do
7 if k = s0 then
8 ξ ← 2s0 ;
9 else

10 ξ ← 2w;
11 end
12 Solve ξ OLS problems employing kY R and kτ for

identifying the dynamic coefficients π̂R,i (i = 1, . . . , ξ)
(one set for each node of the tree), according to eq. (5);

13 For each π̂R,i, apply the PBPR algorithm in (6) using
function φ1 in (7), and select the w nodes returning the
lowest cost function f(p);

14 Expand those w nodes only, choosing a new torque
segment τ ′ and stacking a new block Y

′
R to the

regressor matrix, yielding
k+1Y R ←

[
kY

T
R Y

′T
R

]T
and

k+1τ ←
[

kτT τ ′T
]T ;

15 end
16 Retrieve the motor torque signs that have been estimated for

each segment by following the generated tree path;
17 Apply the PBPR algorithm in (6) using function φ2 in (7)

with the complete regressor ⇒ optimal π̂R and p̂.

The basic hypothesis we make concerns smoothness. For
each joint j, we assume that the torque τj(t) keeps with
continuity the same sign until the signal τj,s reaches zero (up
to a small threshold). Therefore, we can isolate portions of the
torque signal (henceforth, segments) for each joint having the
same (yet, unknown) sign. Each segment is related to a single
joint and typically contains a different number of samples.
Moreover, the segment detection procedure can be performed
in any order from joint to joint.

Let σ1, . . . , σn be the numbers of detected segments for
joints 1, . . . , n, and s = σ1 + . . .+ σn be the total number of
isolated torque segments. For each segment, the torque could
be either positive or negative —a binary choice. Therefore,
one should solve S = 2s identification problems, although
only a small subset of the S solutions will provide feasible
dynamic parameters. In principle, we may apply S runs of the
PBPR algorithm, and select eventually the solution with the
lowest value of the cost function in (6). This procedure is time
consuming due to the exponential nature of the problem, and
thus unfeasible in practice for real applications.
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Therefore, we proceed more efficiently by building a tree
in which each node adds a new segment to the regressor (i.e.,
a block of rows to the matrix Y in (4)), branching the node
for the two possible signs of the added τ . We progressively
prune the branches leading to unfeasible sets of parameters.
Moreover, one expands only the ‘most promising’ branches
to further reduce the computational effort, yielding a dramatic
improvement in performance. The complete procedure, named
Tree Penalty-Based Parameters Retrieval (T-PBPR), is de-
scribed in Algorithm 1. The outputs of the T-PBPR algorithm
are the estimated signs for each of the S (or less) torque seg-
ments and, consequently, the identified dynamic coefficients
π̂R together with a feasible set of dynamic parameters p̂.

IV. RESULTS

A. The KUKA KR5 robot

We have tested the T-PBPR algorithm on the KUKA KR5
Sixx R650 manipulator. Figure 1 shows a picture of this
robot and the used Denavit-Hartenberg (D-H) frames, while
Tab. I reports the associated D-H parameters. Through the RSI
software, the control unit of the KUKA KR5 returns (every
12 ms) only the absolute value of the motor currents, together
with the joint position measures from the encoders. In this
paper, however, we have considered a simulated version of
this robot. Without loss of generality, we assumed to acquire
directly the absolute value of the motor torques.

For our simulations, we have chosen a set of plausible
dynamic parameters and generated the robot dynamic model in
symbolic form using the Euler-Lagrange method. At the end of
the procedure, we obtained 36 dynamic coefficients πR. The
absolute values of the motor torques have been made available
to the algorithm after the addition of noise.

Fig. 1. The KUKA KR5 Sixx R650 (left) with the used D-H frames (right).

TABLE I
DENAVIT-HARTENBERG PARAMETERS OF THE KUKA KR5 SIXX R650

i ai [m] αi [rad] di [m] θi [rad]

1 a1 = 0.075 −π/2 d1 = 0.132 q1 = 0

2 a2 = 0.270 0 0 q2 = −π/2
3 a3 = 0.09 π/2 0 q3 = 0

4 0 −π/2 d4 = −0.295 q4 = 0

5 0 π/2 0 q5 = 0

6 0 π d6 = −0.08 q6 = 0

B. Numerical simulations
For the identification, we designed exciting trajectories as

sums of multiple sine waves (different for each of the six
joints), as described in [7]. These trajectories have been
commanded during 13.33 s, collecting for each joint M = 667
samples of positions (for a total of 4002 samples), while the
simulated motor torques τ have been computed through the
nominal inverse dynamic model (2). Figure 2 shows the actual
motor torques τj , j = 1, . . . , 6 (blue lines) and the downstream
torques τs,j = |τj + ε| (red lines). Due to the presence of
noise, the signals τs,j have been filtered (green lines) and
used as inputs for the T-PBPR algorithm, together with the
joint positions, velocities and accelerations. Furthermore, in
order to properly isolate the torque segments, we discarded
the samples close to zero (i.e., below a given threshold,
different for each joint) resulting in a total of 2577 torque
samples. Accordingly, we discarded the corresponding motion
samples. Physical feasibility constraints have been supplied to
the T-PBPR algorithm, together with suitable upper and lower
bounds for each of the 60 dynamic parameters p.

The number of chosen segments to be considered initially is
s0 = 5, resulting in 32 concurrent optimization problems to be
solved during the first step of the T-PBPR algorithm. As a good
trade-off between the computational effort and the reliability
of the obtained results, we chose a branching factor w = 5
(see Algorithm 1), so as to deal with 10 optimization problems
at each iteration. Figure 2 reports also the results of the
torque signs estimation by the T-PBPR algorithm. Comparing
the +/- signs of the identified s = 39 segments (highlighted
with yellow strips) with the signs of the actual torques (blue
lines), we observe that all the torque signs have been correctly
estimated.

As a result of the T-PBPR algorithm, the most significant
27 estimated dynamic coefficients π̂R (out of a total of
36), namely those coefficients with relative standard deviation
below 25%, are reported in Tab. II, showing the effectiveness
of the proposed method.

Finally, to validate the feasible dynamic parameters obtained
from the T-PBPR algorithm, we have used the values p̂ in
a Newton-Euler routine to compute the robot motor torques
along new validation trajectories. The result of this procedure
is reported in Fig. 3, where the estimated torques are almost
overlapping the nominal ones. This indicates also the robust-
ness of the proposed method, which returns reliable estima-
tions even in the presence of non-negligible noise affecting
the torque signals.

V. CONCLUSIONS

We have presented an efficient method for identifying the
dynamic coefficients of a robot equipped with motor current
or joint torque sensors that return only the absolute value
of the measured quantity. Classical OLS techniques do not
provide reliable results in this case. Estimation of the correct
signs of the torques can be obtained by the proposed T-PBPR
algorithm that incrementally builds a tree of possible solutions,
solves a reduced set of constrained optimization problems, and
progressively discards the tree nodes leading to unfeasible
parameters. The output of the complete algorithm includes
the estimated torque signs during the analyzed motion, the
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Fig. 2. Simulated torques for the KUKA KR5 robot during an exciting
trajectory. The nominal torques (blue lines) are hidden to the user, while
only their absolute values (with additional noise) are available as measures
(red lines). These are filtered (green lines) before being used in the T-PBPR
routine. The yellow strips highlight the detected segments, and the +/- symbols
indicate the signs estimation obtained as a result of the T-PBPR algorithm.
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Fig. 3. Validation of the T-PBPR algorithm on a new trajectory. The nominal
torques during robot motion (blue lines) are compared with the estimated
torques obtained from a Newton-Euler routine (red lines), which employs the
feasible set of dynamic parameters p̂ returned by the T-PBPR algorithm. The
estimation error (dashed black lines) is minimal.

estimated dynamic coefficients and a feasible set of dynamic
parameters. As a result, the obtained dynamic model can be
used for motion control laws based on inverse dynamics, both
in Euler-Lagrange and in Newton-Euler formulations.

The method has been tested on a simulated version of a
KUKA KR5 manipulator, obtaining very satisfactory results. A
simulation study was necessary in order to effectively validate
the proposed approach, since no ground truth measurement of
motor currents or torques would be available on the real robot.
We are currently working on the application of the T-PBPR
algorithm to the KUKA KR5 Sixx manipulator available in
our laboratory.

TABLE II
REAL (πR) AND ESTIMATED (π̂R) DYNAMIC COEFFICIENTS FOR THE

SIMULATED KUKA KR5 ROBOT

Symbolic form πR(p) of the dynamic coefficients πR π̂R

J1yy + J2yy + J3zz + a21m1 + (a21−a22)m2

+(a21−a22−a23)(m3+m4+m5+m6)+2a1c1xm1 1.7961 1.8352
J2xx − J2yy + a22 (m2 +m3 +m4 +m5 +m6) 1.0935 0.8926

J3xx − J3zz + J4zz + a23m3

+(d24 + a23)(m4 +m5 +m6)− 2d4c4ym4 1.2425 1.1083
J3xz 0.2000 0.2820

J3yy + J4zz − a23m3

+(d24 − a23)(m4 +m5 +m6)− 2d4c4ym4 2.0967 1.8308
J3yz 0.2000 0.2154

J4xx − J4zz + J5zz 0.5000 0.7674
J4yy + J5zz 1.5000 1.5438

J5xx + J6yy − J5zz + d26m6 − 2d6c6zm6 0.2040 0.1709
J5xy 0.1000 0.1125
J5xz 0.1000 0.0591

J5yy + J6yy + d26m6 − 2d6c6zm6 0.7040 0.7745
J5yz 0.1000 0.1003

J6xx − J6yy 0.0000 0.0497
J6xy 0.0500 0.0614
J6xz 0.0500 0.0596
J6yz 0.0500 0.0361
J6zz 0.2000 0.2298

a2(m2 +m3 +m4 +m5 +m6) + c2xm2 3.1500 3.1504
c2ym2 0.1200 0.1172

a3(m3 +m4 +m5 +m6) + c3xm3 0.4100 0.3966
d4(m4 +m5 +m6)− c4ym4 + c3zm3 -1.1050 -1.1138

c4xm4 0.0900 0.1028
c5ym5 + c4zm4 0.0900 0.0506

d6m6 + c5zm5 − c6zm6 -0.1200 -0.1160
c6xm6 0.0100 0.0248
c6ym6 -0.0100 -0.0178
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