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Abstract— We present an approach to safe physical Human-
Robot Interaction (pHRI) for industrial robots, including
collision detection, distinguishing accidental from intentional
contacts, and achieving collaborative tasks. Typical industrial
robots have a closed control architecture that accepts only veloc-
ity/position reference inputs, there are no joint torque sensors,
and little or no information is available to the user on robot
dynamics and on low-level joint controllers. Nonetheless, taking
also advantage of the presence of a Force/Torque (F/T) sensor
at the end-effector, a safe pHRI strategy based on kinematic
information, on measurements from joint encoders and motor
currents, and on end-effector forces/torques can be realized. An
admittance control law has been implemented for collaboration
in manual guidance mode, with whole-body collision detection
in place both when the robot is in autonomous operation and
when is simultaneously collaborating with a human. Several
pHRI experiments validate the approach on a KUKA KR5
Sixx R650 robot equipped with an ATI F/T sensor.

I. INTRODUCTION

Nowadays, robot co-workers are making their way in in-
dustrial environments [1], being able to share their workspace
with humans, avoiding dangerous situations and collisions,
interacting both at the cognitive and physical levels with the
operators, and collaborating with them in safe and useful
ways. These objectives ask for a combination of novel
solutions in the mechanical and actuation design of robots
(lightweight/agile arms, compliant joints, variable stiffness
actuators) to limit potential injuries for humans, in the use of
additional sensory systems to monitor the robot environment,
and in the development of intelligent algorithms that control
interaction events and signals [2]. With the goal of address-
ing general issues about physical Human-Robot Interaction
(pHRI), we have introduced in [3] a hierarchical control
architecture based on three nested layers of desirable robot
behaviors, namely safety, coexistence, and collaboration.

Indeed, safety should always be enforced as the primary
operative requisite, preventing unintentional human-robot
collisions, but also detecting and promptly reacting to them
whenever they happen. Robot dependability is increased
when such feature can be guaranteed with the minimum
use of extra sensors. A successful example of such safety
layer is the momentum-based residual method for collision
detection and isolation [4], [5], which can be implemented
with or without joint torque sensing. However, this method
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requires a good knowledge of the robot dynamics, a condition
that becomes critical when large friction is present and/or
for industrial robots whose dynamic model is not made
available to end-users. A more rough collision detection can
be achieved also by processing just the motor currents [6],
[7], but in this case reaction is mainly limited to stopping
robot motion without successive interactions.

The control layer that guarantees human-robot coexistence
monitors the workspace using external sensors (e.g., vision).
Robot motion is then modified online in response to the
closeness to humans or other dynamic obstacles. An efficient
algorithm for distance computation using depth sensors was
presented in [8], while many recent industrial implementa-
tions (see, e.g., [9]–[11]) have achieved satisfactory behav-
iors as well. Standard interfaces and kinematic commands to
the robot are in fact already sufficient to the purpose.

As for the collaboration layer, an accurate dynamic model
and the possibility of commanding motor currents/torques
were shown to be important ingredients for safely control-
ling the exchange of forces between human and robot. In
fact, using again the residual method, contact forces acting
anywhere on the robot structure can be estimated [12] and,
based on these, a generalized impedance control (with natural
or desired inertia) can be realized at the contact point [13].
Moreover, one can also distinguish between intentional (soft)
contacts and accidental (hard) collisions, by suitably low-
pass filtering the components of the residual vector with
different (respectively, small and large) bandwidths, as sim-
ilarly done also in [14]. These results were obtained on
lightweight, compliant robots with an open control archi-
tecture that allows to impose motor torques (viz. currents,
as their proxy), and after having identified an accurate and
complete dynamic model (see, e.g., [15] for the KUKA LWR
IV+ and [16] for the Universal Robots UR10). A natural
question is whether these results could be transferred to
more conventional industrial arms, whose closed architecture
provides no access to the user other than via kinematic
reference commands, and where a limited knowledge about
system dynamics and low-level robot controllers is available.

In our previous work [17], we have shown that collisions
of a KUKA KR5 industrial robot with a human user could
be detected by processing the motor currents. Moreover,
by using low-pass and high-pass filters, one could classify
contacts at reasonably low speeds as hard (collision) or soft
(intentional). In the latter case, the robot would switch to a
collaboration mode, implementing compliant-like behaviors
in response to the forces applied by the human operator.
The control strategies did not use an explicit measure of the
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contact forces, relying instead only on robot proprioceptive
information (joint position and motor currents) and kinemat-
ics. In a test campaign with multiple users, we verified that
the collaborative behavior obtained when pushing/pulling the
robot end-effector was not felt as transparent as expected in
response to the (unmeasured) applied forces.

In this paper, we build upon our results in [17] and
propose novel interaction strategies for the same class of
industrial robots, exploiting the additional presence of a
6D Force/Torque (F/T) sensor mounted on the end-effector.
Thanks to the feedback of the measured forces, admittance
control laws are designed to handle human-robot interaction
and collaboration. Collision detection is performed by filter-
ing either the motor currents or the forces measured by the
sensor. In this way, we can better distinguish hard collisions
from soft contacts at the end-effector level, and start in the
latter case a collaboration by manual guidance in a very
effective and natural way for the operator. In addition, we
can detect a collision on the robot body even during a human
collaboration with the robot end-effector. For this, a signal-
based method using motor torque differences is implemented.

The paper is organized as follows. The main characteristics
of the industrial robot (with F/T sensor) used in our study
are summarized in Sec. II. Section III presents the proposed
schemes for safe pHRI, including the kinematic control laws
for normal task execution, the detection of collisions, their
analysis and handling, and the admittance control laws used
for collaboration. Section IV reports on the experiments with
a KUKA KR5 (shown in the accompanying video), while the
main results are summarized in the concluding Sec. V.

II. KUKA KR5 ROBOT WITH ATI F/T SENSOR

We considered as target system the KUKA robot KR5 Sixx
R650, a small-size serial manipulator with n = 6 revolute
joints, including a spherical wrist. Figure 1 shows the frames
and the associated table of Denavit-Hartenberg (DH) param-
eters used for kinematic computations. This industrial robot
has a typical closed control architecture: the user specifies
a six-dimensional joint velocity vector q̇r (and/or a joint
position) as reference input, while having access to the joint
position q, measured by six encoders, and to the absolute
values of motor currents i —see Fig. 2. These input/output
signals are exchanged with a user-defined control program
every Tc = 12 ms (fc = 83.3 Hz), the maximum (but still
relatively slow) sampling frequency that can be specified
by the KUKA RobotSensorInterface (RSI) [18]. Neither the
inner structure of the control blocks local to each motor/joint,
nor information on the robot dynamic model are made
available by the robot manufacturer.

We shall consider mainly trajectories defined in terms of
the end-effector position p ∈ R3, whose direct kinematics is

p = kp(q) (1)

For the differential kinematics, we use the geometric 6 × 6
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Fig. 1. The KUKA KR5 Sixx R650, with the used Denavit-Hartenberg
frames and table of parameters.

!"#$%&!
"'()$*%+,-%'!

*%."-%'!
/"0"(,+1+%%*!

2)+%#"(3!
+%%*!

#4$$)'(!
,',+%01+%%*!

!!"! 
51

678!
.)'.%$!

Fig. 2. The closed control architecture of the KUKA KR5 robot equipped
with a F/T sensor, with the input and output signals available to the user.

Jacobian matrix J [19](
v

ω

)
= J(q)q̇ =

6∑
i=1

J i(q)q̇i, (2)

where J i ∈ R6 is the generic ith column of J and the
Jacobian is partitioned as

J(q) =

(
Jp(q)

Jo(q)

)
, Jp(q) =

∂kp(q)

∂q
. (3)

The robot is equipped with a 6D Force/Torque (F/T) sen-
sor, the small Mini45 model by ATI Industrial Automation,
that is used for measuring contact forces f ∈ R3 and
moments m ∈ R3 at the end-effector, expressed in a frame
related to the last DH frame (attached to the robot link 6).
We denote collectively these measured quantities as

F =

(
f

m

)
∈ R6, f =

 6fx
6fy
6fz

, m =

 6mx
6my
6mz

. (4)

The device transmits only analog signals through a screened
cable which are acquired and converted at 1 kHz by a Data
Acquisition (DAQ) card and its software running on the user
computer. These data are elaborated within the user-defined
control law, whose output is interfaced via the RSI to the
low-level controllers of the KUKA robot.
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As noted in [17], only the absolute values of the motor
currents (i.e., |ij | ≥ 0, rather than ij for motor j) are
available via the RSI interface. This represents a specific
limitation of this industrial robot for many of the desirable
user-defined control actions, such as gravity compensation
by means of a motor current feedforward. In addition,
computing differences between absolute values of motor
currents may be misleading. In static conditions, we can
attribute a sign to each component of the measured motor
current vector based on the dominant role of gravity and on a
preliminary analysis made on the whole configuration space.
However, this is no longer easy to do when the manipulator
is in motion. If we know nothing about the robot dynamic
model, it is hard to attribute reliably a sign to the motor
currents provided by the RSI, and thus to interpret correctly
the presence or absence of sudden changes in contiguous
time instants. Therefore, wherever possible, we will follow
a different strategy in the next section.

III. SAFE PHRI

The general algorithm for a safe pHRI works in sequential
steps. At every sampling instant, we check if there is a
collision on the robot body or a contact/collision on its
end-effector. When no collisions nor intentional contacts are
being detected, the robot starts/proceeds with the execution
of the original motion task. Different types of filters (and
thresholds) will be used in the various cases. A first high-
pass filter is for whole-body collision detection, and uses
a variable thresholding on the absolute values of the motor
currents, as first developed in [17]. A second high-pass filter
is on the forces measured by the F/T sensor, which monitors
possible collisions at the robot end-effector level. When such
collisions are detected, the robot stops its motion. In the
absence of collisions, the human can request the start of
a collaboration phase by pushing softly on the robot end-
effector. This situation is recognized by using a third, low-
pass filter of the measured forces. We consider also the
mixed situation in which the robot body collides against an
obstacle/human in the environment, while collaboration is
taking place at the end-effector level. In this case, we take
advantage of the equivalent motor currents associated to the
quantities measured by the F/T sensor (which are known in
sign). An admittance control law designed in the Cartesian-
or in the joint-space is applied in response to a physical
request of collaboration.

A. Kinematic control for normal task execution

During normal operation, a desired Cartesian trajectory
pd(t) ∈ R3 is assigned to the end-effector position. The task
is thus of dimension m = 3. Since there are n = 6 joints
and n > m, the robot will be redundant for this task and an
extra control should be exerted on the robot self-motions in
the joint space. We use the kinematic control law

q̇r = J#
p (q)ṗe +

(
I − J#

p (q)Jp(q)
)
q̇0

= q̇0 + J#
p (q) (ṗe − Jp(q)q̇0) ,

(5)

where

ṗe = ṗd +K (pd − kp(q)) , (6)

with control gain matrix K > 0 (typically, diagonal) on
the task error ep = pd − k(q). Matrix J#

p is the 6 × 3
pseudoinverse of the positional task Jacobian Jp, the 6× 6
matrix I−J#

p Jp is an orthogonal projector in its null space,
and the joint velocity q̇0 helps in shaping the behavior of the
robot configuration. The second expression in (5) illustrates
the efficient implementation of the control law.

B. Collision detection

Undesired (hard) collisions are represented by measured
force or motor current signals with a high-frequency spec-
trum content. Digital filtering of signals will be followed
by a comparison with a (constant or time-varying) threshold
that defines the change of interaction state. In the following,
denote by yk = y(tk) a generic vector signal at time
t = tk = kTc, with components sampled every Tc seconds.
Denote by yk,j the jth component of this vector. We will
distinguish two situations of collision.

1) Collision with the robot body: This collision is handled
according to the filtering process of motor currents i. The
processing is limited to the first three large joints, certainly
the most stressed by gravity and the possible collisions on
the robot body. The motor currents are filtered using a digital
high-pass Chebyshev filter of order 3,

iHPF,k = h0ik + h1ik−1 + h2ik−2 + h3ik−3, (7)

with h0 = −0.239207, h1 = −0.6262528, h2 = 0.6262528,
and h3 = 0.2392073. This choice corresponds to a cut-off
frequency fco = 10 Hz.

The filtered motor currents are then compared to time-
varying thresholds τHPF(t), depending on the reference
(commanded) joint velocities q̇r and related accelerations
q̈r (obtained by backward numerical differentiation), as
proposed in [17]. For the high-pass filtered motor current,
we use

τHPF = τHmin
+ kHv

|q̇r|
vmax

+ kHa

|q̈r|
amax

> 0, (8)

with the numerical parameters given in Tab. I. This type of
thresholds were implemented in order to avoid false alarms
due to large but normal absolute values of currents.

We have also considered collisions that can be followed
by an extended period of continuous contact, e.g., when a
human is possibly clamped by the robot. While the first few
instants of the hard collision will be identified by a peak
in the high-pass filter signal, the permanent contact with a
uniform applied force can be considered as a soft interaction.
Therefore, it is useful to compute also a low-pass filtered
version of the motor currents. This was chosen as the simple
average of the last three consecutive samples,

iLPF,k =
1

3
(ik + ik−1 + ik−2) . (9)
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Similar to (8), also the low-pass filtered motor currents are
compared to a time-varying threshold,

τLPF = τLmin
+ kLv

|q̇r|
vmax

+ kLa

|q̈r|
amax

> 0, (10)

whose numerical parameters are given again in Tab. I. For
more details about filters and thresholds, see [17] and [20].
Parameters were tuned by trials in nominal conditions for
maximum dynamic sensitivity while avoiding false positives.

TABLE I
PARAMETERS OF THRESHOLDS ON FILTERED MOTOR CURRENTS

joint 1 2 3
τHmin

0.1 0.18 0.16
HPF kHv 0.1 0.35 0.25

kHa 0.2 0.2 0.2
τLmin

0.1 0.96 0.99
LPF kLv 1.6 1.3 1.3

kLa 0 0 0
for both vmax 200 125 100

HPF and LPF amax 1200 1050 900

2) Collision on the robot end-effector: To identify this
type of collisions, we use a high-pass filter on the measured
forces of the form

fHPF,k = fHPF,k−1 +
(
fk − fk−1

)
αHPF , (11)

choosing as cut-off frequency

fco = 15 Hz ⇒ αHPF ' 0.5307. (12)

When ‖fHPF,k‖ > εfHPF
, such a collision is identified. The

joint velocity command becomes q̇r = 0 and is kept to zero
until the undesired contact has been removed. For this to
be decided, similar to the previous case of extended contact,
we need a low-pass filter for soft interaction. However, since
we are now working with measured forces, we will use the
filter (13) of the next section III-C on collaboration. When
both filtering processes will no longer reveal the presence
of a contact, the robot will resume execution of the original
task (after a short while, for security reasons).

C. Collaboration

We need to distinguish a hard collision on the robot end-
effector from a soft contact, which is assumed to be asso-
ciated to the human intention to collaborate. Soft contacts
are characterized by the absence of high-frequency content
in the force signal f ∈ R3. Therefore, they will be isolated
by low-pass filtering the measured forces. For this, we used
a simple first-order digital filter (of the RC type),

fLPF,k = fLPF,k−1 +
(
fk − fLPF,k−1

)
αLPF . (13)

The scalar smoothing factor αLPF ∈ (0, 1] is related to the
desired cut-off frequency fco > 0 (in Hz) of the filter, as
given by

αLPF =
Tc

Tc + Tco
, with Tco =

1

2πfco
. (14)

Since the KUKA RSI imposes Tc = 12 ms, for the low-pass
filter (13) we have set

fco = 5 Hz ⇒ αLPF ' 0.2738. (15)

The intentional contact is recognized if ‖fLPF,k‖ > εfLPF
.

1) Collision during collaboration: Even if the robot is
compliant while being manually guided by the human during
a collaboration phase, for safety reasons it is necessary to
stop its motion whenever a collision (or another undesired
contact) is detected on the robot body. To understand if such
a collision occurs, we do not use in this case a filtering
process, neither on the currents nor on the measured forces.

We first note the following. During collaboration, the
absolute value of the jth component of the motor current
vector (for j = 1, . . . , 6) at t = tk can be written as

|ik,j | =
∣∣∣ik−1,j +

(
JT

j (qk)F k

)
/km,j

∣∣∣ , (16)

where km,j > 0 is the current-to-torque drive gain of motor
j and we used the notation introduced in (2). The vector
ik−1 ∈ R6 of motor currents, without the contribution of
the interaction force at the end-effector level, represents
approximately the command used for compensating gravity
and executing the nominally planned motion task with the
robot. The second term on the right-hand side of (16)
represents instead the motor current (i.e., a torque divided by
the motor drive gain) that arise from the manual guidance of
the robot end-effector. When a collision occurs on the robot
body, the motor currents will change and the relation (16)
must be rewritten as

|ik,j | =
∣∣∣ik−1,j +

(
JT

j (qk)F k

)
/km,j + icoll,j

∣∣∣ , (17)

where icoll,j is the contribution of the collision on the robot
body to the total current of motor j. When measuring motor
currents through the RSI interface in our target KUKA
KR5 robot, unfortunately we only get positive values. Thus,
the subtraction of (16) from (17) will provide no reliable
information about icoll,j .

We propose to use a different algorithm, which implements
a residual-like method that identifies possible collisions on
the robot body, based on an estimate of joint torques dif-
ferences. For j = 1, . . . , 6, define the jth component of the
residual vector rk = r(tk) as

rk,j = |km,j (ik,j − ioff,j)| −
∣∣∣JT

j (qk)F k

∣∣∣ . (18)

In [17], ioff,j was evaluated as the motor current at joint
j due to the gravity contribution (in the absence of col-
laboration). However, when the robot is in dynamic motion
and/or in the presence of end-effector force/torque F 6= 0,
this evaluation may lead to critical situations (false posi-
tives/negatives). Therefore, we have simply set ioff equal
to the last measure of motor currents before the start of a
collaboration task, canceling this from the actually measured
motor currents ik. When there is only the intentional contact
at the end-effector, the value of the series of residuals (18)
is always about zero. When a collision occurs on the robot
body, one or more of the components (18) of the residual
vector rk, taken in absolute value, will become larger than
a small positive threshold εr > 0. Robot motion is then
stopped, having recognized the simultaneous presence of an
intentional collaboration force and a collision force.
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2) Admittance control during collaboration: Once an
intentional contact has been isolated, a Cartesian admittance
control law is used here to handle the exchanged forces
between human and robot. The velocity command q̇r to
the robot is generated kinematically from the end-effector
admittance velocity v ∈ R3 in response to a Cartesian force,
which is composed in turn by the measured force f and by
a control action proportional to the position error e ∈ R3

w.r.t. the initial position where physical interaction started.
The control law is then

q̇r = J#
p v, v = Ccartf cart, f cart = f +KP,cart e,

(19)
with a Cartesian compliance matrix Ccart > 0, and where
the ‘equivalent spring’ stiffness matrix KP,cart > 0 (typ-
ically diagonal) is tuned so as to obtain a gentle robot
behavior when the human is pushing or releasing contact.

By using (19), the robot becomes compliant at will to the
forces applied by the human so that the end-effector can be
manually guided around with relative ease. When contact is
gone, the robot senses no more forces and will return to the
position assumed at the start of interaction with a desired,
soft transient. After some time (we arbitrarily set 4 s in the
experiments), the robot will resume execution of the original
task from the reached position.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the proposed
framework for safe pHRI, with parallel collision detec-
tion/reaction and collaboration capabilities, we performed
several experiments on a KUKA KR5 Sixx R650 industrial
robot, equipped with an ATI Mini45 F/T sensor. The original
task was to move cyclically the robot end-effector along a
cyclic, piecewise linear path passing through four Cartesian
points with rest-to-rest timing profiles. During normal oper-
ation, the kinematic control law (5) was used with

q̇0 = K0(qd − q), K0 = k0I > 0, (20)

where qd = q(t = 0) is the configuration of the robot when
a contact is being detected (resetting then time to t = 0),
and with a scalar gain k0 = 2. In order to test the detection
and reaction to collisions, we consider different situations of
possible undesired contacts.

In the first part of the experiment (shown in the accom-
panying clip), the human operator touches softly the robot
end-effector to engage a collaboration phase, as shown in
Fig. 3. The intentional contact is recognized by the low-pass
filter with threshold εfLPF

= 7 N, as shown in the left side
of Fig. 4. Hence, the robot starts the collaboration becoming
compliant under the effect of the control law (19), where
we chose a compliance matrix Ccart = 0.008 · I and a
proportional error gain KP,cart = 300 · I . As shown on the
right of Fig. 4, the high-pass filtered forces do not exceed the
threshold εfHPF

= 10 N, since these interaction forces are
characterized by low frequencies components (soft contact).

In the second part of the experiment, the human hits in
an impulsive way the end-effector, emulating an unexpected

Fig. 3. Robot compliant behavior in a collaborative task: Manual guidance.

Fig. 4. Norm of low-pass filtered force fLPF (left) and high-pass filtered
force fHPF (right) at the end-effector. Collaboration starts at t ≈ 16 s.

Fig. 5. Norm of the high-pass filtered forces. A collision on the end-effector
is detected at t ≈ 22.4 s.

collision. Thus, the high-pass filter on the measured force
is excited and the norm of the filtered forces arises quickly,
as shown in Fig. 5. When ‖fHPF ‖ > εfHPF

, collision is
detected and the robot stops immediately.

When a collision turns into an extended contact (e.g.,
the human is clamped by the robot, or obstacles cannot be
removed), the robot should be able to recognize the situation.
In this case, we use the combination of high-pass and low-
pass filtering of forces as in case 2) of Sec. III-B. With
reference to Fig. 6, the high-pass filter is used in order
to identify the initial hard impact (at t ≈ 30.4 s), while
the low-pass filter is needed to observe the entire interval
of contact. Once this is eventually removed, the robot will
resume execution of the original task.

To detect collisions on the robot arm, we evaluated the
filtering processes in eqs. (7) and (9), considering the motor
currents at the first three joints. The variable thresholds (8)
and (10) have been used, with the parameters given in Tab. I.
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Fig. 6. Norm of the high-pass (left) and the low-pass (right) filtered forces.
After the collision is detected at t ≈ 30.4 s, the contact force is continuously
applied at the end-effector for about 4 s.

Similarly to the previous situation, the human hits the robot,
now on the 4-th link, emulating an impulsive collision along
the robot arm. As shown in Fig. 7, the high-pass filter on the
current of the motor at the first joint detects the impulsive
collision at t ≈ 46 s. The low-pass filter is used to understand
if the collision is kept for a while. In fact, by combining
the signals provided by the high-pass and low-pass filters,
a second extended collision (about 3 s long) is detected at
t ≈ 58 s. Due to the geometry of the contact, part of this
force is absorbed by the robot structure, so that joint 2 is
not able to detect the collision, as shown in Fig. 8 (same
behavior for joint 3).

Fig. 7. High-pass (left) and low-pass (right) filtering of motor current at
joint 1 with variable threshold.

Fig. 8. High-pass (left) and low-pass (right) filtering of motor current at
joint 2 with variable threshold.

Finally, we have considered the situation of a collision
along the robot arm during a human-robot collaboration.
While a first human user interacts with the robot at its end-
effector level, a collision with another human occurs along
the robot body. This extra collision can be detected through
the components of the residual vector defined by (18). When

at least one of these exceeds the threshold εr = 22 N,
collision is detected. Note that, for the residual computations,
we consider also the torque provided by the F/T sensor. As
shown in Fig. 9, a contact is detected by r1 at t ≈ 71 s. The
complete experiment can be seen in the accompanying video
clip. Plots can be appreciated much better when looking in
parallel to the video.

Fig. 9. Components of the motor current residual vector.

V. CONCLUSIONS

We have addressed a number of problems that arise in
order to guarantee safety and collaboration during pHRI,
using a conventional small-size industrial robot in a typical
end-user setting with the only additional benefit of a F/T
sensor on the end-effector. We moved away from the advan-
tageous situation available in new generations of lightweight
and compliant manipulators, considering instead the real-
world limitations due to: a closed control architecture that
accepts only kinematic commands; no access to information
on the robot dynamics and on its joint controllers; lack
of joint torque sensing; presence of non-negligible friction;
measurement limitations (both in sign and frequency).

Despite these restrictions, we produced a dependable
solution that detects collisions on the whole robot body,
distinguishing also soft intentional contacts from accidental
collisions, and that simultaneously enables natural collabo-
rative behaviors, e.g., manual guidance of an end-effector
tool. The proposed controller uses a range of techniques,
including low-pass and high-pass filtering of contact forces
measured by the F/T sensor and of motor currents, a residual-
like scheme for separating torque/current anomalous contri-
butions due to extra collisions, and a kinematic control law
that exploits robot redundancy in executing the original task.
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