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Abstract— In physical Human-Robot Interaction, the basic
problem of fast detection and safe robot reaction to unexpected
collisions has been addressed successfully on advanced research
robots that are torque controlled, possibly equipped with joint
torque sensors, and for which an accurate dynamic model is
available. In this paper, an end-user approach to collision de-
tection and reaction is presented for an industrial manipulator
having a closed control architecture and no additional sensors.
The proposed detection and reaction schemes have minimal
requirements: only the outer joint velocity reference to the robot
manufacturer’s controller is used, together with the available
measurements of motor currents and joint positions. No a
priori information on the robot dynamic model and existing
low-level joint controllers is strictly needed. A suitable on-line
processing of the motor currents allows to distinguish between
accidental collisions and intended human-robot contacts, so as
to switch the robot to a collaboration mode when needed. Two
examples of reaction schemes for collaboration are presented,
with the user pushing/pulling the robot at any point of its
structure (e.g., for manual guidance) or with a compliant-like
robot behavior in response to forces applied by the human.
The actual performance of the methods is illustrated through
experiments on a KUKA KR5 manipulator.

I. INTRODUCTION

Safe physical Human-Robot Interaction (pHRI) typically
requires lightweight and compliant mechanical structures,
external sensing capabilities, and effective control schemes
so as to prevent collisions and/or address the various phases
of an impact, i.e., collision detection and robot reaction [1],
[2]. These robot characteristics should be able to handle both
unexpected collisions and intentional contacts, minimizing
the risk of injuries in the first case [3] and establishing useful
human-robot collaboration in the latter [4].

To address the mechanical issues of safe pHRI, some
research robots, such as the series of DLR LWR manipu-
lators [5] or the Barrett WAM [6], have been designed by
introducing on purpose compliant joints [7], [8] (recently,
even with variable stiffness [9]) and adopting slender and
light mechanical links. In particular, the technology of the
DLR LWR-III arm has been recently transferred to an
industrial product, the KUKA LWR4+ robot.

For collision avoidance, different types of exteroceptive
sensors are used to monitor the robot workspace and a
large variety of control schemes have been proposed to
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guarantee co-existence of a robot and a human operator —
see, e.g., [10]–[12].

Much attention has been devoted to the basic problem of
detecting a physical collision between the manipulator and its
environment, using only proprioceptive sensors. The classical
approach is based on recognizing abnormal variations of
the motor currents driving the robot, treated as actuation
faults [13]. This feature is present also in some industrial
robots, such as ABB manipulators running the proprietary
control software IRC5 [14]. However, collision detection
without its further isolation (i.e., recognizing which link has
collided) allows only an immediate stop of the robot after
the impact —the simplest robot reaction strategy. Advanced
model-based methods, using an adaptive impedance control
scheme [15] or monitoring the robot generalized momen-
tum [16]–[18], are able instead to extract more information
from a physical collision. In particular, the method in [16],
[17] efficiently estimates the actual joint torques due to
collision at a generic location along the manipulator through
a residual vector signal, without the need of joint torque
sensing. In turn, this allows the design of active/directional
reaction strategies that safely push the robot away from the
collision area.

A further step in pHRI research is concerned with collab-
oration. In this context, a main challenge is to distinguish
between accidental collisions and intentional contacts, the
latter being associated to the human intention to start a
physical collaboration phase. A control architecture that
integrates collision avoidance, detection, and reaction ca-
pabilities, as well as human-robot collaboration, has been
recently presented in [19]. Additional work in this direction
is the subject of the on-going European project SAPHARI.

Beside using innovative mechanical/actuation designs and
possibly involving extra sensors, the above collision detec-
tion and reaction methods rely on two specific operative
conditions: i) the availability of a reliable robot dynamic
model, which is used for residual computations; ii) the ac-
cessibility to motor torque/current commands, which can be
modified on line under strict real-time constraints. However,
wishing to realize sensor-less collision detection and reaction
also on conventional industrial manipulators, both the above
conditions fail to be satisfied. In fact, most industrial robots
come with a closed control architecture that allows only
kinematic control: the end-user can only modify the outer ve-
locity or position references to the low-level joint controllers.
Moreover, no information on the dynamic robot model is
typically available, and even the structure and parameters of
the joint-level inner control loops are unknown.
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The main goal of this paper is to present and evaluate an
approach to collision handling in pHRI for industrial robots
with a closed control architecture. No a priori knowledge
is assumed about the robot dynamic model and the low-
level controllers. As a paradigmatic example, we consider
a small-size 6R KUKA manipulator, in which joint velocity
references can be changed by a user-defined program through
the communication interface available from the robot man-
ufacturer. The interface outputs every 12 ms the actual joint
encoder measures and a signal related to the motor currents.

By processing the current measurements during robot
motion and comparing them with time-varying thresholds
that depend on the commanded joint trajectory, whole-body
collision detection can be realized. To improve sensitivity, we
first eliminate from the measured currents the configuration-
dependent part accounting for gravity, which is identified in
advance through static experiments. Furthermore, by sepa-
rately high-pass and low-pass filtering of the motor currents,
it is possible to distinguish between accidental collisions and
intentional soft contacts with a human. When an intentional
contact is recognized, the robot stops and switches to a
collaboration mode. Two examples of robot reactive behavior
in human-robot collaboration are presented, one with the
human manually driving the robot by pushing/pulling it at
any point of the structure, another with the robot realizing
a compliant-like reaction to an instantaneous force applied
(anywhere) by the human. To obtain these behaviors, we
use directional information in the joint space obtained by
measuring the small joint position variations occurring when
the user applies a force in static conditions.

The paper is organized as follows. We present the operat-
ing conditions on our KUKA KR5 robot in Sect. II, including
a gravity identification scheme that works on the motor
currents. In Sect. III, the proposed collision detection method
and the use of current filtering for distinguishing collisions
and intentional contacts are described and validated through
experiments. The robot reactive behaviors are presented and
tested in Sect. IV. The paper is accompanied by a video
attachment illustrating the performance of the approach.

II. THE KUKA KR5 ROBOT SYSTEM

The proposed collision detection and reaction schemes
have been implemented on a KUKA KR 5 sixx R650 in-
dustrial robot available in our Robotics Lab, see Fig. 1. This
is a small-size 6R manipulator with a spherical wrist, having
28 kg of weight for the moving parts, 5 kg of payload, and
maximum stretch of 0.855 m from the base. The robot uses a
KUKA KR C2sr controller that implements low-level motor
control laws and motion control in the joint or Cartesian
space. The control architecture is actually closed to the end-
user, who can program the robot through the KCP teach
pendant or using the proprietary KRL language and a human-
machine interface. When the robot is equipped with the
KUKA Robot Sensor Interface (RSI) [21], control software

can be implemented on an external PC1 that communicates
with the KUKA controller every 12 ms, possibly collecting
also data from exteroceptive sensors (e.g., vision, depth
sensor, force/torque sensor).

Assignment  of  D-‐H  frames:  Kuka  KR5  Sixx  R650  
  

  

Table  of  D-‐H  parameters:  

i              
1   -‐            
2              
3              
4   -‐            
5              
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Fig. 1. The KUKA KR5 robot and the used D-H frames and table

With reference to Fig. 2, the input provided to the KUKA
controller is typically in the form of velocity or position
references at the joint level, respectively q̇r or qd. The
available output from the robot system consists of the joint
position q, measured by encoders, and the (absolute value
of) applied motor current i.

Fig. 2. A generic block diagram for the joint position, velocity, and current
loops embedded at the low level of an industrial robot controller

We note the following:
1) The control block diagram in Fig. 2 is a generic one.

Though reasonable, it may not correspond necessarily
to the one used in KUKA robots. As a matter of fact,
we do not have any information neither on the low-
level control structure nor on the value of the control
parameters. In particular, the command torque τ is not
measured by any sensor and also the motor current-to-
torque gain is unknown.

2) The performance of any user-defined robot monitoring
or control scheme is hampered by the relatively slow
sampling time (T = 12 ms) of the communication
allowed by the RSI interface. Nonetheless, since the
sampling rate of the low-level KUKA digital controller
is much higher (and due to the possible presence of

1We used an Intel Core 2 Quad Q6600 @2.40GHz, with 2Gb of
RAM, under real-time operative system Ubuntu patched with Real Time
Application Interface (RTAI) for Linux.
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analog current loops), a rather accurate reproduction of
velocity reference commands q̇r is obtained, at least
at moderate speed.

3) According to the robot manufacturer, the RSI interface
provides to the user only the absolute value |ij | of
the motor currents, for j = 1, . . . , 6. In principle,
this is enough for checking the occurrence of faulty
situations for the motors and the system. Unfortunately,
this limited information complicates the use of currents
for detecting collisions (and their directional effect at
the level of robot joints), as well as for the task of
identifying the robot dynamic model.

To illustrate the above items 2) and 3), we present an
illustrative experiment performed on the first three joints of
the KUKA KR 5 robot2. The reference motion for each joint
is specified as

q̇r,j(t) = Aj cosω(t− t0), for j = 1, 2, 3, t ≥ t0,

with the motion starting at t0 and where ω = 1.306 [rad/s],
A1 = −40, A2 = 15, and A3 = 20 [deg/s]. Figure 3 shows3

the commanded reference velocity q̇r, the resulting measured
position q, and the joint velocity q̇ reconstructed by off-
line numerical differentiation (using 5 position data centered
around the current sample). Despite a delay of about 84 ms (7
samples) is present between q̇r and q̇, this affects mainly the
performance of user-defined laws acting through the external
communication/control loop. On the other hand, the overall
performance of the KUKA internal controller appears to
be satisfactory, with the low-level control loops overcoming
most of the coupled and nonlinear dynamics of the robot.

Figure 4 shows the motor currents associated to the
previous robot motion, as provided by the RSI. Despite an
oscillatory motion is being commanded to the joints, these
signals are indeed always positive. They contain relevant
high-frequency noise, making their direct use more critical
for recognizing spurious events such as collisions. On the
other hand, the currents follow approximately the shape of
the commanded velocity (rather than the acceleration profile
associated to the reference motion), thus confirming that the
robot under low-level feedback behaves essentially as a first-
order system (with some disturbance and noise), justifying
the use of purely kinematic control laws.

A. Gravity identification

In order to specify more stringent thresholds on motor
currents so as to improve sensitivity of collision detection,
we have performed an identification of the currents needed
to sustain gravity in the different robot configurations. This
gravity contribution is then eliminated from the measured
currents before any filtering of the signals (see Sect. III-A).

Identification of the configuration-dependent gravity term
g(q) is a subtask of the robot dynamic model identification
problem [22], which can be addressed using by-now standard

2The proposed methods work also for the full 6R robot. For compactness,
only the results on the first three joints are presented throughout the paper.

3For the sake of presentation, the position of joint 2 is shifted by +90◦

with respect to the D-H convention in Fig. 1.

Fig. 3. Sinusoidal reference command velocity q̇r (dashed, red), measured
position q (solid, blue), and velocity q̇ reconstructed numerically (dotted,
black) for the first three joints of the KUKA KR5 robot

Fig. 4. Motor current signals for the first three robot joints on the motion
of Fig. 3, as made available by the KUKA RSI interface

techniques based on joint torque (viz., current) and position
measurements. However, in the present case we have to deal
explicitly also with the lack of knowledge about the current-
to-motor gains Ki and with the fact that only the absolute
values of the motor currents i are available.

The dynamic model of an electrically-driven robot manip-
ulator with N joints takes the usual form

M(q)q̈ + c(q, q̇) + f(q, q̇) + g(q) = τ , (1)

with
τ = Ki i =

(
ki,1 i1 . . . ki,N iN

)T
. (2)

In static conditions, and neglecting the friction term f(q, q̇),
one can proceed with the identification of the motor current
ig associated to gravity by using its linear parametrized form,

g(q) = Yg(q)θg =

 yT
1 (q)

...
yT

N (q)

θg = Ki ig, (3)

where both the vector of dynamic coefficients θg ∈ RM and
the square diagonal matrix Ki of size N are unknown, and
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the gravity regressor matrix Yg has been expressed in terms
of its rows yT

j , j = 1, . . . , N . Equation (3) can be rewritten
component-wise as

yT
j (q)

θg

ki,j
= ± |ig,j |, j = 1, . . . , N,

where we made explicit the fact that only absolute values of
the motor currents are available. In vector form, we obtain

Y (q)θ = i±g , (4)

leading to N linear equations in the N ×M unknowns θ,
with

Y (q) = block diag{yT
j (q)},

θ =

 θg/ki,1

...
θg/ki,N

 , i±g =

 ± |ig,1|
...

± |ig,N |

 .

When moving just the first three joints of our KUKA
KR5 robot, gravity is present only at the second and third
joints (N = 2). These terms can be parametrized with
M = 3 dynamic coefficients, depending on the mass and
center of mass parameters of link 2 and of the composition
of links 3 to 6 (the last three joints are kept in their zero
configuration). We gathered static data from P = 20 different
robot configurations qtest, in which the ± signs of the joint
torques (and thus of the holding currents) due to gravity
is known from physical observation. The robot was moved
to these configurations from opposite directions, so as to
average the effects of static friction at steady state. The set
of P ×N eqs. (4) is solved then by pseudoinversion.

Once θ has been estimated, we can remove at a generic
configuration q the gravity components from the absolute
values of the measured motor currents, using the absolute
value of the left-hand side of eq. (4). Table I shows the results
of the identification of gravity effects on motor currents
in two validation experiments. The obtained accuracy is
acceptable for the purpose of improving collision detection.

TABLE I
EVALUATION OF GRAVITY IDENTIFICATION ON MOTOR CURRENTS

current at joint 2 current at joint 3
test # measured estimated measured estimated

1 0.77 0.76 0.1 0.05
2 -0.82 -0.8 -0.15 -0.1

III. COLLISION DETECTION

Force/torque exchanges at different locations of the robot
body can arise because of an accidental collision with the
human/environment or due to a desired physical collabora-
tion between human and robot. Detection of these contacts
with the robot is a fundamental feature for safe pHRI. A
collision instantaneously generates torques at the robot joints,
which in turn modify the planned robot motion. When the
robot is controlled in a feedback mode (e.g., as in Fig. 2),
the motor currents display then a sudden change, which
is recognized as a collision when it exceeds some given

threshold. This effect has been already used in the past
for detecting collisions. We improve this basic signal-based
method with the use of suitable filtering of the motor currents
and by adopting trajectory-dependent thresholds. In doing
so, it will also be possible to distinguish a collision from an
intended contact, under the reasonable assumption that, for
the latter case, the human is approaching and establishing
physical contact with the robot in a softer way.

A. Filtering of currents

During a desired commanded motion of the KUKA KR5
robot, the absolute value of the currents at each motor is
made available every T = 12 ms through the RSI interface.
After removing from these signals the part needed for
compensating gravity at the current configuration, as detailed
in Sect. II-A, we propose the use of two filters working in
parallel, namely a High-Pass Filter (HPF) and a Low-Pass
Filter (LPF) of motors currents. The rationale is as follows:
• In most robot tasks, the desired motion is smooth

and repetitive in nature and the frequency content of
the associated commands (in feedback of feedforward
mode) is limited and predictable in advance, especially
in position-controlled robot like the KUKA KR5. On the
other hand, noise as well as the effect of hard collisions
typically appear in the high-frequency range of closed-
loop control signals.

• A LPF cleans the current signals from high-frequency
noise, and possibly from the effect of hard collisions,
while retaining the command frequencies needed for
executing the motion task in a limited bandwidth. On
the other hand, soft contacts between the robot and a
human (intended for starting a collaboration) may be
still recognized in the filtered signal.

• A HPF removes components that are slowly varying in
time, down to constant offsets. The filtered current will
still be very noisy, but is mostly sensitive to the effect
of hard impacts (i.e., undesired/unexpected collisions).

Therefore, applying simultaneously a HPF and a LPF (or
even multiple sets with different ranges of cutting frequen-
cies) serves properly to our purposes. The filtering process is
implemented on discrete-time data, and is the same for each
motor current. Let ik = i(tk), with tk = kT , be the absolute
value of the current at the sampled instant tk for a generic
motor (as provided by the RSI) and let if,k = if (tk) be the
output of the filter, with f = {LPF, HPF}.

The HPF was chosen as

iHPF,k = h0 ik + h2 ik−1 + h2 ik−2 + h3 ik−3, (5)

with h0 = −0.239207, h1 = −0.6262528, h2 = 0.6262528,
and h3 = 0.2392073. Equation (5) represents a digital
Chebyshev filter of order 3, with cutoff frequency equal to
10 Hz. The order of the filter was limited to 3 to reduce as
much as possible the delay on the output signal. The cutoff
frequency was tuned based on the expected hardness/softness
of impacts. For instance, a contact detected by a HPF with
cutting frequency at 10 Hz but not detected when using the
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higher cutting frequency of 20 Hz is to be considered softer
than one having effects also on the HPF at 20 Hz.

For the LPF design, some initial trials with Chebyshev
or Butterworth filters did not perform well, reducing too
much the magnitude of the output signal. By analyzing the
spectrum of typical input currents, we found that noise could
be suppressed by filters with bandwidth near 20 Hz, corre-
sponding to a period of about 0.05 s (containing 4 samples).
Therefore, we could remove effectively noise by choosing a
simple average of three consecutive input samples, or

iLPF,k =
1
3

(ik + ik−1 + ik−2) . (6)

B. Thresholding

The HPF and LPF currents are compared to thresholds in
order to detect specific HRI events. To prevent false alarms
or missed detections, time-varying thresholds τHPF(t) and
τLPF(t) are specified on line depending on the commanded
joint motion, namely on the reference velocity q̇r and on its
acceleration q̈r (obtained by backward numerical differenti-
ation). This copes automatically with the different dynamic
ranges of motion commands (being gravity contributions
already eliminated from measured currents). Note that the
use of commanded rather than actual (reconstructed) velocity
q̇ avoids introducing unnecessary delays in the detection.

For a generic high-pass filtered motor current, we define

τHPF = τHmin + kHv

|q̇r|
vmax

+ kHa

|q̈r|
amax

> 0. (7)

The first constant τHmin
is chosen as the least value covering

any HPF current in static conditions (q̇r = q̈r = 0) at a joint
configuration with zero gravity load. The robot joint is then
run at its maximum velocity vmax > 0, and the gain kHv

> 0
is chosen so that the first two terms in the right-hand side
of (7) provide an upper bound (with some margin) of the
recorded motor currents. The same procedure is repeated in
a similar way for the gain kHa

> 0, using the maximum
acceleration amax > 0. The value τHPF will be the critical
upper bound for the HPF current, while its opposite is taken
as the critical lower bound.

For a generic low-pass filtered motor current, we have

τLPF = τLmin
+ kLv

|q̇r|
vmax

+ kLa

|q̈r|
amax

> 0, (8)

with similar definition and tuning of parameters as in eq. (7).

TABLE II
PARAMETERS OF THRESHOLDS ON FILTERED MOTOR CURRENTS

joint 1 2 3
τHmin

0.15 0.14 0.13
HPF kHv 0.1 0.123 0.81

kHa 2.1 1.5 0.9
τLmin

0.5 0.6 0.6
LPF kLv 1.5 1.45 0.6

kLa 2.1 1.5 0.9
for both vmax 200 125 100

HPF and LPF amax 1200 1050 900

In all presented experiments, we have used for eqs. (7)
and (8) the parameter values specified in Tab. II. Figure 5

[ 
am

p 
]

[ 
am

p]

Fig. 5. High-pass [top] and low-pass [bottom] filtering of motor currents,
with their time-varying thresholds. Case of no collisions during the robot
motion of Fig. 3

shows the results obtained by HPF and LPF of the motor
currents in Fig. 4, associated to the motion in Fig. 3, with the
time-varying thresholds. In this case, no collisions occur and
the thresholds are never reached. As opposed to the currents
provided as output by the KUKA RSI interface (Fig. 4), the
HPF and LPF currents take both positive and negative values
(except for iLPF,1, where gravity does not act and eq. (6)
preserves positivity).

C. Distinguishing collisions from intentional contacts

We are now in place to formulate our simple rules for
detection of accidental collisions and for detection of inten-
tional contacts, distinguishing these two instances of pHRI.
Rule 1. A collision is detected if at least one HPF current
exceeds its threshold.
Rule 2. An intentional contact is detected if no HPF current
exceeds its threshold and at least one LPF current exceeds
its threshold.

We present the results of a first experiment in which the
two situations occur. The robot is continuously executing a
given cyclic motion task defined in the joint space, when the
human hits the robot body at different places (collisions).
Each time a collision is detected (Rule 1), the robot stops
and resumes then its motion after about 3 s. Later on, the
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human seeks a soft contact with the robot, which is detected
using Rule 2. In this experiment, no reaction is commanded
and the robot continues its motion without changes.

[ 
am

p 
]

[ 
am

p 
]

Fig. 6. High-pass [top] and low-pass [bottom] filtered motor currents on
the robot motion in Fig. 7. Four collisions and then two intentional contacts
are detected

Figure 6 shows the behavior of the HPF and LPF currents.
Four collisions are detected, at about t = 8, t = 17, t = 28,
and t = 36 s; two intentional contacts are detected at about
t = 50 and t = 60 s. The joint motion q, as measured
by the robot encoders, and the associated kinematic control
commands (the velocity reference q̇r) are shown in Fig. 7.

IV. ROBOT REACTION IN COLLABORATION

In our pHRI control framework, once a soft contact is
(physically) requested by the human and detected by the
combined use of LPF and HPF motor currents, the robot
switches to a collaboration mode. In this mode, the robot
can react to contact forces applied by the user in a variety
of ways, e.g., by keeping its end-effector (or another part
of its body) fixed in place or by moving in response to
further contacts so as to approximately zeroing the forces
exchanged with the human. Such behaviors are relatively
easy to be realized on torque-controlled robots equipped with
joint torque sensors and/or a F/T sensor on the end-effector.
For instance, when the human applies a force fK to a robot
link, the resulting torque τK = JT

K(q)fK acting on the

Fig. 7. Joint position measurements (solid, blue) and velocity reference
commands (dashed, red) in a case of collisions and intentional contacts. In
the first case the robot stops for 3 s, while in the second no specific reaction
is commanded

joints (being JK the Jacobian associated to the unknown
contact point) can be measured by the joint torque sensor,
or estimated with a model-based residual as in [16], when
the robot dynamic model is available. This torque τK will
indicate the direction in which the robot should move in the
joint space, as an active response to the applied fK .

Unfortunately, no such concepts can be used directly
on a standard industrial manipulator with closed control
architecture, no extra sensors, and without a reliable dynamic
model being available. In particular, having access only to
the reference velocity q̇r, we need to overcome (or trick)
the relatively stiff embedded low-level controller in order to
implement these robot reactions. In addition, in the case of
our KUKA KR5 robot, the intrinsic uncertainty about the
sign of the actual motor currents in the available measures
makes it hard to understand —at least when using only these
current signals— which is the direction of joint motion for
properly reacting to an external force. Our idea to address
this issue is to detect small initial variations of the joint
position, as measured by the encoders, with respect to the
desired value commanded by the low-level controller so as
to recognize the joint-space direction for robot reaction (a
similar method was used also in [20]). Based on this, we
have realized a number of simple reactive strategies (see the
full set of experiments in the video attachment, containing
also other reactive behaviors).

A. Human pushing/pulling the robot

With the robot at rest and in collaboration mode, the
human can apply continuous forces at any location of the
robot and manually drive it to a desired configuration. The
event is triggered by the LPF currents (after elimination
of the components due to gravity). Looking at the (tiny)
variation of joint positions (initially under the action of the
KUKA controller with q̇r = 0), a sign function fj = {+,−}
is determined for each of the joints. These collectively
specify the actual direction that will be taken by the robot in
response to the force applied by the human. For this manual
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Fig. 8. LPF motor currents [top] and joint positions (solid, blue) and
reference velocity commands (dashed, red) [bottom] for a collaboration
mode where the human is pushing/pulling the robot with small forces
(Experiment 3)

guidance mode, the control command q̇r is chosen as

q̇r,j = fj rj iLPF,j , for j = 1, 2, 3, (9)

where rj > 0 is an arbitrary gain to be tuned. Due to lack of
space, the results are shown only in the accompanying video
(Experiment 2).

In a second similar reaction strategy, the human can
push/pull the robot away from the current configuration
by applying even small but impulsive forces to the robot.
Triggering of this event and finding the direction of robot
reaction are the same as above, but the control command
q̇r in this case is obtained by removing the presence of LPF
currents from eq. (9). As a result, the joint velocity command
will be constant, and its value is kept for some desired
number of samples. Figure 8 shows the results obtained using
rj = 40 for all joints. One can recognize the association
between larger peaks in the LPF current profiles and constant
commanded reference velocities. These plots correspond to
the pushing/pulling Experiment 3 in the video.

B. Compliant-like robot behavior

At a given initial robot configuration qd, the human applies
an instantaneous force to the robot. A compliant-like robot

[ 
am

p 
]

Fig. 9. LPF motor currents [top] and joint positions (solid, blue) and
reference velocity commands (dashed, red) [bottom] for a collaboration
mode where the robot shows a compliant-like behavior in response to
instantaneous forces applied by the human (Experiment 4)

behavior is realized at the joint level by relating the control
command q̇r to the joint error e = qd−q and to the reaction
direction in the form

q̇r,j = fjkj + kpj
ej , for j = 1, 2, 3, (10)

where kj > 0 and kpj
> 0 are gains to be tuned for

performance, and fj is defined as in Sect. IV-A. The two
terms in (10) have opposite signs by construction, the first
being constant while the latter is progressively increasing.
At some instant, the two terms will balance each other and
the robot will stop. In practice, when |q̇r,j | ≤ εj , being εj a
small positive value, the first term is removed (setting kj = 0
from there on) and the second term will bring the robot back
to the initial configuration qd. Figure 9 shows the results of a
compliant collaboration mode obtained using kj = 100 and
εj = 0.01 deg for all joints, kp1 = 6, kp2 = kp3 = 11.8,
while setting in the second reaction phase the compliant
gains kpi

= 2 for all joints. A rapid and smooth recover
of the initial configuration is obtained (see Experiment 4 in
the video).
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V. CONCLUSIONS

We have presented a signal-based approach to whole-
body collision detection, robot reaction, and human-robot
collaboration that works for industrial manipulators with
a closed control architecture and without the use of extra
sensors (e.g., joint torque or 6D F/T sensors). The signals
used are those available to a generic end-user through the
data interface provided by the manufacturer: joint velocity
reference (as control input to the system), joint position (as
measured output), and a signal related to the internal motor
currents. In this framework, we introduced the idea of high-
pass and low-pass filtering of currents. By applying simple
rules on these two filtered measures, one can distinguish be-
tween accidental hard collisions and intentional soft contacts
between the human and the robot. In response to a detected
intentional contact, some examples of robot reactive behavior
in collaboration mode were provided, including manual robot
guidance, pushing/pulling the robot by instantaneous forces,
and a compliant-like robot behavior in response to small
forces. In all cases, contact forces can be applied by the
human at any point of the robot structure.

The methods have been implemented on a KUKA KR5
robot using the RSI interface. With the communication and
control rates allowed by the RSI, achieving high robot
performance is indeed difficult. Although no ground truth
measure of the actual instant of human-robot collision and of
the minimum detectable collision force (needing an external
force measurement) are available at this time, we estimate
that collisions producing more than 0.2 A in at least one of
the HPF motor currents can be safely detected, with collision
detection times of the order of 36-48 ms (3-4 sampling
intervals). For comparison, in our previous experience with
the DLR LWR-III [16], [17] (or, equivalently, with the
KUKA LWR4+ and its 1 ms Fast Research Interface) we
reached detection times of the order of 2-3 ms.

While we achieved very good subjective results both in
collision detection and in distinguishing intentional from
accidental collisions, our future plan is to conduct a statistical
analysis of the sensitivity and robustness of the classification,
using a set of volunteers and a suitable experimental protocol.
Moreover, some of the introduced ideas, like using LPF
and HPF, are general and can be applied also to process
residual signals in torque-controlled robots with an accurate
dynamic model available, so as to distinguish collisions from
intentional contacts at a faster rate. Another on-going work
along the development of safe human-robot co-existence and
collaboration includes the use of exteroceptive sensors and
their integration with basic collision detection and reaction
strategies. For instance, a Kinect can be used for collision
avoidance but also to track the body parts of a human physi-
cally interacting with the KUKA KR5 robot (see Experiment
5 in the video attachment). This allows locating the area of
human contact on the robot (with its associated Jacobian),
and the implementation of more sophisticated reaction/force
control schemes based on the actual contact point.
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