
Synthesis for LTL and LDL on Finite Traces

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Moshe Y. Vardi
Rice University,

Houston, TX, USA
vardi@cs.rice.edu

Abstract
In this paper, we study synthesis from logical speci-
fications over finite traces expressed in LTLf and its
extension LDLf . Specifically, in this form of syn-
thesis, propositions are partitioned in controllable
and uncontrollable ones, and the synthesis task con-
sists of setting the controllable propositions over
time so that, in spite of how the value of the uncon-
trollable ones changes, the specification is fulfilled.
Conditional planning in presence of declarative and
procedural trajectory constraints is a special case of
this form of synthesis. We characterize the prob-
lem computationally as 2EXPTIME-complete and
present a sound and complete synthesis technique
based on DFA (reachability) games.

1 Introduction
LTLf , Linear Temporal Logic on finite traces, has been exten-
sively used in AI an CS, see [De Giacomo and Vardi, 2013]
for a survey. For example, it is at the base of trajectory con-
straints in PDDL 3.0 [Bacchus and Kabanza, 2000; Gerevini
et al., 2009], the de-facto standard formalism for represent-
ing planning problems. Also LTLf is used as a declar-
ative formalism to specify (terminating) services and pro-
cesses by the business process modeling community [Pesic
and van der Aalst, 2006; Montali et al., 2010; Sun et al., 2012;
De Giacomo et al., 2014].

In this paper we study synthesis from specifications ex-
pressed in LTLf and its extension LDLf , Linear Dynamic
Logic over finite traces, that allows for regular expressions
in the temporal operators [De Giacomo and Vardi, 2013]. We
consider propositions partitioned into two sets: the first under
the control of our agent and the second not (e.g., variables in
the second set are controlled by the environment). The spec-
ification consists of an LTLf /LDLf formula (or finite set of
formulas), which expresses how both kinds of propositions
should evolve over time. The problem of interest is check-
ing whether there are strategies to set the controllable propo-
sitions over time so that, in spite of the values assumed by
the uncontrollable ones, the specification is fulfilled. If such
strategies exist, it is of interest to compute one.

Notice that conditional planning with full observability is
indeed a special case of such a problem. Consider a non-

deterministic domain with a given initial state and reacha-
bility goal. It is easy to encode actions as propositions and
then express the nondeterministic domain as a finite set of
simple LTLf formulas, the initial state as a propositional for-
mula, and the reachability goal φ as the LTLf formula ♦φ.
Here, the controllable propositions are the actions, while
the uncontrollable ones are all the others, which we may
call fluents. Then, planning amounts to solving a special
case of the LTLf synthesis problem. Interestingly, if we
add temporal constraints (also specifiable in LTLf) to be sat-
isfied while reaching the goal [Gerevini et al., 2009], we
still get a special case of the LTLf synthesis problem, as
we do if we consider temporally extended goals [Bacchus
and Kabanza, 1996], instead of reachability goals (as long
as we require eventual termination). If we consider proce-
dural execution constrains as in [Fritz and McIlraith, 2007;
Baier et al., 2008], which are typically expressible as regular
expressions that must be fulfilled by traces, we can resort to
LDLf (LTLf is not expressive enough in this case) and plan-
ning becomes a special form of the LDLf synthesis problem
studied here.

Technically, our synthesis problem relates to the classi-
cal Church realizability problem [Church, 1963; Vardi, 1996]
and it has been thoroughly investigated in the infinite setting,
starting from [Pnueli and Rosner, 1989]. Unfortunately, while
theoretically well investigated, algorithmically it still appears
to be prohibitive in the infinite setting, not so much due to
the high complexity of the problem, which is 2EXPTIME-
complete, but for the difficulties of finding good algorithms
for automata determinization, a crucial step in the solution,
see, e.g., [Fogarty et al., 2013].

In the finite setting, the difficulties of determinization dis-
appear and hence a theoretical solution to this problem, as
the one provided here, actually promises to be appealing for
effective practical implementation.

Specifically, we present a general sound and complete solu-
tion technique for the synthesis based on DFA (reachability)
games. These are games played over a deterministic automa-
ton whose alphabet is formed by possible propositional inter-
pretations. These games can be solved in linear time in the
number of states of the automaton. We show how to trans-
form an LTLf or LDLf specification first into an NFA (on pos-
sible propositional interpretations), and then, through deter-
minization, into a DFA on which to play the DFA game.

The presented technique is double exponential in general
but optimal, since it can be shown that the problem itself is
2EXPTIME-complete. Notice that in some cases, e.g., in the
conditional planning setting, the determinization step is not
required and hence our technique becomes single exponen-
tial, which is the complexity of conditional planning with full
observability [Rintanen, 2004].

2 LTLf and LDLf

In this paper, we adopt standard LTL and its variant LDL in-
terpreted on finite traces. For lack of space, as our main
reference we use [De Giacomo and Vardi, 2013], which,
apart from introducing LDL on finite traces, surveys the main
known results and techniques in the finite traces setting.

Liner Temporal Logic on finite traces (LTLf). LTL on fi-
nite traces, or LTLf , has essentially the same syntax as LTL
on infinite traces [Pnueli, 1977], namely, given a set of P
of propositional symbols, LTLf formulas are obtained as fol-
lows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | •ϕ |
♦ϕ | �ϕ | ϕ1 U ϕ2

where φ is a propositional formula over P , ◦ is the next op-
erator, • is weak next, i.e., •ϕ is an abbreviation for ¬◦¬ϕ1,
♦ is eventually, � is always, and U is until. We make use of
the standard boolean abbreviations, including true and false .
The semantics of LTLf is given in terms of finite traces, i.e.,
finite words π, denoting a finite nonempty sequence of con-
secutive steps, over the alphabet of 2P , consisting of possible
interpretations of the propositional symbols in P . We de-
note by length(π) the length of the trace, and by π(i), with
1 ≤ i ≤ length(π), the propositional interpretation at the
i-th position in the trace. Given a finite trace π, we induc-
tively define when an LTLf formula ϕ is true at a step i with
1 ≤ i ≤ length(π), written π, i |= ϕ, as follows:
• π, i |= φ iff π(i) |= φ (φ propositional);
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2;
• π, i |= ◦ϕ iff i < length(π) and π, i+1 |= ϕ;
• π, i |= •ϕ iff i < length(π) implies π, i+1 |= ϕ;
• π, i |= ♦ϕ iff for some j s.t. i ≤ j ≤ length(π), we

have π, j |= ϕ;
• π, i |= �ϕ iff for all j s.t. i ≤ j ≤ length(π), we have
π, j |= ϕ;
• π, i |= ϕ1 U ϕ2 iff for some j s.t. i ≤ j ≤ length(π),

we have π, j |= ϕ2, and for all k s.t. i ≤ k < j, we have
π, k |= ϕ1.

Notice that we have the usual boolean equivalences such as
ϕ1 ∨ ϕ2 ≡ ¬ϕ1 ∧ ¬ϕ2; furthermore we have that •ϕ ≡
¬◦¬ϕ, ♦ϕ ≡ true U ϕ, and �ϕ ≡ ¬♦¬ϕ. It is known that
LTLf is as expressive as First Order Logic over finite traces

1In LTLf , unlike LTL on infinite traces, ¬◦¬ϕ 6≡ ◦ϕ.

and star-free regular expressions, so strictly less expressive
than regular expressions, which in turn are as expressive as
Monadic Second Order logic over finite traces. On the other
hand, regular expressions are a too low level formalism for
expressing temporal specifications, since, for example, they
miss a direct construct for negation and for conjunction, see,
e.g., [De Giacomo and Vardi, 2013].

Linear Dynamic Logic on finite traces (LDLf). Linear
Dynamic Logic on finite traces, or LDLf is as natural as LTLf ,
but with the full expressive power of Monadic Second Or-
der logic over finite traces [De Giacomo and Vardi, 2013].
LDLf is obtained by merging LTLf with regular expressions
through the syntax of the well-known logic of programs PDL,
Propositional Dynamic Logic [Fischer and Ladner, 1979;
Harel et al., 2000], but adopting a semantics based on finite
traces. This logic is an adaptation of LDL interpreted over
infinite traces, introduced in [Vardi, 2011].

Formally, LDLf formulas are built as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ | [ρ]ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where φ is a propositional formula over P; ρ denotes path
expressions, which are regular expressions over propositional
formulas φ with the addition of the test construct ϕ? typi-
cal of PDL; and ϕ stands for LDLf formulas built by apply-
ing boolean connectives and the modal connectives 〈ρ〉ϕ and
[ρ]ϕ. In fact [ρ]ϕ ≡ ¬〈ρ〉¬ϕ.

Intuitively, 〈ρ〉ϕ states that, from the current step in the
trace, there exists an execution satisfying the regular expres-
sion ρ such that its last step satisfies ϕ, while [ρ]ϕ states that,
from the current step, all executions satisfying the regular ex-
pression ρ are such that their last step satisfies ϕ. Tests are
used to insert into the execution path checks for satisfaction
of additional LDLf formulas.

As for LTLf , the semantics of LDLf is given in terms of
finite traces, i.e., finite words, denoting a finite, nonempty,
sequence of consecutive steps π over the alphabet of 2P . As
above, we use the notation length(π) and π(i), and in addi-
tion we denote by π(i, j) the segment of the trace π starting
at the i-th step end ending at the j-th step. If j > length(π),
we get the segment from i-th step to the end.

The semantics of LDLf is defined by simultaneous induc-
tion on formulas and path expressions as follows: given a
finite trace π, an LDLf formula ϕ is true at a step i, with
1 ≤ i ≤ length(π), in symbols π, i |= ϕ, if:

• π, i |= φ iff π(i) |= φ (φ propositional);

• π, i |= ¬ϕ iff π, i 6|= ϕ;

• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;

• π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2;

• π, i |= 〈ρ〉ϕ iff there exists j ≥ i such that π(i, j) ∈
L(ρ) and π, j |= ϕ;

• π, i |= [ρ]ϕ iff for all j ≥ i such that π(i, j) ∈ L(ρ),
we have π, j |= ϕ;

where the relation π(i, j) ∈ L(ρ) is as follows:

• π(i, j) ∈ L(φ) if j = i + 1, j ≤ length(π), and π, i |=
φ (φ propositional);

• π(i, j) ∈ L(ϕ?) if j = i and π, i |= ϕ;

• π(i, j) ∈ L(ρ1 + ρ2) if π(i, j) ∈ L(ρ1) or π(i, j) ∈
L(ρ2);

• π(i, j) ∈ L(ρ1; ρ2) if there exists k, with i ≤ k ≤ j,
such that π(i, k) ∈ L(ρ1) and π(k, j) ∈ L(ρ2);

• π(i, j) ∈ L(ρ∗) if j = i or there exists k, with i ≤ k ≤
j, such that π(i, k) ∈ L(ρ) and π(k, j) ∈ L(ρ∗).

Notice that we have the usual boolean equivalences, and
in addition [ρ]ϕ ≡ ¬〈ρ〉¬ϕ. We use the abbreviation last ,
standing for [true]false , to denote the last step of the trace.

It is easy to encode LTLf into LDLf : it suffices to observe
that we can express the various LTLf operators by recursively
applying the following translations:

• ◦ϕ translates to 〈true〉ϕ;
• •ϕ translates to ¬〈true〉¬ϕ = [true]ϕ;
• ♦ϕ translates to 〈true∗〉ϕ;
• �ϕ translates to [true∗]ϕ;
• ϕ1 U ϕ2 translates to 〈(ϕ1?; true)∗〉ϕ2.

It is also easy to encode into LDLf regular expressions,
used as a specification formalism for traces. Assuming all
traces end with a special making symbol end (i.e., the last el-
ement of the trace is not part of regular expressions), a regular
expression specification ρ translates to 〈ρ〉(last ∧ end).

We say that a trace satisfies an LTLf /LDLf formula ϕ, writ-
ten π |= ϕ, if π, 1 |= ϕ. Also sometimes we denote by L(ϕ)
the set of traces that satisfy ϕ: L(ϕ) = {π | π |= ϕ}.

3 LDLf Automata
We can associate with each LDLf formula ϕ an (exponen-
tial) NFA Aϕ that accepts exactly the traces that make ϕ true.
Here, we provide a simple direct algorithm for computing the
NFA corresponding to an LDLf formula. The correctness of
the algorithm is based on the fact that (i) we can associate
each LDLf formula ϕ with a polynomial alternating automa-
ton on words (AFW) Aϕ that accepts exactly the traces that
make ϕ true, and (ii) every AFW can be transformed into an
NFA, see, e.g., [De Giacomo and Vardi, 2013]. However, to
formulate the algorithm, we do not need these notions, but we
can work directly on the LDLf formula. In order to proceed,
we put LDLf formulas ϕ in negation normal form nnf (ϕ) by
exploiting equivalences and pushing negation inside as much
as possible, until negation signs are eliminated except in front
of propositional formulas. Note that computing nnf (ϕ) can
be done in linear time. Then, we define an auxiliary function
δ (which corresponds directly to the transition function of the
AFW Aϕ) that takes an LDLf formula ψ in negation normal
form and a propositional interpretation Π for P , including ex-
plicitly a special proposition last to denote the last element of
the trace, and returns a positive boolean formula whose atoms
are subformulas of ψ:

delta("φ",Π) =

{
true if Π |= φ
false if Π 6|= φ

(φ prop.)

δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)

δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("〈φ〉ϕ",Π) =

{
"ϕ" if last 6∈ Π and Π |= φ
false otherwise (φ prop.)

δ("〈ψ?〉ϕ",Π) = δ("ψ",Π) ∧ δ("ϕ",Π)

δ("〈ρ1 + ρ2〉ϕ",Π) = δ("〈ρ1〉ϕ",Π) ∨ δ("〈ρ2〉ϕ",Π)

δ("〈ρ1; ρ2〉ϕ",Π) = δ("〈ρ1〉〈ρ2〉ϕ",Π)

δ("〈ρ∗〉ϕ",Π) =

{
δ("ϕ",Π) if ρ is test-only
δ("ϕ",Π) ∨ δ("〈ρ〉〈ρ∗〉ϕ",Π) o/w

δ("[φ]ϕ",Π) =

{
"ϕ" if last 6∈ Π and Π |= φ
true otherwise (φ prop.)

δ("[ψ?]ϕ",Π) = δ("nnf (¬ψ)",Π) ∨ δ("ϕ",Π)

δ("[ρ1 + ρ2]ϕ",Π) = δ("[ρ1]ϕ",Π) ∧ δ("[ρ2]ϕ",Π)

δ("[ρ1; ρ2]ϕ",Π) = δ("[ρ1][ρ2]ϕ",Π)

δ("[ρ∗]ϕ",Π) =

{
δ("ϕ",Π) if ρ is test-only
δ("ϕ",Π) ∧ δ("[ρ][ρ∗]ϕ",Π) o/w

Using the auxiliary function δ, we can build the NFA Aϕ of
an LDLf formula ϕ in a forward fashion according to the fol-
lowing algorithm:

algorithm LDLf 2NFA
input LTLf formula ϕ
output NFA Aϕ = (2P ,S, {s0}, %, {sf})
s0 ← {"ϕ"} . single initial state
sf ← ∅ . single final state
S ← {s0, sf}, %← ∅
while (S or % change) do

if (q ∈ S and q′ |=
∧

("ψ"∈q) δ("ψ",Π)) then
S ← S ∪ {q′} . update set of states
%← % ∪ {(q,Π, q′)} . update transition relation

In the algorithm LDLf 2NFA, states S of Aϕ are sets of
atoms, where each atom consists of quoted subformulas of
ϕ. Such sets of atoms are interpreted as conjunctions and
in particular ∅, i.e., the empty conjunction, stands for true .
Formula

∧
("ψ"∈q) δ("ψ",Π) is a positive boolean formula

whose atoms are again quoted subformulas of ϕ. Finally, q′
is a set of atoms, consisting again of quoted subformulas of ϕ,
such that, when seen as a propositional interpretation, makes∧

("ψ"∈q) δ("ψ",Π) true. (In fact, we do not need to get all
q′ such that q′ |=

∧
("ψ"∈q) δ("ψ",Π), but only the minimal

ones.) Notice that trivially we have (∅, a, ∅) ∈ % for every
a ∈ Σ. The algorithm LDLf 2NFA terminates in at most an
exponential number of steps, and generates a set of states S
whose size is at most exponential in the size of ϕ.
Theorem 1. Let ϕ be an LDLf formula and Aϕ the NFA
constructed by algorithm LDLf 2NFA. Then π |= ϕ iff π ∈
L(Aϕ) for every finite trace π.

To see why the above theorem holds consider that given
a LDLf formula ϕ, δ grounded on the subformulas of ϕ be-
comes the transition function of the AFW, with initial state

"ϕ" and no final states, corresponding to ϕ. LDLf 2NFA es-
sentially amounts to the procedure that transforms an AFW
into an NFA, cf. [De Giacomo and Vardi, 2013]. Notice that
we never need to construct the AFW using the above algo-
rithm. We directly build the NFA using the rules δ. Fi-
nally, If we want to remove the special proposition last from
P , we can easily transform the obtained automaton Aϕ =
(2P ,S, {"ϕ"}, %, {∅}) into the new automatonA′ϕ by adding
a special state ended:

A′ϕ = (2P−{last},S ∪ {ended}, {"ϕ"}, %′, {∅, ended})
where (q,Π′, q′) ∈ %′ if and only if (q,Π′, q′) ∈ % or (q,Π′ ∪
{last}, true) ∈ % and q′ = ended.

It is easy to see that the NFA obtained can be built on-the-
fly while checking for nonemptiness, hence we have:
Theorem 2. Satisfiability of an LDLf formula can be checked
in PSPACE by nonemptiness of Aϕ (or A′ϕ).

Considering that it is known that satisfiability in LDLf is
a PSPACE-complete problem, we can conclude that the pro-
posed construction is optimal wrt computational complexity
for satisfiability, as well as for validity and logical implica-
tion, which are linearly reducible to satisfiability in LDLf ,
cf. [De Giacomo and Vardi, 2013].

4 LTLf and LDLf Synthesis
In this section, we study the general form of synthesis for
LTLf and LDLf , sometimes called realizability, or Church
problem, or simply reactive synthesis [Vardi, 1996; Pnueli
and Rosner, 1989]. We partition the set P of propositions
into two disjoint sets X and Y . We assume to have no
control on the truth value of the propositions in X , while
we can control those in Y . The problem then becomes:
can we control the values of Y in such a way that for
all possible values of X a certain LTLf /LDLf formula re-
mains true? More precisely, traces now assume the form
π = (X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn , Yn), where (Xi, Yi)
is the propositional interpretation at the i-th position in π,
now partitioned in the propositional interpretation Xi for X
and Yi for Y . Let us denote by πX |i the interpretation π pro-
jected only on X and truncated at the i-th element (included),
i.e., πX |i = X0X1 · · ·Xi. The realizability problem checks
the existence of a function f : (2X)∗ → 2Y such that for all
π with Yi = f(πX |i), we have that π satisfies the formula φ.
The synthesis problem consists of actually computing such a
function. Observe that in realizability/synthesis we have no
way of constraining the value assumed by the propositions in
X : the function we are looking for only acts on propositions
in Y . Realizability and synthesis for LTL on infinite traces has
been introduced in [Pnueli and Rosner, 1989] and shown to
be 2EXPTIME-complete for arbitrary LTL formulas.

We are going to devise a technique in this section to do the
same kind of synthesis in the case of finite traces for LTLf and
LDLf . To do so, we will rely on DFA games, introduced below
(see [Mazala, 2002] for a survey on game based approaches
in the infinite trace setting).

DFA Games. DFA games are games between two players,
here called respectively the environment and the controller,

that are specified by a DFA. We have a set of X of uncon-
trollable propositions, which are under the control of the en-
vironment, and a set Y of controllable propositions, which
are under the control of the controller. A round of the game
consists of both the controller and the environment setting the
values of the propositions they control. A (complete) play is a
word in (2X×Y)∗ describing how the controller and environ-
ment set their propositions at each round till the game stops.
The specification of the game is given by a DFA G of the form
G = (2X×Y , S, s0, δ, F), where:

• 2X×Y is the alphabet of the game;

• S are the states of the game;

• s0 is the initial state of the game;

• δ : S × 2X×Y → S is the transition function of the
game: given the current state s and a choice of proposi-
tions X and Y , respectively for the enviroment and the
controller, δ(s, (X,Y)) = s′ is the resulting state of the
game;

• F are the final states of the game, where the game can
be considered terminated.

A play is winning for the controller if such a play leads
from the initial to a final state. A strategy for the con-
troller is a function f : (2X)∗ → 2Y that, given a history
of choices from the environment, decides which propositions
Y to set to true/false next. A winning strategy is a strategy
f : (2X)∗ → 2Y such that for all π with Yi = f(πX |i) we
have that π leads to a final state of G. The realizability prob-
lem consists of checking whether there exists a winning strat-
egy. The synthesis problem amounts to actually computing
such a strategy.

We now give a sound and complete technique to solve re-
alizability for DFA games. We start by defining the control-
lable preimage PreC (E) of a set E of states E of G as the set
of states s such that there exists a choice of values for propo-
sitions Y such that for all choices of values for propositions
X , game G progresses to states in E . Formally:

PreC (E) = {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X,Y)) ∈ E}

Using such a notion, we define the set Win(G) of winning
states of a DFA game G, i.e., the set formed by the states from
which the controller can win the DFA game G. Specifically,
we define Win(G) as a least-fixpoint, making use of approx-
imates Wini(G) denoting all states where the controller wins
in at most i steps:

• Win0(G) = F (the final states of G);

• Wini+1(G) = Wini(G) ∪ PreC (Wini(G)).

Then, Win(G) =
⋃
iWini(G). Notice that computing

Win(G) requires linear time in the number of states in G.
Indeed, after at most a linear number of steps Wini+1(G) =
Wini(G) = Win(G).

Theorem 3. A DFA game G admits a winning strategy iff
s0 ∈Win(G).

Next, we turn to actually computing the strategy. To do
so, we define a strategy generator based on the winning

sets Wini(G). This is a nondeterministic transducer, where
nondeterminism is of the kind “don’t-care”: all nondeter-
ministic choices are equally good. The strategy generator
TG = (2X×Y , S, s0, %, ω) is as follows:
• 2X×Y is the alphabet of the trasducer;
• S are the states of the trasducer;
• s0 is the initial state;
• % : S × 2X → 2S is the transition function such that

%(s,X) = {s′ | s′ = δ(s, (X,Y)) and Y ∈ ω(s)};

• ω : S → 2Y is the output function such that

ω(s) = {Y | if s ∈Wini+1(G)−Wini(G)
then ∀X.δ(s, (X,Y)) ∈Wini(G)}.

The transducer TG generates strategies in the following sense:
for every way of further restricting ω(s) to return only one of
its values (chosen arbitrarily), we get a strategy.

Synthesis in LTLf and LDLf . To do synthesis in LTLf or
LDLf , we translate an LDLf /LTLf specificationϕ into an NFA
Aϕ, e.g., using the algorithm LDLf 2NFA presented above.
This is an exponential step. Then, we transform the resulting
NFA into a DFA Adϕ, e.g., using the standard determinization
algorithm based on the subset construction [Rabin and Scott,
1959]. This will cost us another exponential. At this point we
view the resulting DFA Adϕ as a DFA game, considering ex-
actly the separation between controllable and uncontrollable
propositions in the original LDLf /LTLf specification, and we
solve it by computing Win(Adϕ) and the corresponding strat-
egy generator TAd

ϕ
. This is a linear step. The following theo-

rem assesses the correctness of this technique:
Theorem 4. Realizability of an LDLf /LTLf specification ϕ
can be solved by checking whether s0 ∈Win(Adϕ). Synthesis
can be solved by returning any strategy generated by TAd

ϕ
.

Moreover, considering the cost of each of the steps above,
we get the following worst-case computational complexity
upper bound.
Theorem 5. Realizability in LDLf /LTLf can be solved in
2EXPTIME, and synthesis (i.e., returning a winning strategy)
can be done in time double exponential.

A matching lower-bound can be shown by reduction from
EXPSPACE alternating Turing machines.
Theorem 6. Realizability (and synthesis) in LDLf /LTLf is
2EXPTIME-hard.

5 Relationship with planning
In this section, we discuss the relationship between
LTLf /LDLf synthesis and conditional planning with full ob-
servability. We can characterize an action domain by the
set of allowed evolutions, each represented as a sequence of
states of affair of the domain, which with a little abuse of ter-
minology, we may call situations [Reiter, 2001]. To do so, we
typically introduce a set of atomic facts, called fluents, whose
truth value changes as the system evolves from one situation

to the next one because of actions. Since LTL/LTLf do not
provide a direct notion of action, we use propositions to de-
note them, as in [Calvanese et al., 2002]. Hence, we partition
P into fluents F and actions A, adding structural constraints
such as �(

∨
a∈A a)∧�(

∧
a∈A(a→

∧
b∈A,b 6=a ¬b)), to spec-

ify that one action must be performed to get to a new situation,
and that a single action at a time can be performed. Then, the
initial situation is described by a propositional formula ϕinit

involving only fluents, while effects can be modelled as:

�(ϕ→ •(a→ ψ))

where a ∈ A, while ϕ and ψ are arbitrary propositional
formulas involving only fluents. Such a formula states
that performing action a under the conditions denoted by ϕ
brings about the conditions denoted by ψ. A formula like
�(ϕ→ •(a→ ϕ)) corresponds to a frame axiom express-
ing that ϕ does not change when performing a. Alterna-
tively, we can formalize effects through Reiter’s successor
state axioms [Reiter, 2001] (which implicitly provide a so-
lution to the frame problem), as in [Calvanese et al., 2002;
De Giacomo and Vardi, 2013], by translating the (instanti-
ated) successor state axiom F (do(a, s)) ≡ ϕ+(s) ∨ (F (s) ∧
¬ϕ−(s)), where ϕ+(s) (resp. ϕ−(s)) is the condition that
makes the fluent F true (resp. false) after action a, into the
LTLf formula:

�(•a→ (•F ≡ ϕ+ ∨ (F ∧ ¬ϕ−))).

In general, to specify effects we need LTLf formulas that talk
only about the current and the next state, to capture how the
domain transitions from the current to the next state, as above.

Turning to goals, usual reachability goals can be expressed
as ϕgoal = ♦φ. where φ is a propositional formula on fluents.

PDDL trajectory constraints [McDermott and others,
1998; Gerevini et al., 2009] are also representable in
LTLf /LDLf . As an example:

(at end φ)
.
= ♦(last ∧ φ)

(always φ)
.
= �φ

(sometime φ)
.
= ♦φ

(within n φ)
.
=
∨

0≤i≤n◦ · · ·◦︸ ︷︷ ︸
i

φ

(hold-after n φ)
.
= ◦ · · ·◦︸ ︷︷ ︸

n+1

♦φ

(hold-during n1 n2 φ)
.
= ◦ · · ·◦︸ ︷︷ ︸

n1

(
∧

0≤i≤n2
◦ · · ·◦︸ ︷︷ ︸

i

φ)

(at-most-once φ)
.
= �(φ→ φW¬φ)

(sometime-after φ1 φ2)
.
= �(φ1→ ♦φ2)

(sometime-before φ1 φ2)
.
= (¬φ1 ∧ ¬φ2)W(¬φ1 ∧ φ2)

(always-within n φ1 φ2)
.
= �(φ1→

∨
0≤i≤n◦ · · ·◦︸ ︷︷ ︸

i

φ2)

where φ is a propositional formula on fluents, andϕ1W ϕ2
.
=

(ϕ1 U ϕ2∨�ϕ1) is the so-called weak until, which states that
ϕ1 holds until ϕ2 or forever.

Finally, we turn to procedural constraints. Typically,
these cannot be expressed in LTLf but they can be expressed
in LDLf . For example, let us consider them expressed in
a propositional variant of GOLOG [Levesque et al., 1997;
Fritz and McIlraith, 2007; Baier et al., 2008]:

a atomic action
φ? test for a condition
δ1; δ2 sequence
ifφ then δ1 else δ2 conditional
whileφ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument2

δ∗ nondeterministic iteration

One can translate such programs into regular expressions:

tr(a) = true; a?

tr(φ?) = φ? (φ propositional)
tr(δ1; δ2) = tr(δ1); tr(δ2)

tr(ifφ then δ1 else δ2) = φ?; tr(δ1) + ¬φ?; tr(δ2)

tr(whileφdo δ) = (φ?; tr(δ1))∗;¬φ?

tr(δ1|δ2) = tr(δ1) + tr(δ2)

tr(πx.δ) =
∑
x tr(δ(x))

tr(δ∗) = tr(δ)∗

Note that the atomic action a is translated into a test of an ac-
tion proposition a (meaning action a has just been performed)
in the next state. Then one can express GOLOG procedural
constraints such as: δ must be executed at least once during
the plan, as 〈tr(δ)〉true; plans for goal φ must be an execu-
tions of δ, as 〈tr(δ)〉φ; along the plan every time δ is executed
ψ must hold, as [tr(δ)]ψ.

Given a LTLf /LDLf formulas Ψdomain describing the ac-
tion domain (a transition formula), φinit describing the initial
state (a propositional formula), Φconstraints describing trace
constraints, and ϕgoal describing the goal, conditional plan-
ning amonts to solving the synthesis problem for the follow-
ing specification:

φinit ∧Ψdomain ∧ Φconstraints ∧ ϕgoal
where action propositions A are controllable and fluent
propositions F are uncontrollable. The same holds if we
consider arbitrary temporally extended goals expressed in
LTLf /LDLf . In other words, by using the synthesis technique
presented here we can generate plans in a very general set-
ting: nondeterministic domains, arbitrary LTLf /LDLf goals,
arbitrary LTLf /LDLf trajectory constraints.

Notice that in case we drop (declarative and procedural)
trajectory constraints and we concentrate our attention to
reachability goals of the form ♦φ, we get the classical con-
ditional planning setting, which is known to be EXPTIME-
complete [Rintanen, 2004]. Interestingly, our technique in
this case matches the EXPTIME complexity, and hence is an
optimal technique (wrt worst case computational complexity)
for solving conditional planning problems. To see this, con-
sider that the goal ♦φ gives rise to a linear size DFA over the
alphabet of propositional interpretations. The domain itself,
once represented in LTLf /LDLf , also gives rise to a deter-
ministic automaton over the alphabet of propositional inter-
pretations: given the current state, which is a propositional

2Notice that the GOLOG nondeterministic pick construct
πx.δ(x) makes sense only if the propositions in the domain are gen-
erated by finitely instantiating parametrized propositions as, for in-
stance, in PDDL.

interpretation, and the next propositional interpretation, the
domain can only accept it if it conforms to its transition rules
or discard it if it does not. Indeed, the “nondeterminism” of
the planning domain corresponds to the uncontrollability of
the fluents and not to the nondeterminism of the automata on
traces of propositional interpretations. As a result, the au-
tomaton that we get by translating the LTLf /LDLf formula
corresponding to the domain, initial state, and reachability
goal (corresponding to the conditional planning problem) is
indeed deterministic. So determinization, which in general
costs an exponential, is skipped, and we can directly solve
the DFA game, getting overall a single exponential procedure
as in [Rintanen, 2004].

However, determinization may be required for more com-
plex LTLf /LDLf goals or trajectory constraints, since the
goals or constrains themselves may give rise to NFAs over
traces of propositional interpretations.

6 Conclusion
We have studied LTLf /LDLf synthesis, assessing its complex-
ity and devising an effective procedure to check the existence
of a winning strategy and to actually compute it if it exists.

The complexity characterization of the problem in the case
of LTLf /LDLf on finite traces is the same as the one for in-
finite trace, namely, 2EXPTIME-complete. Also the proce-
dure for computing it is analogus [Mazala, 2002]. Starting
from the logical specification, we get a nondeterministic au-
tomaton (NFA in the finite case, Büchi in the infinite case),
we determinize it (in the infinite case, we change the automa-
ton, e.g., to a parity one, since Büchi automata are not closed
under determinization, indeed deterministic Büchi automata
are strictly less espressive that nondeterministic ones), and
then we solve the corresponding game (DFA games for finite
traces, parity games for the infinite ones) considering which
propositions are controllable and which are not. However, in
the case of infinite traces, the determinization remains a very
difficult step, and there are no good algorithms yet to perform
it [Fogarty et al., 2013]. As a consequence, virtually no tools
are available (an exception is Lily [Jobstmann and Bloem,
2006]). In the finite case, determinization is much easier: it
requires the usual subset constructions and good algorithms
are available. So effective tools can indeed be developed.

With respect to the latter, it would be particularly inter-
esting to study how techniques developed for planning could
be used to actually translate an LTLf /LDLf specification and
determinize the automaton on-the-fly while playing the DFA
game [Baier and McIlraith, 2006; Geffner and Bonet, 2013].

Our work is also related to other forms of synthesis that
are well established in AI, such as ATL model checking [Alur
et al., 2002] or 2-player game structure model checking, see
e.g., [De Giacomo et al., 2010]. The latter was used to solve
our kind of syntesis for GR(1) LTL formulas in the infinite
trace setting [Bloem et al., 2012]. The key difference be-
tween that kind of synthesis and the general one considered
here is that there the game arena is given while the goal to
play for is determined by the ATL or mu-calculus formula. In
our case, instead, the game arena, i.e., the DFA game, is com-
puted from the formula, while the goal to play for is fixed to

be reachability of the final state of the automaton.

Acknowledgements. The authors would like to thank anony-
mous reviewers for their comments and Diego Calvanese for
insightful discussions on the topic of the paper.

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5), 2002.

[Bacchus and Kabanza, 1996] Fahiem Bacchus and Frodu-
ald Kabanza. Planning for temporally extended goals. In
AAAI, 1996.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artif. Intell., 116(1-2), 2000.

[Baier and McIlraith, 2006] J Baier and S McIlraith. Plan-
ning with First-Order Temporally Extended Goals using
Heuristic Search. In AAAI, 2006.

[Baier et al., 2008] Jorge A. Baier, Christian Fritz, Meghyn
Bienvenu, and Sheila A. McIlraith. Beyond classical plan-
ning: Procedural control knowledge and preferences in
state-of-the-art planners. In AAAI, 2008.

[Bloem et al., 2012] Roderick Bloem, Barbara Jobstmann,
Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. J. Comput. Syst. Sci., 78(3), 2012.

[Calvanese et al., 2002] Diego Calvanese, Giuseppe De Gia-
como, and Moshe Y. Vardi. Reasoning about actions and
planning in LTL action theories. In KR, 2002.

[Church, 1963] A. Church. Logic, arithmetics, and au-
tomata. In Proc. International Congress of Mathemati-
cians, 1962. institut Mittag-Leffler, 1963.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Proc. of IJCAI, 2013.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Paolo
Felli, Fabio Patrizi, and Sebastian Sardiña. Two-player
game structures for generalized planning and agent com-
position. In Proc. AAAI, 2010.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Ric-
cardo De Masellis, Marco Grasso, Fabrizio Maria Maggi,
and Marco Montali. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In Proc. of BPM,
2014.

[Fischer and Ladner, 1979] Michael J. Fischer and
Richard E. Ladner. Propositional dynamic logic of
regular programs. Journal of Computer and System
Sciences, 18, 1979.

[Fogarty et al., 2013] Seth Fogarty, Orna Kupferman,
Moshe Y. Vardi, and Thomas Wilke. Profile trees for
Büchi word automata, with application to determinization.
In GandALF, 2013.

[Fritz and McIlraith, 2007] Christian Fritz and Sheila A.
McIlraith. Monitoring plan optimality during execution.
In ICAPS, 2007.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. Artif. Intell., 173(5-6), 2009.

[Harel et al., 2000] David Harel, Dexter Kozen, and Jerzy
Tiuryn. Dynamic Logic. MIT Press, 2000.

[Jobstmann and Bloem, 2006] Barbara Jobstmann and Rod-
erick Bloem. Optimizations for LTL synthesis. In FM-
CAD, 2006.

[Levesque et al., 1997] H. J. Levesque, R. Reiter, Y. Lesper-
ance, F. Lin, and R. Scherl. GOLOG: A logic program-
ming language for dynamic domains. J. of Logic Program-
ming, 31, 1997.

[Mazala, 2002] René Mazala. Infinite games. In Erich
Grädel, Wolfgang Thomas, and Thomas Wilke, editors,
Automata, Logics, and Infinite Games, volume 2500 of
LNCS. Springer, 2002.

[McDermott and others, 1998] Drew McDermott et al.
PDDL – the planning domain definition language –
version 1.2. Technical report, TR-98-003, Yale Center for
Computational Vision and Control, 1998.

[Montali et al., 2010] Marco Montali, Maja Pesic, Wil M. P.
van der Aalst, Federico Chesani, Paola Mello, and Sergio
Storari. Declarative specification and verification of ser-
vice choreographies. ACM Trans. on the Web, 2010.

[Pesic and van der Aalst, 2006] Maja Pesic and Wil M. P.
van der Aalst. A declarative approach for flexible busi-
ness processes management. In Proc. of the BPM 2006
Workshops, volume 4103 of LNCS. Springer, 2006.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, 1989.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, 1977.

[Rabin and Scott, 1959] M. O. Rabin and D. Scott. Finite
automata and their decision problems. IBM J. Res. Dev.,
3(2), April 1959.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Rintanen, 2004] Jussi Rintanen. Complexity of planning
with partial observability. In ICAPS, 2004.

[Sun et al., 2012] Yutian Sun, Wei Xu, and Jianwen Su.
Declarative choreographies for artifacts. In Proc. of IC-
SOC’12, LNCS. Springer, 2012.

[Vardi, 1996] Moshe Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Logics for Concur-
rency: Structure versus Automata, volume 1043 of LNCS.
Springer, 1996.

[Vardi, 2011] M.Y. Vardi. The rise and fall of linear time
logic. In GandALF, 2011.

