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Abstract. Runtime monitoring is one of the central tasks to provide operational
decision support to running business processes, and check on-the-fly whether they
comply with constraints and rules. We study runtime monitoring of properties
expressed in LTL on finite traces (LTLf ) and its extension LDLf . LDLf is a pow-
erful logic that captures all monadic second order logic on finite traces, which
is obtained by combining regular expressions with LTLf , adopting the syntax of
propositional dynamic logic (PDL). Interestingly, in spite of its greater expressiv-
ity, LDLf has exactly the same computational complexity of LTLf . We show that
LDLf is able to capture, in the logic itself, not only the constraints to be moni-
tored, but also the de-facto standard RV-LTL monitors. This makes it possible to
declaratively capture monitoring metaconstraints, i.e., constraints about the evo-
lution of other constraints, and check them by relying on usual logical services
for temporal logics instead of ad-hoc algorithms. This, in turn, enables to flex-
ibly monitor constraints depending on the monitoring state of other constraints,
e.g., “compensation” constraints that are only checked when others are detected
to be violated. In addition, we devise a direct translation of LDLf formulas into
nondeterministic automata, avoiding to detour to Büchi automata or alternating
automata, and we use it to implement a monitoring plug-in for the PROM suite.

1 Introduction

Runtime monitoring is one of the central tasks to provide operational decision support
[21] to running business processes, and check on-the-fly whether they comply with
constraints and rules. In order to provide well-founded and provably correct runtime
monitoring techniques, this area is usually rooted into that of verification, the branch of
formal analysis aiming at checking whether a system meets some property of interest.
Being the system dynamic, properties are usually expressed by making use of modal
operators accounting for the time.

Among all the temporal logics used in verification, Linear-time Temporal Logic
(LTL) is particularly suited for monitoring, as an actual system execution is indeed lin-
ear. However, the LTL semantics is given in terms of infinite traces, hence monitoring
must check whether the current trace is a prefix of an infinite trace, that will never be
completed [7, 2]. In several context, and in particular often in BPM, we can assume that



the trace of the system is in fact finite [18]. For this reason, finite-trace variant of the LTL
have been introduced. Here we use the logic LTLf (LTL on finite traces), investigated
in detail in [4], and at the base of one of the main declarative process modeling ap-
proaches: DECLARE [18, 16, 11]. Following [11], monitoring in LTLf amounts to check
whether the current execution belongs to the set of admissible prefixes for the traces
of a given LTLf formula ϕ. To achieve such a task, ϕ is usually first translated into a
finite-state automaton for ϕ, which recognizes all those finite executions that satisfy ϕ.

Despite the presence of previous operational decision support techniques to moni-
toring LTLf constraints over finite traces [11, 12], two main challenges have not yet been
tackled in a systematic way. First of all, several alternative semantics have been pro-
posed to make LTL suitable for runtime verification (such as the de-facto standard RV
monitor conditions [2]), but no comprehensive technique based on finite-state automata
is available to accommodate them. On the one hand, runtime verification for such log-
ics typically considers finite partial traces whose continuation is however infinite [2],
with the consequence that the corresponding techniques detour to Büchi automata for
building the monitors. On the other hand, the incorporation of such semantics in the
BPM setting (where also continuations are finite) has only been tackled so far with ef-
fective but ad-hoc techniques (cf. the “coloring” of automata in [11] to support the RV
conditions), without a corresponding formal underpinning.

A second, key challenge is the incorporation of advanced forms of monitoring,
where some constraints become of interest only in specific, critical circumstances (such
as the violation of other constraints). This is the basis for supporting monitoring of
compensation constraints and the so-called contrary-to-duty obligations [20], i.e., obli-
gations that are put in place only when other obligations have not been fulfilled. While
this feature is considered to be a fundamental compliance monitoring functionality [10],
it is still an open challenge, without any systematic approach able to support it at the
level of the constraint specification language.

In this paper, we attack these two challenges by studying runtime monitoring of
properties expressed in LTLf and in its extension LDLf [4]. LDLf is a powerful logic
that captures all monadic second order logic on finite traces, which is obtained by com-
bining regular expressions with LTLf , adopting the syntax of propositional dynamic
logic (PDL). Interestingly, in spite of its greater expressivity, LDLf has exactly the same
computational complexity of LTLf . We show that LDLf is able to capture, in the logic it-
self, not only the usual LDLf constraints to be monitored, but also the de-facto standard
RV conditions. Indeed given an LDLf formula ϕ, we show how to construct the LDLf
formulas that captures whether prefixes of ϕ satisfy the various RV conditions. This, in
turn, makes it possible to declaratively capture monitoring metaconstraints, and check
them by relying on usual logical services instead of ad-hoc algorithms. Metaconstraints
provide a well-founded, declarative basis to specify and monitor constraints depending
on the monitoring state of other constraints, such as “compensation” constraints that are
only checked when others are violated.

Interestingly, in doing so we devise a direct translation of LDLf (and hence of LTLf )
formulas into nondeterministic automata, which avoid the usual detour to Büchi au-
tomata. The technique is grounded on alternating automata (AFW), but it actually avoids
also their introduction all together, and directly produces a standard non-deterministic
finite-state automaton (NFA). Notably, such technique has been implemented and em-
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bedded into a monitoring plug-in for the PROM, which supports the check of LDLf
constraints and metaconstraints.

2 LTLf and LDLf

In this paper we will adopt the standard LTL and its variant LDL interpreted on finite
runs.

LTL on finite traces, called LTLf [4], has exactly the same syntax as LTL on infi-
nite traces [19]. Namely, given a set of P of propositional symbols, LTLf formulas are
obtained through the following:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | •ϕ | 3ϕ | 2ϕ | ϕ1 U ϕ2

where φ is a propositional formuala over P , ◦ is the next operator, • is weak next, 3
is eventually, 2 is always, U is until.

It is known that LTLf is as expressive as First Order Logic over finite traces,
so strictly less expressive than regular expressons which in turn are as expressive as
Monadic Second Order logic over finite traces. On the other hand, regular expressions
are a too low level formalism for expressing temporal specifications, since, for example,
they miss a direct construct for negation and for conjunction [4].

To overcome this difficulties, in [4] Linear Dynamic Logic of Finite Traces, or LDLf ,
has been proposed. This logic is as natural as LTLf but with the full expressive power
of Monadic Second Order logic over finite traces. LDLf is obtained by merging LTLf
with regular expression through the syntax of the well-know logic of programs PDL,
Propositional Dynamic Logic, [8, 9] but adopting a semantics based on finite traces.
This logic is an adaptation of LDL, introduced in [22], which, like LTL, is interpreted
over infinite traces.

Formally, LDLf formulas are built as follows:

ϕ ::= φ | tt | ff | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ | [ρ]ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where φ is a propositional formula over P; tt and ff denote respectively the true and the
false LDLf formula (not to be confused with the propositional formula true and false);
ρ denotes path expressions, which are regular expressions over propositional formulas φ
with the addition of the test construct ϕ? typical of PDL; and ϕ stand for LDLf formulas
built by applying boolean connectives and the modal connectives 〈ρ〉ϕ and [ρ]ϕ. In fact
[ρ]ϕ ≡ ¬〈ρ〉¬ϕ.

Intuitively, 〈ρ〉ϕ states that, from the current step in the trace, there exists an exe-
cution satisfying the regular expression ρ such that its last step satisfies ϕ. While [ρ]ϕ
states that, from the current step, all executions satisfying the regular expression ρ are
such that their last step satisfies ϕ. Tests are used to insert into the execution path checks
for satisfaction of additional LDLf formulas.

As for LTLf , the semantics of LDLf is given in terms of finite traces denoting a finite,
possibly empty, sequence of consecutive steps in the trace, i.e., finite words π over the
alphabet of 2P , containing all possible propositional interpretations of the propositional
symbols in P . We denote by n the length of the trace, and by π(i) the i-th step in the
trace. If i > n, then π(i) is undefined. We denote by π(i, j) the segment of the trace π
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starting at i-th step end ending at the j-th step (included). If i or j are out of range wrt
the trace then π(i, j) is undefined, except π(i, i) = ε (i.e., the empty trace).

The semantics of LDLf is as follows: an LDLf formula ϕ is true at a step i, in
symbols π, i |= ϕ, as follows:

– π, i |= tt
– π, i 6|= ff
– π, i |= φ iff 1 ≤ i ≤ n and π(i) |= φ (φ propositional).
– π, i |= ¬ϕ iff π, i 6|= ϕ.
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
– π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2.
– π, i |= 〈ρ〉ϕ iff for some j we have π(i, j) ∈ L(ρ) and π, j |= ϕ.
– π, i |= [ρ]ϕ iff for all j such that π(i, j) ∈ L(ρ) we have π, j |= ϕ.

The relation π(i, j) ∈ L(ρ) is defined inductively as follows:
– π(i, j) ∈ L(φ) if j = i+ 1 ≤ n and π(i) |= φ (φ propositional)
– π(i, j) ∈ L(ϕ?) if j = i and π, i |= ϕ
– π(i, j) ∈ L(ρ1 + ρ2) if π(i, j) ∈ L(ρ1) or π(i, j) ∈ L(ρ2)
– π(i, j) ∈ L(ρ1; ρ2) if exists k s.t. π(i, k) ∈ L(ρ1) and π(k, j) ∈ L(ρ2)
– π(i, j) ∈ L(ρ∗) if j = i or exists k s.t. π(i, k) ∈ L(ρ) and π(k, j) ∈ L(ρ∗)

Observe that for i > n , hence e.g., for π = ε we get:
– π, i |= tt
– π, i 6|= ff
– π, i 6|= φ (φ propositional).
– π, i |= ¬ϕ iff π, i 6|= ϕ.
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
– π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2.
– π, i |= 〈ρ〉ϕ iff π(i, i) ∈ L(ρ) and π, i |= ϕ.
– π, i |= [ρ]ϕ iff π(i, i) ∈ L(ρ) implies π, i |= ϕ.

The relation π(i, i) ∈ L(ρ) with i > n is defined inductively as follows:
– π(i, i) 6∈ L(φ) (φ propositional)
– π(i, i) ∈ L(ϕ?) if π, i |= ϕ
– π(i, i) ∈ L(ρ1 + ρ2) if π(i, i) ∈ L(ρ1) or π(i, i) ∈ L(ρ2)
– π(i, i) ∈ L(ρ1; ρ2) if π(i, i) ∈ L(ρ1) and π(i, i) ∈ L(ρ2)
– π(i, i) ∈ L(ρ∗)

Notice we have the usual boolean equivalences such as ϕ1 ∨ ϕ2 ≡ ¬ϕ1 ∧ ¬ϕ2,
furthermore we have that: φ ≡ 〈φ〉tt , and [ρ]ϕ ≡ ¬〈ρ〉¬ϕ. It is also convenient to
introduce the following abbreviations:

– end = [true?]ff that denotes that the traces is been completed (the remaining trace
is ε the empty one)

– last = 〈true〉end , which denotes the last step of the trace.
It easy to encode LTLf into LDLf : it suffice to observe that we can express the

various LTLf operators by recursively applying the following translations:
– ◦ϕ translates to 〈true〉ϕ;
– •ϕ translates to ¬〈true〉¬ϕ = [true]ϕ (notice that •a is translated into
[true][¬a]ff , since a is equivalent to 〈a〉tt);

– 3ϕ translates to 〈true∗〉ϕ;
– 2ϕ translates to [true∗]ϕ (notice that 2a is translated into [true∗][¬a]ff );
– ϕ1 U ϕ2 translates to 〈(ϕ1?; true)∗〉ϕ2.
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It is also easy to encode regular expressions, used as a specification formalism for
traces into LDLf : ρ translates to 〈ρ〉end .

We say that a trace satisfies an LTLf or LDLf formula ϕ, written π |= ϕ if π, 1 |= ϕ.
(Note that if π is the empty trace, and hence 1 is out of range, still the notion of π, 1 |= ϕ
is well defined). Also sometimes we denote by L(ϕ) the set of traces that satisfy ϕ:
L(ϕ) = {π | π |= ϕ}.

3 LDLf Automaton

We can associate with each LDLf formula ϕ an NFA Aϕ (exponential in the size of
the formula) that accepts exactly those traces that make ϕ true. Here, we provide a
simple direct algorithm for computing the NFA corresponding to an LDLf formula. The
correctness of the algorithm is based on the fact that (i) we can associate each LDLf
formula ϕ with a polynomial alternating automaton on words (AFW)Aϕ which accepts
exactly the traces that make ϕ true [4], and (ii) every AFW can be transformed into an
NFA, see, e.g., [4]. However, to formulate the algorithm we do not need these notions,
but we can work directly on the LDLf formula. In order to proceed with the construction
of the AFWAϕ, we put LDLf formulas ϕ in negation normal form nnf (ϕ) by exploiting
equivalences and pushing negation inside as much as possible, until is eliminated except
in propositional formulas. Note that computing nnf (ϕ) can be done in linear time. In
other words, wlog, we consider as syntax for LDLf the one in the previous section but
without negation. Then we define an auxiliary function δ that takes an LDLf formula ψ
(in negation normal form) and a propositional interpretation Π for P (including last),
or a special symbol ε, returning a positive boolean formula whose atoms are (quoted) ψ
subformulas.

δ("tt", Π) = true

δ("ff ", Π) = false

δ("φ", Π) =

{
true if Π |= φ
false if Π 6|= φ

(φ propositional)

δ("ϕ1 ∧ ϕ2", Π) = δ("ϕ1", Π) ∧ δ("ϕ2", Π)

δ("ϕ1 ∨ ϕ2", Π) = δ("ϕ1", Π) ∨ δ("ϕ2", Π)

δ("〈φ〉ϕ", Π) =

"ϕ" if last 6∈ Π and Π |= φ (φ propositional)
δ("ϕ", ε) if last ∈ Π and Π |= φ
false if Π 6|= φ

δ("〈ψ?〉ϕ", Π) = δ("ψ", Π) ∧ δ("ϕ", Π)

δ("〈ρ1 + ρ2〉ϕ", Π) = δ("〈ρ1〉ϕ", Π) ∨ δ("〈ρ2〉ϕ", Π)

δ("〈ρ1; ρ2〉ϕ", Π) = δ("〈ρ1〉〈ρ2〉ϕ", Π)

δ("〈ρ∗〉ϕ", Π) =

{
δ("ϕ", Π) if ρ is test-only
δ("ϕ", Π) ∨ δ("〈ρ〉〈ρ∗〉ϕ", Π) o/w

δ("[φ]ϕ", Π) =

"ϕ" if last 6∈ Π and Π |= φ (φ propositional)
δ("ϕ", ε) if last ∈ Π and Π |= φ (φ propositional)
true if Π 6|= φ

δ("[ψ?]ϕ", Π) = δ("nnf (¬ψ)", Π) ∨ δ("ϕ", Π)
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1: algorithm LDLf 2NFA()
2: input LTLf formula ϕ
3: output NFA Aϕ = (2P ,S, {s0}, %, {sf})
4: s0 ← {"ϕ"} . single initial state
5: sf ← ∅ . single final state
6: S ← {s0, sf}, %← ∅
7: while (S or % change) do
8: if (q ∈ S and q′ |=

∧
("ψ"∈q) δ("ψ", Θ)) then

9: S ← S ∪ {q′} . update set of states
10: %← % ∪ {(q,Θ, q′)} . update transition relation

Fig. 1. NFA construction

δ("[ρ1 + ρ2]ϕ", Π) = δ("[ρ1]ϕ", Π) ∧ δ("[ρ2]ϕ", Π)

δ("[ρ1; ρ2]ϕ", Π) = δ("[ρ1][ρ2]ϕ", Π)

δ("[ρ∗]ϕ", Π) =

{
δ("ϕ", Π) if ρ is test-only
δ("ϕ", Π) ∧ δ("[ρ][ρ∗]ϕ", Π) o/w

where δ("ϕ", ε), i.e., the interpretation of LDLf formula in the case the (remaining
fragment of the) trace is empty, is defined as follows:

δ("tt", ε) = true

δ("ff ", ε) = false

δ("φ", ε) = false (φ propositional)
δ("ϕ1 ∧ ϕ2", ε) = δ("ϕ1", ε) ∧ δ("ϕ2", ε)

δ("ϕ1 ∨ ϕ2", ε) = δ("ϕ1", ε) ∨ δ("ϕ2", ε)

δ("〈φ〉ϕ", ε) = false (φ propositional)
δ("〈ψ?〉ϕ", ε) = δ("ψ", ε) ∧ δ("ϕ", ε)

δ("〈ρ1 + ρ2〉ϕ", ε) = δ("〈ρ1〉ϕ", ε) ∨ δ("〈ρ2〉ϕ", ε)
δ("〈ρ1; ρ2〉ϕ", ε) = δ("〈ρ1〉〈ρ2〉ϕ", ε)

δ("〈ρ∗〉ϕ", ε) = δ("ϕ", ε)

δ("[φ]ϕ", ε) = true (φ propositional)
δ("[ψ?]ϕ", ε) = δ("nnf (¬ψ)", ε) ∨ δ("ϕ", ε)

δ("[ρ1 + ρ2]ϕ", ε) = δ("[ρ1]ϕ", ε) ∧ δ("[ρ2]ϕ", ε)
δ("[ρ1; ρ2]ϕ", ε) = δ("[ρ1][ρ2]ϕ", ε)

δ("[ρ∗]ϕ", ε) = δ("ϕ", ε)

Notice also that for φ propositional, δ("φ", Π) = δ("〈φ〉tt", Π) and δ("φ", ε) =
δ("〈φ〉tt", ε), as a consequence of the equivalence φ ≡ 〈φ〉tt .
Using the auxiliary function δ we can build the NFA Aϕ of an LDLf formula ϕ in
a forward fashion as described in Figure 1), where: states of Aϕ are sets of atoms
(recall that each atom is quoted ϕ subformulas) to be interpreted as a conjunction;
the empty conjunction ∅ stands for true; Θ is either a propositional interpretation
Π over P or the empty trace ε (this gives rise to epsilon transition either to true or
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false) and q′ is a set of quoted subformulas of ϕ that denotes a minimal interpreta-
tion such that q′ |=

∧
("ψ"∈q) δ("ψ", Θ). (Note: we do not need to get all q such that

q′ |=
∧

("ψ"∈q) δ("ψ", Θ), but only the minimal ones.) Notice that trivially we have
(∅, a, ∅) ∈ % for every a ∈ Σ.

The algorithm LDLf 2NFA terminates in at most exponential number of steps, and
generates a set of states S whose size is at most exponential in the size of ϕ.

Theorem 1. Let ϕ be an LDLf formula and Aϕ the NFA constructed as above. Then
π |= ϕ iff π ∈ L(Aϕ) for every finite trace π.

Proof (sketch). Given a LDLf formula ϕ, δ grounded on the subformulas of ϕ becomes
the transition function of the AFW, with initial state "ϕ" and no final states, correspond-
ing to ϕ [4]. Then LDLf 2NFA essentially transforms the AFW into a NFA. ut

Notice that above we have assumed to have a special proposition last ∈ P . If we
want to remove such an assumption, we can easily transform the obtained automaton
Aϕ = (2P ,S, {"ϕ"}, %, {∅}) into the new automaton

A′ϕ = (2P−{last},S ∪ {ended}, {"ϕ"}, %′, {∅, ended})

where: (q,Π ′, q′) ∈ %′ iff (q,Π ′, q′) ∈ %, or (q,Π ′∪{last}, true) ∈ % and q′ = ended.
It is easy to see that the NFA obtained can be built on-the-fly while checking for

nonemptiness, hence we have:

Theorem 2. Satisfiability of an LDLf formula can be checked in PSPACE by nonempti-
ness of Aϕ (or A′ϕ).

Considering that it is known that satisfiability in LDLf is a PSPACE-complete problem,
we can conclude that the proposed construction is optimal wrt computational complex-
ity for satisfiability, as well as for validity and logical implication which are linearly
reducible to satisfiability in LDLf (see [4] for details).

4 Run-time Monitoring

From an high-level perspective, the monitoring problem amounts to observe an evolving
system execution and to report the violation or satisfaction of properties of interest at
the earliest possible time. As the system progresses, its execution trace increases, and at
each step the monitor checks whether the trace seen so far conforms to the properties, by
considering that the execution can still continue. This evolving aspect has a significant
impact on the monitoring output: at each step, indeed, the outcome may have a degree
of uncertainty due to the fact that future executions are yet unknown.

Several variant of monitoring semantics have been proposed (see [2] for a survey).
In this paper we adopt the semantics in [11], which is basically the finite-trace variant
of the RV semantics in [2]: given a LTLf or LDLf formula ϕ, when the system evolves,
the monitor returns one among the following truth values:

– [ϕ]RV = temp true , meaning that the current execution trace temporarily satisfies
ϕ, i.e., it is currently compliant with ϕ, but a possible system future prosecution
may lead to falsify ϕ;
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– [ϕ]RV = temp false , meaning that the current trace temporarily falsify ϕ, i.e., ϕ is
not current compliant with ϕ, but a possible system future prosecution may lead to
satisfy ϕ;

– [ϕ]RV = true , meaning that the current trace satisfies ϕ and it will always do, no
matter how it proceeds;

– [ϕ]RV = false , meaning that the current trace falsifies ϕ and it will always do, no
matter how it proceeds.

The first two conditions are unstable because they may change into any other value as
the system progresses. This reflects the general unpredictability of system possible ex-
ecutions. Conversely, the other two truth values are stable since, once outputted, they
will not change anymore. Observe that a stable truth value can be reached in two dif-
ferent situations: (i) when the system execution terminates; (ii) when the formula that
is being monitored can be fully evaluated by observing a partial trace only. The first
case is indeed trivial, as when the execution ends, there are no possible future evolu-
tions and hence it is enough to evaluate the finite (and now complete) trace seen so far
according to the LDLf semantics. In the second case, instead, it is irrelevant whether
the systems continues its execution or not, since some LDLf properties, such as even-
tualities or safety properties, can be fully evaluated as soon as something happens, e.g.,
when the eventuality is verified or the safety requirement is violated. Notice also that
when a stable value is outputted, the monitoring analysis can be stopped.

From a more theoretical viewpoint, given an LDLf property ϕ, the monitor looks at
the trace seen so far, assesses if it is a prefix of a complete trace not yet completed, and
categorizes it according to its potential for satisfying or violating ϕ in the future. We
call a prefix possibly good for an LDLf formula ϕ if there exists an extension of it which
satisfies ϕ. More precisely, given an LDLf formula ϕ, we define the set of possibly good
prefixes for L(ϕ) as the set

Lposs good(ϕ) = {π | ∃π′.ππ′ ∈ L(ϕ)} (1)

Prefixes for which every possible extension satisfies ϕ are instead called necessarily
good. More precisely, given an LDLf formula ϕ, we define the set of necessarily good
prefixes for L(ϕ) as the set

Lnec good(ϕ) = {π | ∀π′.ππ′ ∈ L(ϕ)}. (2)

The set of necessarily bad prefixes Lnec bad(ϕ) can be defined analogously as

Lnec bad(ϕ) = {π | ∀π′.ππ′ 6∈ L(ϕ)}. (3)

Observe that the necessarily bad prefixes for ϕ are the necessarily good prefixes for ¬ϕ,
i.e., Lnec bad(ϕ) = Lnec good(¬ϕ).

Using this language theoretic notions, we can provide a precise characterization of
the semantics four standard monitoring evaluation functions [11].

Proposition 1. Let ϕ be an LDLf formula and π a trace. Then:
– π |= [ϕ]RV = temp true iff π ∈ L(ϕ) \ Lnec good(ϕ);
– π |= [ϕ]RV = temp false iff π ∈ L(¬ϕ) \ Lnec bad(ϕ);
– π |= [ϕ]RV = true iff π ∈ Lnec good(ϕ);
– π |= [ϕ]RV = false iff π ∈ Lnec bad(ϕ).
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Proof (sketch). Immediate from the definitions in [11] and the language theoretic defi-
nitions above. ut

We close this section by exploiting the language theoretic notions to better under-
stand the relationships between the various kinds of prefixes. We start by observing that,
the set of all finite words over the alphabet 2P is the union of the language of ϕ and
its complement L(ϕ) ∪ L(¬ϕ) = (2P)∗. Also, any language and its complement are
disjoint L(ϕ) ∩ L(¬ϕ) = ∅.

Since from the definition of possibly good prefixes we have L(ϕ) ⊆ Lposs good(ϕ)
and L(¬ϕ) ⊆ Lposs good(¬ϕ), we also have that Lposs good(ϕ) ∪ Lposs good(¬ϕ) =
(2P)∗. Also from the definition it is easy to see that Lposs good(ϕ)∩Lposs good(¬ϕ) =
{π | ∃π′.ππ′ ∈ L(ϕ) ∧ ∃π′′.ππ′′ ∈ L(¬ϕ)} meaning that the set of possibly good
prefixes for ϕ and the set of possibly good prefixes for ¬ϕ do intersect, and in such
an intersection are paths that can be extended to satisfy ϕ but can also be extended to
satisfy ¬ϕ. It is also easy to see that L(ϕ) = Lposs good(ϕ) \ L(¬ϕ).

Turning to necessarily good prefixes and necessarily bad prefixes, it is easy
to see that Lnec good(ϕ) = Lposs good(ϕ) \ Lposs good(¬ϕ), that Lnec bad(ϕ) =
Lposs good(¬ϕ) \ Lposs good(ϕ), and also that ⊆ L(ϕ) and Lnec good(ϕ) 6⊆ L(¬ϕ).

Interestingly, necessarily good, necessarily bad, possibly good prefixes partition all
finite traces. Namely

Proposition 2. The set of all traces (2P)∗ can be partitioned into

Lnec good(ϕ) Lposs good(ϕ) ∩ Lposs good(¬ϕ) Lnec bad(ϕ)

such that Lnec good(ϕ) ∪ (Lposs good(ϕ) ∩ Lposs good(¬ϕ)) ∪ Lnec bad(ϕ) = (2P)∗

Lnec good(ϕ) ∩ (Lposs good(ϕ) ∩ Lposs good(¬ϕ)) ∩ Lnec bad(ϕ) = ∅.

Proof (sketch). Follows from the definitions of the necessarily good, necessarily bad,
possibly good prefixes of L(ϕ) and L(¬ϕ). ut

5 Runtime Monitors in LDLf

As discussed in the previous section the core issue in monitoring is prefix recogni-
tion. LTLf is not expressive enough to talk about prefixes of its own formulas. Roughly
speaking, given a LTLf formula, the language of its possibly good prefixes cannot be
in general described as an LTLf formula. For such a reason, building a monitor usually
requires direct manipulation of the automaton for the formula.

LDLf instead can capture any nondeterministic automata as a formula, and it has the
capability of expressing properties on prefixes. We can exploit such an extra expressiv-
ity to capture the monitoring condition in a direct and elegant way. We start by showing
how to construct formulas representing (the language of) prefixes of other formulas,
and then we exploit them in the context of monitoring.

More precisely, given an LDLf formula ϕ, it is possible to express the language
Lpossgood(ϕ) with an LDLf formula ϕ′. Such a formula is obtained in two steps.

Lemma 1. Given a LDLf formula ϕ, there exists a regular expression prefϕ such that
L(prefϕ) = Lposs good(ϕ).
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Proof (sketch). The proof is constructive. We can build the NFA A for ϕ following
the procedure described in Section 3. We then set as final all states of A from which
there exists a path to a final state. This new finite state machine Aposs good(ϕ) is such
that L(Aposs good(ϕ)) = Lposs good(ϕ). Since NFA are exactly as expressive as regular
expressions, we can translate Aposs good(ϕ) to a regular expression prefϕ. ut

Given that LDLf is as expressive as regular expression (cf. [4]), we can translate
prefϕ into an equivalent LDLf formula, as the following states.

Theorem 3. Given a LDLf formula ϕ,

π ∈ Lposs good(ϕ) iff π |= 〈prefϕ〉end
π ∈ Lnec good(ϕ) iff π |= 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end

Proof (sketch). Any regular expression ρ, and hence any regular language, can
be captured in LDLf as 〈ρ〉end . Hence the language Lnec good(ϕ) can be captured
by 〈prefϕ〉end and the language Lnec good(ϕ) which is equivalent Lposs good(ϕ) \
Lposs good(¬ϕ) can be captured by captured by 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end . ut

In other words, given a LDLf formula ϕ, formula ϕ′ = 〈prefϕ〉end is a LDLf
formula such that L(ϕ′) = Lpossgood(ϕ). Similarly for Lnec good(ϕ).

Exploiting this result, and the results in Proposition 1, we reduce runtime monitor-
ing to the standard evaluation of LDLf formulas over a (partial) trace. Formally:

Theorem 4. Let π be a (typically partial) trace. The following equivalences hold:
– π |= [ϕ]RV = temp true iff π |= ϕ ∧ 〈pref¬ϕ〉end ;
– π |= [ϕ]RV = temp false iff π |= ¬ϕ ∧ 〈prefϕ〉end ;
– π |= [ϕ]RV = true iff 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end ;
– π |= [ϕ]RV = false iff 〈pref¬ϕ〉end ∧ ¬〈prefϕ〉end .

Proof (sketch). Follows from Proposition 1 and Theorem 3 using the language theoretic
equivalences discussed in Secton 4. ut

6 Monitoring Declare Constraints and Metaconstraints

We now ground our monitoring approach to the case of DECLARE monitoring. DE-
CLARE4 is a language and framework for the declarative, constraint-based modelling
of processes and services. A thorough treatment of constraint-based processes can be
found in [17, 14]. As a modelling language, DECLARE takes a complementary approach
to that of classical, imperative process modeling, in which all allowed control-flows
among tasks must be explicitly represented, and every other execution trace is implicitly
considered as forbidden. Instead of this procedural and “closed” approach, DECLARE
has a declarative, “open” flavor: the agents responsible for the process execution can
freely choose how to perform the involved tasks, provided that the resulting execution
trace complies with the modeled business constraints. This is the reason why, along-
side traditional control-flow constraints such as sequence (called in DECLARE chain
succession), DECLARE supports a plethora of peculiar constraints that do not impose
specific temporal orderings, or that explicitly account with negative information, i.e.,
prohibition of task execution.

4 http://www.win.tue.nl/declare/
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Given a set P of tasks, a DECLARE model is a set C of LTLf (and hence LDLf )
constraints over P , used to restrict the allowed execution traces. Among all possible
LTLf constraints, some specific patterns have been singled out as particularly meaning-
ful for expressing DECLARE processes, taking inspiration from [6]. Such patterns are
grouped into four families: (i) existence (unary) constraints, stating that the target task
must/cannot be executed (a certain amount of times); (ii) choice (binary) constraints,
modeling choice of execution; (iii) relation (binary) constraints, modeling that when-
ever the source task is executed, then the target task must also be executed (possibly with
additional requirements); (iv) negation (binary) constraints, modeling that whenever the
source task is executed, then the target task is prohibited (possibly with additional re-
strictions). Table 1 reports some of these patterns.

Example 1. Consider a fragment of a purchase order process, where we consider three
key business constraints. First, an order can be closed at most once. In DECLARE, this
can be tackled with a absence 2 constraint, visually and formally represented as:

0..1

close order ϕclose = ¬3(close order ∧◦3close order)

Second, an order can be canceled only until it is closed. This can be captured by a
negation succession constraint, which states that after the order is closed, it
cannot be canceled anymore:

close order •−−I•‖ cancel order ϕcanc = 2(close order→¬3cancel order)

Finally, after the order is closed, it becomes possible to do supplementary payments,
for various reasons (e.g., to speed up the delivery of the order).

close order −−−I• pay suppl ϕpay = (¬pay supplU close order)∨¬3close order

Beside modeling and enactment of constraint-based processes, previous works have
also focused on runtime verification of DECLARE models. A family of DECLARE mon-
itoring approaches rely on the original LTLf formalization of DECLARE, and employ
corresponding automata-based techniques to track running process instances and check
whether they satisfy the modeled constraints or not [11, 12]. Such techniques have been
in particular used for:

– monitoring single DECLARE constraints so as to provide a fine-grained feedback;
this is done by adopting the RV semantics for LTLf , and tracking the evolution each
constraint through the four RV truth values.

– Monitoring the global DECLARE model by considering all its constraints together
(i.e., constructing a DFA for the conjunction of all constraints); this is important for
computing the early detection of violations, i.e., violations that cannot be explicitly
found in the execution trace collected so far, but that cannot be avoided in the future.
We now discuss how LDLf can be adopted for monitoring DECLARE constraints,

with a twofold advantage. First, as shown in Section 5, LDLf is able to encode the RV
semantics directly into the logic, without the need of introducing ad-hoc modifications
in the corresponding standard logical services. Second, beside being able to reconstruct
all the aforementioned monitoring techniques, our approach also provides a declarative,
well-founded basis for monitoring metaconstraints, i.e., constraints that involve both the
execution of tasks and the monitoring outcome obtained by checking other constraints.
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Monitoring Declare Constraints with LDLf . Since LDLf includes LTLf , DECLARE
constraints can be directly encoded in LDLf using their standard formalization [18,
16]. Thanks to the translation into NFAs discussed in Section 3 (and, if needed, their
determinization into corresponding DFAs), the obtained automaton can then be used to
check whether a (partial) finite trace satisfies this constraint or not. This is not very
effective, as the approach does not support the detection of fine-grained truth values
as those of RV. By relying on Theorem 4, however, we can reuse the same technique,
this time supporting all RV. In fact, by formalizing the good prefixes of each DECLARE
pattern, we can immediately construct the four LDLf formulas that embed the different
RV truth values, and check the current trace over each of the corresponding automata.
Table 1 reports the good prefix characterization of some of the DECLARE patterns; it
can be seamlessly extended to all other patterns as well.

Example 2. Let us consider the absence 2 constraintϕclose in Example 1. Following
Table 1, its good prefix characterization is prefϕclose

= o∗ + (o∗; close order; o∗),
where o is a shortcut for all the tasks involved in the purchase order process but close
order. This can be used to construct the four formulas mentioned in Theorem 4, which
in turn provide the basis to produce, e.g., the following result:

start do “close order” do “pay suppl.” do “close order”
0..1

close order temp true false

Observe that this baseline approach can be extended along a number of directions.
For example, as shown in Table 1, the majority of DECLARE patterns does not cover
all the four RV truth values. This is the case, e.g., of absence 2, which can never be
evaluated to true (since it is always possible to continue the execution so as to perform
a twice), nor to temp false (the only way of violating the constraint is to perform a
twice, and in this case it is not possible to “repair” to the violation anymore). This
information can be used to restrict the generation of the automata only to those cases
that are relevant to the constraint. Furthermore, it is possible to reconstruct exactly the
approach in [11], where every state in the DFAs corresponding to the constraints to be
monitored, is enriched with a “color” accounting for one of the four RV truth values.
To do so, we have simply to combine the four DFAs generated for each constraint. This
is possible because such DFAs are generated from formulas built on top of the good
prefix characterization of the original formula, and hence they all produce the same
automaton, but with different final states. In fact, this observation provides a formal
justification to the correctness of the approach in [11].

Metaconstraints. Thanks to the ability of LDLf to directly encode into the logic DE-
CLARE constraints but also their RV monitoring states, we can formalize metacon-
straints that relate the RV truth values of different constraints. Intuitively, such metacon-
straints allow one to capture that we become interested in monitoring some constraint
only when other constraints are evaluated to be in a certain RV truth value. This, in
turn, provides the basis to declaratively capture two classes of properties that are of
central importance in the context of runtime verification:

– Compensation constraints, that is, constraints that should be enforced by the agents
executing the process in the case other constraints are violated, i.e., are evaluated
to be false . Previous works have been tackled this issue through ad-hoc techniques,
with no declarative counterpart [11, 12].
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Table 1. Some DECLARE constraints, together with their prefix characterization, minimal bad
prefix charaterization, and possible RV states; for each constraint, o is a shortcut for “other tasks”,
i.e., tasks not involved in the constraint itself.

NAME NOTATION pref POSSIBLE RV STATES

E
X

IS
T

E
N

C
E

Existence
1..∗

a (a+ o)∗ temp false , true

Absence 2
0..1

a o∗ + (o∗; a; o∗) temp true , false

C
H

O
IC

E Choice a −− ♦−− b (a+ b+ o)∗ temp false , true

Exclusive Choice a −− �−− b (a+ o)∗ + (b+ o)∗ temp false , temp true , false

R
E

L
A

T
IO

N

Resp. existence a •−−−− b (a+ b+ o)∗ temp true , temp false , true

Coexistence a •−−−• b (a+ b+ o)∗ temp true , temp false , true

Response a •−−−I b (a+ b+ o)∗ temp true , temp false

Precedence a −−−I• b o∗; (a; (a+ b+ o)∗)∗ temp true , true , false

Succession a •−−I• b o∗; (a; (a+ b+ o)∗)∗ temp true , temp false , false

N
E

G
A

T
IO

N Not Coexistence a •−−−•‖ b (a+ o)∗ + (b+ o)∗ temp true , false

Neg. Succession a •−−I•‖ b (b+ o)∗; (a+ o)∗ temp true , false

– Recovery mechanisms resembling contrary-to-duty obligations in legal reasoning
[20], i.e., obligations that are put in place only when other obligations are not met.

Technically, a generic form for metaconstraints is the pattern Φpre→ Ψexp, where:
– Φpre is a boolean formula, whose atoms are membership assertions of the involved

constraints to the RV truth values;
– Ψexp is a boolean formula whose atoms are the constraints to be enforced when
Φpre evaluates to true.

This pattern can be used, for example, to state that whenever constraints c1 and c2 are
permanently violated, then either constraint c3 or c4 have to be enforced. Observe that
the metaconstraint so constructed is a standard LDLf formula. Hence, we can reapply
Theorem 4 to it, getting four LDLf formulas that can be used to track the evolution of
the metaconstraint among the four RV values.

Example 3. Consider the DECLARE constraints of Example 1. We want to enhance it
with a compensation constraint stating that whenever ϕcanc is violated (i.e., the order
is canceled after it has been closed), then a supplement payment must be issued. This
can be easily captured in LDLf as follows. First of all, we model the compensation con-
straint, which corresponds, in this case, to a standard existence constraint over the
pay supplement task. Let ϕdopay denote the LDLf formalization of such a compen-
sation constraint. Second, we capture the intended compensation behavior by using the
following LDLf metaconstraint:

{[ϕcanc]RV = false}→ ϕdopay

which, leveraging Theorem 4, corresponds to the standard LDLf formula:

(〈pref¬ϕcanc
〉end ∧ ¬〈prefϕcanc

〉end)→ ϕdopay
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A limitation of this form of metaconstraint is that the right-hand part Ψexp is monitored
from the beginning of the trace. This is acceptable in many cases. E.g., in Example 1, it
is ok if the user already paid a supplement before the order cancelation caused constraint
ϕcanc to be violated. In other situations, however, this is not satisfactory, because we
would like to enforce the compensating behavior only after Φpre evaluates to true, e.g.,
after the violation of a given constraint has been detected. In general, we can extend the
aforementioned metaconstraint pattern as follows: Φpre→ [ρ]Ψexp, where ρ is a regular
expression denoting the paths after which Ψexp is expected to be enforced.

By constructing ρ as the regular expression accounting for the paths that make Φpre
true, we can then exploit this improved metaconstraint to express that Ψexp is expected
to become true after all prefixes of the current trace that made Φpre true.

Example 4. We modify the compensation constraint of Example 3, so as to reflect that
when a closed order is canceled (i.e., ϕcanc is violated), then a supplement must be paid
afterwards. This is captured by the following metaconstraint:

{[ϕcanc]RV = false}→ [re{[ϕcanc]RV =false}]ϕdopay

where re{[ϕcanc]=false} denotes the regular expression for the language L({[ϕcanc] =
false}) = L(〈pref¬ϕcanc

〉end ∧ ¬〈prefϕcanc
〉end). This regular expression describes

all paths containing a violation for constraint ϕcanc.

7 Implementation

Fig. 2. Screenshot of our operational support provider’s output.
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The entire approach has been implemented as an operational decision support (OS)
provider for the PROM 6 process mining framework5. PROM 6 provides a generic OS
environment [23] that supports the interaction between an external workflow manage-
ment system at runtime (producing events) and PROM. In particular, it provides an OS
service that receives a stream of events from the external world, updates and orches-
trates the registered OS providers implementing different types of online analysis to be
applied on the stream, and reports the produced results back to the external world.

At the back-end of the plug-in, there is a software module specifically dedicated
to the construction and manipulation of NFAs from LDLf formulas, concretely imple-
menting the technique presented in Section 3. To manipulate regular expressions and
automata, we used the fast, well-known library dk.brics.automaton [13].

Figure 2 shows a graphical representation of the evolution of constraints described
in Example 1 and 4 of Section 6 when monitored using our operational support provider.
Events are displayed on the horizontal axis, while the vertical axis shows the three
constraints expressed as LDLf formulas, where the literals f , g and d respectively stand
for tasks close order, cancel order, and pay supplement. Note that after the violation
of the negation succession constraint a compensation meta-constraint is triggered to
enforce that pay supplement is required to occur after the violation.

8 Conclusion

We have proposed an effective approach for monitoring dynamic (business) constraints
on finite traces that represent the executions of running process instances. Our contri-
bution can be seen as an extension of the declarative process specification approach at
the basis of DECLARE, in which we tackle the monitoring problem with a more pow-
erful temporal logic: LDLf , i.e., Monadic Second Order logic over finite traces, instead
of LTLf , i.e., First Order logic over finite traces. Notably, this declarative approach to
monitoring seamlessly supports the specification and monitoring of metaconstraints,
i.e., constraints that do not only predicate about the dynamics of task executions, but
also about the truth values of other constraints. We have grounded this approach on
DECLARE itself, showing how to declaratively specify compensation constraints.

The next step will be to incorporate recovery mechanisms into the approach, in par-
ticular providing a formal underpinning to the ad-hoc recovery mechanisms studied in
[11]. Furthermore, we intend to extend our approach to data-aware business constraints
[1, 5], mixing temporal operators with first-order queries over the data attached to the
monitored events. This setting has been studied using the Event Calculus [15], also con-
sidering some specific forms of compensation in DECLARE [3]. However, the resulting
approach can only query the partial trace accumulated so far, and not reason upon its
possible future continuations, as automata-based techniques are able to do. To extend
the approach presented here to the case of data-aware business constraints, we will
build on recent, interesting decidability results for the static verification of data-aware
business processes against sophisticated variants of first-order temporal logics [1].

Acknowledgments. This research has been partially supported by the EU IP project Optique:
Scalable End-user Access to Big Data, grant agreement n. FP7-318338, and by the Sapienza
Award 2013 “SPIRITLETS: Spiritlet-based smart spaces”.

5 http://www.promtools.org/prom6/
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