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A schema mapping is a formal specification of the relationship holding between the
databases conforming to two given schemas, called source and target, respectively. While
in the general case a schema mapping is specified in terms of assertions relating two
queries in some given language, various simplified forms of mappings, in particular lav and
gav, have been considered, based on desirable properties that these forms enjoy. Recent
works propose methods for transforming schema mappings to logically equivalent ones
of a simplified form. In many cases, this transformation is impossible, and one might be
interested in finding simplifications based on a weaker notion, namely logical implication,
rather than equivalence. More precisely, given a schema mapping M , find a simplified
(lav, or gav) schema mapping M ′ such that M ′ logically implies M . In this paper we
formally introduce this problem, and study it in a variety of cases, providing techniques
and complexity bounds. The various cases we consider depend on three parameters: the
simplified form to achieve (lav, or gav), the type of schema mapping considered (sound,
or exact), and the query language used in the schema mapping specification (conjunctive
queries and variants over relational databases, or regular path queries and variants over
graph databases). Notably, this is the first work on comparing schema mappings for graph
databases.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

A schema mapping is a formal specification of the relationship holding between the databases conforming to two given
schemas. Many papers in the last decade point out the importance of schema mappings in several data management tasks,
especially those requiring inter-operability between different information systems, such as data integration [1,2], data ex-
change [3,4], and model management [5].

In data integration, schema mappings are established between the source schema and the global schema, also called
mediated schema. In this context, schema mappings are used by the query processor when planning the accesses to the
source data for answering queries posed in terms of the global schema. In data exchange, schema mappings are specified
in terms of a source schema and a target schema, and determine how the source data should be transferred to the target
in order to populate a database conforming to the target schema. Schema mappings are also the main objects of interest
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in model management, whose goal is to support the creation, compilation, reuse, evolution, and execution of mappings
between schemas, expressed in a wide range of models.

A schema mapping is constituted by two schemas and a set of mapping assertions between the two. We follow the data
exchange terminology, and call the two schemas source and target, respectively. As usual, we assume that each assertion
relates a query qs expressed over the source schema to a query qt expressed over the target schema, and specifies a corre-
spondence between the tuples computed by qs on the source databases and those computed by qt on the target database.
In the following, we consider two types of schema mappings, called sound and exact, respectively. The correspondence spec-
ified by assertions in a sound mapping is inclusion, whereas the correspondence specified by assertions in an exact mapping
is equality. Semantically, a schema mapping M specified on source schema S and target schema T is characterized by the set
of pairs (Ds,Dt) such that Ds is a source database, i.e., a database conforming to S , Dt is a target database, i.e., a database
conforming to T , and Ds and Dt satisfy the correspondences sanctioned by the assertions in M , denoted as (Ds,Dt) |# M .

Although mappings of general form are specified using arbitrary queries, various restricted forms of mappings have been
considered in this investigation. Notable cases of restricted forms of mappings are “Local-As-Views” (lav) and “Global-As-
Views” (gav) mappings [1]. In lav mappings, the source queries in the assertions are constituted by one atom, and exactly
one assertion appears for each relation symbol in the source schema. In other words, a lav mapping associates to each
element of the source schema one view over the target schema. Conversely, a gav mapping associates to each element of
the target schema one view over the source schema. Extending the above terminology, the term glav is often used to refer
to unrestricted forms of schema mappings.

Since the pioneering work in data integration [6], schema mappings have been widely investigated in the last years.
Recently, several research works have been focused on principles and tools for comparing both schema mapping languages,
and schema mappings expressed in a certain language [7–12]. In [10], schema mapping optimization is studied, based on
logical equivalence. A set of optimality criteria are proposed for an important class of relational schema mappings, and
rewriting rules for transforming a schema mapping into an equivalent optimal one are presented. Notably, lav and gav
enjoy many of the optimality criteria mentioned in the paper. It follows that the proposed rewriting rules often lead to
transforming an input schema mapping into one of the two simplified forms.

Most of the work on optimization and simplification of schema mappings has concentrated so far on transformations
preserving logical equivalence. However, there are cases where equivalence preserving simplification is not possible, as
demonstrated for lav by Example 1.1 below. To address such cases, we argue that simplification should be based on a
weaker notion, namely logical implication, rather than equivalence. A mapping M logically implies a mapping M ′ , denoted
M |# M ′ , if whenever (Ds,Dt) |# M , we also have that (Ds,Dt) |# M ′ .

Example 1.1. We restrict our attention to schema mappings constituted by mapping assertions using positive queries. Con-
sider a source schema S consisting of the relations r1/3 and r2/2 and a target schema T consisting of the relations t1/3
and t2/2. Notice that a lav mapping from S to T has the form

{
(x, y, z)

∣∣ r1(x, y, z)
}

! q1,
{
(x, y)

∣∣ r2(x, y)
}

! q2

where q1 and q2 are two queries over T with arity three and two respectively. Consider now a schema mapping M consist-
ing of the following mapping assertion

{
(x, w, z)

∣∣ r1(x, w, y) ∧ r2(y, z)
}

!
{
(x, w, z)

∣∣ t1(x, w, v) ∧ t1(v, w, e) ∧ t2(e, z)
}
.

Suppose that M is interpreted under the sound semantics. Now, let Ds be a database such that rDs
1 %= ∅, and rDs

2 = ∅,
and let Dt be the empty database. Clearly, (Ds,Dt) |# M . On the other hand, for any sound lav mapping M ′ on the same
alphabet as M , it holds that (Ds,Dt) %|# M ′ , because rDs

1 %= ∅, while the query M ′(r1) that M ′ associates to r1 is such
that M ′(r1)

Dt = ∅, and therefore the assertion r1 ! M ′(r1) in M ′ cannot be satisfied by (Ds,Dt). It follows that no lav
mapping M ′ exists such that M |# M ′ , and therefore equivalence preserving lav simplification of M is impossible to achieve.

Example 1.2. Refer again to the schema mapping M of Example 1.1, and consider the sound lav mapping M ′′ constituted by
the following two mapping assertions:

{
(x, w, y)

∣∣ r1(x, w, y)
}

!
{
(x, w, y)

∣∣ t1(x, w, v) ∧ t1(v, w, y)
}
,

{
(x, y)

∣∣ r2(x, y)
}

!
{
(x, y)

∣∣ t2(x, y)
}
.

It is not difficult to see that M ′′ |# M . Therefore, if we are happy with lav simplification based on logical implication rather
than logical equivalence, M ′′ represents an acceptable simplification of M .

Mapping simplification based on logical implication is the subject of this paper. The basic problem we consider can be
stated as follows: given a schema mapping M , check whether a simplified (lav, or gav) schema mapping M ′ exists such that
M ′ logically implies M (and, if it exists, find one). We formally introduce this problem, and study it in a variety of cases,
depending on three parameters:
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1. the simplified form to achieve, namely, lav or gav,
2. the type of schema mapping considered, namely, sound or exact, and
3. the data model and the query language used in the schema mapping specification.

As for the first parameter, we essentially concentrate on lav in this paper. We discuss gav only briefly, pointing out that
gav simplification is an open problem in several cases.

As for the type of mapping, although the sound semantics is the most popular one in data exchange [3], the importance
of considering exact schema mappings is widely recognized for both data exchange [13], and data integration [14].

As for the data model and the query language used in schema mappings, we consider both the relational data model
with conjunctive queries and unions thereof, and the graph database model with regular path queries and their extensions.
Note that, while schema mappings have been extensively studied for relational data, and, to some extent, for XML data [15],
this is the first paper on comparing schema mappings for graph databases. Graph databases [16] were introduced in the
80’s, and are regaining wide attention recently [17–19], for their relevance in areas such as semi-structured data, biological
data management, social networks, and the semantic web.

The notion of simplification put forward in our work can be seen as a form of approximation: Given a schema mapping M
(of a general form), find a LAV schema mapping M ′ “approximating” M . It is well known that there are at least two ways
of approximating a logical theory T : one way is through a theory T1 that is stronger than T , i.e., such that T1 logically
implies T , and the other way is through a theory T2 that is weaker than T , i.e., such that T logically implies T2. For
example, in the work on Horn approximation of propositional theories, both kinds of approximations have been considered
(see, [20,21]). In this paper, we study one of the two approximations, namely the one where we look for a simplified
LAV/GAV schema mapping that is stronger (or, more precisely, not weaker) than the given schema mapping. Note that all
inferences obtained by means of the original mapping are also obtained by means of the stronger mapping. At the same
time, with this form of simplified mapping we can infer more than with the original mapping. On the other hand, with
a weak approximation, we would get the opposite: all inferences obtained by means of the simplified mapping are also
valid inferences with respect to the original mapping. The weak forms of approximation are also of interest, but are not
investigated here and are left for future study.

The results we present in this paper can be summarized as follows. We first illustrate our ideas with relational mappings,
where the results follow fairly easily from the characterization of containment for conjunctive queries and unions thereof.
We show that lav simplification is NP-complete in the case of both sound and exact schema mappings based on conjunctive
queries. In the case of unions of conjunctive queries, the problem is still in NP for sound mappings, while it is in Π

p
2 for

exact ones.
For graph database schema mappings based on regular path queries, we prove that lav simplification is PSpace-complete

under the sound semantics, and in ExpSpace in the case of exact schema mappings. By exploiting a language-theoretic
characterization for containment of regular path queries with inverse (called two-way regular path queries) provided in [22],
we also extend the results to the case where queries in schema mappings are two-way regular path queries, as well as
conjunctive two-way regular path queries, and unions of such queries.

Note that a regular path query returns the set of node pairs in the graph database connected by a path conforming to
the query, and therefore can be seen as the regular language constituted by all the words labeling the paths denoted by
the query. Indeed, the simplification problem addressed in this paper has a language theoretic interpretation in terms of
language equations. Specifically, we address systems of language constraints of the form

e1 ⊆ e2, and e1 = e2.

Here, while e2 is an ordinary regular expression, e1 is a regular expression that may contain variables as additional alphabet
symbols, to be substituted by an ordinary regular expression. The key idea of our approach is that we can prove that
solutions of the above equations are closed under congruence, which enables us to represent languages as graphs over the
finite-state automaton for e2.

The paper is organized as follows. After a discussion on related work in Section 2, we recall some preliminary notions in
Section 3. In Section 4, we formally define the problem of schema mapping simplification based on logical implication. In
Section 5, we study the problem in the case where queries and views are conjunctive queries, and unions thereof, including
a brief discussion on gav simplification. In Section 6 we illustrate the techniques for the case of regular path queries
over graph databases. In Section 7 we extend them to two-way regular path queries, and discuss the case of (unions of)
conjunctions thereof. Finally, Section 8 concludes the paper.

2. Related work

As we said in the Introduction, the issue of representing schema mappings, and reasoning on them has been widely
investigated in the last years. In [23–27] the emphasis is on providing foundations for data exchange systems based on
schema mappings. Other works deal with answering queries posed to the target schema on the basis of both the data
at the sources, and a set of source-to-target mapping assertions (see, for instance, [28,25,29] and the surveys in [6,30,2]).
A large body of work has been devoted to studying operators on schema mappings relevant to model management, notably,
composition, merge, and inverse (see, for example [31–34,11,35,36,12,37]).
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Recently, there has been a growing interest in principles and tools for comparing both schema mapping languages,
and schema mappings expressed in a certain language. Comparing schema mapping languages aims at characterizing such
languages in terms of both expressive power, and complexity of mapping-based computational tasks [7,8]. In particular, [7]
studies various relational schema mapping languages with the goal of characterizing them in terms of structural properties
possessed by the schema mappings specified in these languages.

Methods for comparing schema mappings have been recently proposed in [9–12]. In [11,12], schema mappings are
compared with respect to their ability to transfer source data and avoid redundancy in the target databases, as well as
their ability to cover target data. More relevant to the present paper is the work in [9], which introduces three notions of
equivalence. The first one is the usual notion based on logic: two schema mappings are logically equivalent if they are indis-
tinguishable by the semantics, i.e., if they are satisfied by the same set of database pairs. The other two notions, called data
exchange and conjunctive query equivalence, respectively, are relaxations of logical equivalence, capturing indistinguishabil-
ity for different purposes.

The above discussion shows that the work on optimization and simplification of schema mappings has concentrated so
far on equivalence preserving transformations. As we said in the Introduction, we follow a different approach, and address
the issue of mapping simplification based on logical implication of schema mappings, rather than logical equivalence.

As we have already observed, the simplification problem in the context of graph databases has a language theoretic
interpretation in terms of language equations. In general, solving systems of equations of the form e = e′ , where e and
e′ are regular expressions over an alphabet of constants and variables is undecidable, because it is easy to express the
universality problem for Context Free Grammars in this way. In [38], the authors study linear equations of the form

e0 + e1 · x1 + · · · + en · xn = e′
0 + e′

1 · x1 + · · · + e′
n · xn

where e0, e′
0, . . . , en, e′

n are regular expressions, and x1, . . . , xn are variables. The authors prove that solving these equations is
ExpTime-complete. In contrast, we prove the solvability of another class of problems, namely, systems of language constraints
of the form e1 ( e2 and e1 = e2 where both e1 and e2 are regular expressions, and e1 contains variables, whereas e2 has no
variables.

Taking into account the language-theoretic view, our work has also connections with [39,40], which also study language
constraints of the forms e1 ( e2, and e1 = e2. However, in these works, e1 is restricted to be a single word on both the
source and the target alphabets.

3. Preliminaries

In this work we deal with two data models, the standard relational model [41], and the graph database model [42].
Given a (relational) alphabet Σ , a database over Σ is a finite structure over Σ . We denote a query of arity n over Σ as

{(x1, . . . , xn) | α}, where x1, . . . , xn are pairwise distinct variables, called the distinguished variables of the query, and α is an
expression over Σ containing x1, . . . , xn , to be evaluated on databases over Σ in order to compute the assignment to such
variables. For a query q over Σ , we denote by qD the set of tuples resulting from evaluating q in a database D over Σ .
A query q over Σ is empty if for each database D over Σ we have qD = ∅. Given two queries q1 and q2 over Σ , we say
that q1 is contained in q2, denoted q1 ( q2, if qD1 ⊆ qD2 for every database D over Σ . The queries q1 and q2 are equivalent,
denoted q1 ≡ q2, if both q1 ( q2 and q2 ( q1.

We assume familiarity with (unions of) conjunctive queries, (U)CQs, over relational databases. In particular, a CQ over Σ
is an expression of the form {(x1, . . . , xn) | α}, where α is a conjunction of atoms over Σ that may include constants,
distinguished variables, and additional variables that are implicitly existentially quantified. We consider such queries as
interpreted under the active domain semantics [41] modified, for technical reasons (see Definition 4.3), by assuming that
the active domain contains an additional special constant that does not appear in any relation. For every arity n, we consider
two special queries: the universal query denoted true/n, returning the n-cartesian product of the active domain, and the
empty query denoted false/n, returning the empty set. We may omit n when it is clear from the context. We recall that
containment between (U)CQs can be characterized in terms of homomorphisms (also called containment mappings) [43]: For
two CQs q1 and q2, we have that q1 ( q2 iff there is a homomorphism from q2 to q1, i.e., a mapping h from the variables
and constants of q2 to those of q1 that is the identity on distinguished variables and constants and such that, if r(x1, . . . , xk)
is an atom of q2, then r(h(x1), . . . ,h(xk)) is an atom of q1. For two UCQ q1 and q2, we have that q1 ( q2 iff for each CQ qi

1

in q1 there is a CQ q j
2 in q2 such that qi

1 ( q j
2 [44].

We recall the basic notions regarding graph databases and regular path queries. A graph database is a finite graph
whose nodes represent objects and whose edges are labeled by elements from an alphabet of binary relational symbols
[16,45,46,22]. An edge (o1, r,o2) from object o1 to object o2 labeled by r represents the fact that relation r holds be-
tween o1 and o2.

A regular-path query (RPQ) over an alphabet Σ of binary relation symbols is a binary query characterized by a regular
language. We denote an RPQ {(x, y) | e(x, y)}, where e is a regular expression or a nondeterministic finite state automaton
(1NFA) over Σ , simply by e. When evaluated on a graph database D over Σ , an RPQ q computes the set qD of pairs of
objects connected in D by a path in the regular language L(q) defined by q. We consider also two-way regular-path queries
(2RPQs) [47,22], which extend RPQs with the inverse operator. Formally, let Σ± = Σ ∪ {r− | r ∈ Σ} be the alphabet including
a new symbol r− for each r in Σ . Intuitively, r− denotes the inverse of the binary relation r. If p ∈ Σ± , then we use p− to



820 D. Calvanese et al. / Journal of Computer and System Sciences 79 (2013) 816–834

mean the inverse of p, i.e., if p is r, then p− is r− , and if p is r− , then p− is r. 2RPQs are expressed by means of a 1NFA
over Σ± . When evaluated on a database D over Σ , a 2RPQ q computes the set qD of pairs of objects connected in D by a
semipath that conforms to the regular language L(q). A semipath in D from x to y (labeled with p1 · · · pn) is a sequence of
the form (y0, p1, y1, . . . , yn−1, pn, yn), where n> 0, y0 = x, yn = y, and for each yi−1, pi, yi , we have that pi ∈ Σ± , and, if
pi = r then (yi−1, yi) ∈ rD , and if pi = r− then (yi, yi−1) ∈ rD . We say that a semipath (y0, p1, . . . , pn, yn) conforms to q if
p1 · · · pn ∈L(q).

We conclude by observing that (U)CQs, RPQs, 2RPQs, and (U)C2RPQs are monotone, where a query q is monotone if,
whenever D1 ⊆D2 (i.e., rD1 ⊆ rD2 for each relation r) we have that qD1 ⊆ qD2 .

4. Schema mapping simplification

We refer to a scenario with one source schema, one target schema, and a schema mapping between the two. To model
the source and the target schemas we refer to two finite alphabets, the source alphabet Σs and the target alphabet Σt , and
to specify the mapping, we use a correspondence between queries expressed in a given query language.

Definition 4.1. Given a query language Q, a Q-based schema mapping assertion from Σs to Σt is a statement of the form
qs ! qt , where qs and qt are two queries in Q with the same arity, respectively over Σs and over Σt . A Q-based schema
mapping from Σs to Σt is a set of mapping assertions from Σs to Σt .

In the following, we specify explicitly Q, Σs , and Σt only when they are required or not clear from the context.
We consider two types of schema mappings, called sound and exact. Intuitively, in a sound mapping, the correspondence

between the tuples computed by qs and those computed by qt is set containment, while in an exact mapping the corre-
spondence is set equality. Formally, given a source database Ds and a target database Dt , we say that a sound mapping M is
satisfied by (Ds,Dt), denoted (Ds,Dt) |# M , if for each mapping assertion qs ! qt in M , we have that qDs

s ⊆ qDt
t . Similarly,

an exact mapping M is satisfied by (Ds,Dt) if for each qs ! qt in M , we have that qDs
s = qDt

t .
A fundamental notion in our setting is that of logical implication between mappings.

Definition 4.2. A mapping M1 logically implies a mapping M2, denoted M1 |# M2, if for every pair (Ds,Dt) such that
(Ds,Dt) |# M1, we also have that (Ds,Dt) |# M2.

We consider two simplified forms of mappings called lav (local-as-view) and gav (global-as-view), respectively. In a
lav assertion qs ! qt , the query qs is constituted simply by an atom whose predicate symbol belongs to Σs and whose
arguments are pairwise distinct distinguished variables,1 while qt is an arbitrary query.2 Conversely, in a gav assertion, qs is
an arbitrary query while qt is constituted simply by an atom whose predicate symbol belongs to Σt and whose arguments
are pairwise distinct distinguished variables. A lav mapping is a set of lav assertions with one assertion for each symbol
in Σs . If ML is a lav mapping and a ∈ Σs , we denote by ML(a) the target query to which a is mapped by ML . Conversely, a
gav mapping is a set of gav assertions with one assertion for each symbol in Σt . Analogously to the case of lav mappings,
MG(a) denotes the source query to which the symbol a ∈ Σt is mapped by the gav mapping MG . Note that some of the
queries in a lav (resp., gav) mapping may be the empty query.

The problem we consider aims at checking whether a simplified mapping exists that logically implies a given mapping M .
Let us consider the case where M is constituted by a single assertion qs ! qt , and we aim at simplifying M by means of a
lav schema mapping M ′ . One trivial way to do this is to define M ′ in such a way that, whenever a pair (Ds,Dt) satisfies M ′ ,
the query qs is empty when evaluated over Ds . Similarly, a trivial gav simplification M ′ would be one that enforces that
the query qt returns the whole active domain, when evaluated over Dt . We would like to rule out these meaningless
simplifications, and therefore we formally introduce the notion of triviality w.r.t. a mapping assertion, distinguishing the
two cases of lav and gav.

Definition 4.3. A lav (resp., gav) mapping M ′ is said to be trivial w.r.t. a mapping assertion qs ! qt , if for each pair (Ds,Dt)

with (Ds,Dt) |# M ′ , we have that qDs
s = falseDs (resp., qDt

t = trueDt ). A lav or gav mapping M ′ is said to be trivial w.r.t. a
mapping M , denoted M ′ |#triv M , if there is a mapping assertion qs ! qt ∈ M such that M ′ is trivial w.r.t. qs ! qt .

We observe that our assumption of having an additional constant in the active domain plays a role here. Indeed, without
such an assumption, if the target signature consists of a single unary predicate, then the denotation of that predicate in a
target instance would necessarily coincide with the active domain of that instance, and therefore, by definition, M ′ |#triv M
would hold, regardless of what M and M ′ look like.

1 Note that the assumption of having pairwise distinct variables is in line with the data integration framework, where all source tuples should be mapped
to the target.

2 For RPQs and 2RPQs, where query variables are not represented explicitly, we consider an atom to be simply a binary predicate symbol.
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As an example of Definition 4.3, consider a mapping M constituted by the two assertions
{
(x)

∣∣ a1(x) ∧ a2(x)
}

!
{
(x)

∣∣ b1(x) ∧ b2(x)
}
,

{
(x)

∣∣ a1(x)
}

!
{
(x)

∣∣ b3(x)
}
.

Then, the following lav mapping M ′ is trivial w.r.t. M , since for every pair (Ds,Dt) satisfying M ′ , we have that {(x) |
a1(x) ∧ a2(x)} evaluates to ∅ over Ds:

{
(x)

∣∣ a1(x)
}

! true/1,
{
(x)

∣∣ a2(x)
}

! false/1.

Definition 4.4. Let tp be one of sound or exact, fm one of lav or gav, and Q1 and Q2 two query languages. Mapping
simplification, denoted

MSimp[tp, fm,Q1,Q2],
is the following decision problem: given a Q1-based schema mapping M of type tp, check whether there exists a Q2-based
schema mapping M ′ of type tp and form fm such that M ′ |# M , and M ′ %|#triv M .

To rule out (uninteresting) cases where all mappings that imply a given mapping M are trivial w.r.t. M , in the following
we require that for each mapping assertion qs ! qt in a LAV mapping M , qt is different from false. Analogously, we require
that for each mapping assertion qs ! qt in a GAV mapping M , qs is different from true.

If a simplified mapping exists, it is also of interest to actually compute one. Therefore, we consider the corresponding
synthesis problem.

Definition 4.5. Let tp be one of sound or exact, fm one of lav or gav, and Q1 and Q2 two query languages. Mapping
synthesis, denoted,

MSynt[tp, fm,Q1,Q2],
is the following problem: given a Q1-based schema mapping M of type tp, find a Q2-based schema mapping M ′ of type tp
and form fm such that M ′ |# M , and M ′ %|#triv M .

In general we may want to synthesize simplified mappings with specific interesting properties. As an example, in this
paper we are interested in the tightest simplifications of a mapping M , i.e., the simplifications that best approximate M .

Definition 4.6. Let tp be one of sound or exact, fm one of lav or gav, and Q1 and Q2 two query languages. Maximal
mapping synthesis, denoted,

MaxMSynt[tp, fm,Q1,Q2],
is the following problem: given a Q1-based schema mapping M of type tp, find a solution M ′ of MSynt[tp, fm,Q1,Q2] such
that no solution M ′′ of MSynt[tp, fm,Q1,Q2] satisfies M ′ |# M ′′ and M ′′ %|# M ′ .

Observe that, in general, we might have more than one maximal solution for the mapping synthesis problem. In the lav
case, a maximal solution M ′ is such that there is no solution M ′′ such that: (1) M ′(a) ( M ′′(a) for every source symbol a,
and (2) it is not the case that M ′′(b) ( M ′(b) for every source symbol b, i.e., the queries M ′(a) are maximal. Conversely, in
the gav case, a maximal solution M ′ is such that the queries M ′(b) are minimal, for each target symbol b.

In this paper we study the above problems for a variety of cases, where Q1 and Q2 range over (U)CQs and variants of
queries over graph databases.

We start by observing that we can characterize mapping implication, and hence mapping simplification, in terms of query
unfolding w.r.t. a set of mappings. We make use of such a characterization in the technical development in the subsequent
sections. The notion of query unfolding is formally defined as follows: let qs be a source query and ML a lav mapping. The
unfolding of qs w.r.t. ML , denoted qs[ML], is the target query obtained by replacing each atom α in qs whose predicate symbol
is a with ML(a). An analogous definition holds for the unfolding qt[MG ] of a target query qt w.r.t. a gav mapping MG .

Proposition 4.1. LetQ be a monotone query language.

(1) Let ML be a lav mapping and M a mapping, both Q-based and of type sound (resp., exact). Then ML |# M iff for each assertion
qs ! qt in M, we have that qs[ML] ( qt (resp., qs[ML] ≡ qt ).

(2) Let MG be a gav mapping and M a mapping, bothQ-based and of type sound (resp., exact). Then MG |# M iff for each assertion
qs ! qt in M, we have that qs ( qt[MG ] (resp., qs ≡ qt[MG ]).
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Proof. We provide the proof for (1) for the case of sound mappings. The other cases can be proved analogously. We start
with the following observation: if ML is a lav mapping, and Ds is the source database obtained from a target database Dt
by letting rDs = ML(r)Dt for every r ∈ Σs , then for every source query q, we have that qDs = q[ML]Dt .

“⇒” Now, assume that there is an assertion qs ! qt in M such that qs[ML] %( qt , and let Dt be such that for some tuple d
we have d ∈ qs[ML]Dt , and d /∈ qDt

t . Let Ds be the source database obtained from Dt by letting rDs = ML(r)Dt for every
r ∈ Σs . Clearly, (Ds,Dt) |# ML . By the above observation, we have that qDs

s = qs[ML]Dt , and therefore d ∈ qDs
s . It follows

that (Ds,Dt) %|# qs ! qt , and ML %|# M . A contradiction.
“⇐” Assume that ML %|# M , i.e., there are an assertion qs ! qt in M , and a pair (Ds,Dt) such that (Ds,Dt) |# ML , and

qDs
s * qDt

t , which means that there is d such that d ∈ qDs
s but d /∈ qDt

t . Let D′
s be such that rD

′
s = ML(r)Dt for every r ∈ Σs .

Clearly, D′
s ⊇ Ds , and (D′

s,Dt) |# ML . Since qs is monotone, we have that d ∈ q
D′

s
s = qs[ML]Dt , and therefore qs[ML] %( qt .

A contradiction. "

Proposition 4.2. Let Q be a monotone query language, and let M be a mapping and M ′ a lav (resp., gav) mapping, both Q-based
and of type sound or exact. Then M ′ |#triv M iff for some mapping assertion qs ! qt ∈ M we have that qs[M ′] ( false (resp., true (
qt[M ′]).

Proof. We first provide the proof for the case of (sound or exact) lav mappings.
“⇒’ ’ Since M ′ |#triv M , there is a mapping assertion qs ! qt ∈ M such that for each pair (Ds,Dt) with (Ds,Dt) |# M ′ ,

we have that qDs
s = falseDs . Assume that qs[M ′] %( false, i.e., that qs[M ′]D′

t %= ∅ for some target database D′
t . But then, for the

source database D′
s obtained from D′

t by letting rD
′
s = M ′(r)D

′
t for every r ∈ Σs , we have that (D′

s,D′
t) |# M ′ (both when

M ′ is of type sound and of type exact) and q
D′

s
s %= falseD

′
s . A contradiction.

“⇐” Assume that for some mapping assertion qs ! qt ∈ M we have that qs[M ′] ( false and that M ′ %|#triv M . Then there

exists a pair (D′
s,D′

t) such that (D′
s,D′

t) |# M ′ and q
D′

s
s %= falseD

′
s , i.e., q

D′
s

s %= ∅. Consider the source database D′′
s obtained

from D′
t by letting rD

′′
s = M ′(r)D

′
t for every r ∈ Σs . Since (D′

s,D′
t) |# M ′ , we have that rD

′
s ⊆ M ′(r)D

′
t (actually, rD

′
s = M ′(r)D

′
t

when M ′ is exact), hence by monotonicity of qs , we have that q
D′

s
s ⊆ q

D′′
s

s = qs[M ′]D′
t = falseD

′
t = ∅. A contradiction.

As for the case of gav mappings, the proof is analogous, but makes use of the fact that the active domain contains an
extra constant to deal with the special case where the target alphabet consists of a single unary relation. "

For many of the results in the next sections, we make use of the above characterization, without further mentioning
Propositions 4.1 and 4.2.

5. Simplification and synthesis for (U)CQs

In this section, we consider the case of mappings based on conjunctive queries (CQs) and their unions (UCQs), and study
the problem of simplifying a given mapping M in terms of a lav or a gav mapping. The techniques we adopt for establishing
our upper bounds are based on determining a polynomial bound on the length of the queries to consider when searching
for the simplified mapping logically implying M , and are reminiscent of those in [48].

5.1. The case of LAV

In the following, when we refer to a lav mapping logically implying a given mapping, we implicitly assume that impli-
cation is non-trivial. We start with the problem of simplifying a cq-based mapping in terms of a cq-based lav mapping.

Theorem 5.1. Both MSimp[sound,lav,cq,cq] and MSimp[exact,lav,cq,cq] are in NP.

Proof. Consider a sound cq-based mapping consisting of a single assertion qs ! qt , where qt contains $qt atoms, and a
sound cq-based lav mapping ML such that qs[ML] ( qt . Then, there exists a homomorphism from qt to qs[ML], and at
most $qt atoms of qs[ML] are in the image of this homomorphism. Hence, for each symbol a ∈ Σs occurring in qs , only at
most $qt atoms in query ML(a) are needed for the homomorphism. In the general case where the mapping M consists of
several assertions, for each a ∈ Σs we need at most $M = ∑

qs!qt∈M $qt atoms in the query ML(a), in order to guarantee the
existence of the homomorphisms for all the assertions in M . Hence, in order to check for the existence of an appropriate
lav mapping ML , it suffices to guess, for each symbol a ∈ Σs appearing in one of the mapping assertions in M , a CQ ML(a)
over Σt of size at most $M , and check that qs[ML] ( qt , for each qs ! qt ∈ M . In doing so, we rule out the guess of mappings
that are trivial w.r.t. M . This gives us immediately an NP upper bound for MSimp[sound,lav,cq,cq].

For MSimp[exact,lav,cq,cq], in addition to checking that qs[ML] ( qt , we need also to check that qt ( qs[ML]. We observe
that the bound on the number of atoms in ML(a) derived for the sound case is still valid, since if qt ( qs[ML] for a lav
mapping ML , then also qt ( qs[M ′

L] for every lav mapping M ′
L such that M ′

L(a) is constituted by a subset of the atoms of
ML(a). Therefore, the overall complexity does not change. "
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For the case where M is ucq-based, and the lav mapping ML is still cq-based, we can generalize the above argument by
considering containment between UCQs instead of containment between CQs.

Theorem 5.2. Both MSimp[sound,lav,ucq,cq] and MSimp[exact,lav,ucq,cq] are in NP.

Proof. Consider a sound ucq-based mapping M consisting of a single assertion qs ! qt and a sound cq-based lav map-
ping ML such that qs[ML] ( qt . We remind that qs[ML] ( qt if for each CQ q1 in the UCQ qs[ML] there is a CQ q2 in the
UCQ qt such that q1 ( q2. Then, for each CQ q1 in qs[ML] there exists a homomorphism from some CQ q2 in qt to q1,
and for each a ∈ Σs at most $qt atoms in the query ML(a) are needed for the homomorphism, where $qt is the maximum
number of atoms among the CQs in qt . In the general case where the mapping M consists of several assertions, for each
a ∈ Σs at most $M = ∑

qs!qt∈M $qt atoms in the query ML(a) are needed for the homomorphisms for all the assertions
in M . Thus, in order to check for the existence of an appropriate lav mapping ML , it suffices to guess (again avoiding trivial
mappings), for each symbol a ∈ Σs appearing in M , a CQ ML(a) over Σt of size at most $M = ∑

qs!qt∈M $qt , and check for
each qs ! qt ∈ M that qs[ML] ( qt (and qt ( qs[ML] for the exact variant). "

The last case we consider is the one where both M and the lav mapping ML are ucq-based. In the sound case, we show
that simplification to a ucq-based lav mapping is equivalent to simplification to a cq-based lav mapping.

Lemma 5.3. MSimp[sound,lav,ucq,ucq] admits a solution for a mapping M iff MSimp[sound,lav,ucq,cq] admits a solution for M.

Proof. Let M be a sound ucq-based mapping and ML a sound ucq-based lav mapping such that ML |# M . Consider the
cq-based lav mapping M ′

L obtained from ML by choosing, for each symbol a in Σs , as M ′
L(a) one of the CQs in ML(a).

We show that M ′
L %|#triv M , and that M ′

L |# M . Consider one assertion qs ! qt ∈ M such that qs[ML] is a non-empty positive
query. Such a mapping assertion exists, since ML %|#triv M . Then, qs[M ′

L] is a non-empty UCQ, and hence M ′
L %|#triv M . To show

that M ′
L |# M , it is sufficient to observe that, for each assertion qs ! qt ∈ M , each CQ in qs[M ′

L] is contained in qs[ML], and
hence in qt . "

By the above lemma, we trivially get:

Theorem 5.4. MSimp[sound,lav,ucq,ucq] is in NP.

For the exact case, the analog of Lemma 5.3 does not hold. In this case we are able to show a higher upper bound.

Theorem 5.5. MSimp[exact,lav,ucq,ucq] is in Π
p
2 .

Proof. Consider an exact ucq-based mapping M consisting of a single assertion qs ! qt and an exact ucq-based lav map-
ping ML such that ML |# M . Let mqt be the number of CQs in qt , and $qt the number of atoms in the longest CQ in qt .
Let q′

s,ML
be the UCQ obtained from qs[ML] by distributing, for each atom α of qs , the unions in the UCQ α[ML] over the

conjunctions of each CQ of qs . Since qs[ML] ( qt , for each CQ in q′
s,ML

, there is a homomorphism from some CQ in qt to it.
Hence, for each symbol a ∈ Σs occurring in qs , for each CQ in the UCQ ML(a), we need at most $qt atoms for the homo-
morphisms from all CQs in qt . To derive a bound for the number of such CQs, we observe that the inclusion qt ( qs[ML]
must also hold. To satisfy this inclusion, it suffices to have in ML(a) one CQ for each occurrence of a in qt , i.e., at most
mqt · $qt CQs. It follows that, to check for the existence of the lav mapping ML and the corresponding homomorphism, it
suffices to guess for each a ∈ Σs a UCQ over Σt consisting of at most mqt · $qt CQs, each with at most $qt atoms. In the
general case where the mapping M consists of several assertions qs ! qt , we can proceed analogously to the case above,
using instead of mqt and $qt , the sum of these parameters over all mapping assertions in M . To check whether qt ( qs[ML],
for each of the CQs in qt , it suffices to guess (i) a CQ q′ in qs , (ii) a CQ in ML(a) for each occurrence of a in q′ , and (iii) a
mapping h from the query q′′ obtained by unfolding q′ with the selected CQs for each occurrence of a, and check whether
h is a homomorphism. This can be done in NP. To check whether qs[ML] ( qt , we have to check whether for each CQ q′

obtained by selecting one of the CQs q′′ in qs and then substituting each atom α in q′′ with one of the CQs in α[ML], there
is a homomorphism from some CQ in qt to q′ . We can do so by a coNP computation that makes use of an NP oracle to
check for the existence of a homomorphism. This gives us the Π

p
2 upper bound. "

We now show that the upper bounds for the sound cases established in Theorems 5.1, 5.2, and 5.4 are tight.

Theorem 5.6. MSimp[sound,lav,cq,cq] is NP-hard.

Proof. The proof is by a reduction from 3-colorability. Given a graph G = (N, E), with N = {n1, . . . ,nk}, we define the
corresponding instance of MSimp[sound,lav,cq,cq] as follows.
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As for the source alphabet, we consider Σs = {ae/2,as/2,a f /2}, where intuitively ae is a relation denoting graph edges,
as is a relation between (starting) elements and graph nodes, and at is a relation between graph nodes and (final) elements.
Similarly, for the target alphabet, we consider Σt = {be/2,bs/2,b f /2}. On Σs and Σt we define mapping M as follows:

qT ! qG , (1)
{
(x, y)

∣∣ ae(x, y)
}

!
{
(x, y)

∣∣ be(x, y)
}
, (2)

{
(x, y)

∣∣ as(x, y)
}

!
{
(x, y)

∣∣ bs(x, y)
}
, (3)

{
(x, y)

∣∣ a f (x, y)
}

!
{
(x, y)

∣∣ b f (x, y)
}

(4)

where

qT =
{
(s, f )

∣∣ as(s, r) ∧ as(s, g) ∧ as(s,b) ∧
ae(r, g) ∧ ae(g, r) ∧ ae(r,b) ∧ ae(b, r) ∧ ae(g,b) ∧ ae(b, g) ∧
a f (r, f ) ∧ a f (g, f ) ∧ a f (b, f )

}
,

qG =
{
(s, f )

∣∣ bs(s, x1) ∧ · · · ∧ bs(s, xk) ∧
∧

(ni ,n j)∈E

(
be(xi, x j) ∧ be(x j, xi)

)
∧

b f (x1, f ) ∧ · · · ∧ b f (xk, f )
}
.

Intuitively, assertion (1) maps a triangle, whose three vertexes are connected by as and a f to the distinguished variables s
and f respectively, to the graph G , whose nodes are connected by bs and b f to the distinguished variables s and f respec-
tively.

We show that G is 3-colorable iff MSimp[sound,lav ,cq,cq] with input M admits a solution. For the “only-if” part,
consider the lav mapping ML consisting of the mapping assertions (2), (3), and (4). If G is 3-colorable, a coloring of
the nodes of G with the three colors r, g , b gives us immediately a homomorphism from qG [ML] to qT in which each
variable xi of qG [ML] is mapped to the variable of qT corresponding to the color assigned to node ni . Hence we have
that qT ( qG [ML]. For the “if-part”, consider a lav mapping ML such that qs[ML] ( qt for each mapping assertion qs ! qt
in M . By the mapping assertions (2), (3), and (4), we have that the queries ML(ae), ML(as), and ML(a f ), which we assume
to have (x, y) as distinguished variables, must include respectively the atoms be(x, y), bs(x, y), and b f (x, y), plus possibly
additional atoms containing existentially quantified variables. Note that these existential variables appear in the unfolding
qT [ML]. Now, consider a homomorphism h from qG(s, f ) to qT [ML](s, f ). Since s and f are distinguished variables, we
have that h(s) = s and h( f ) = f . Suppose that for some variable xi ∈ {x1, . . . , xk} of qG , we have that h(xi) is an existential
variable y in an additional atom in qT [ML]. Then, since qG contains the atoms bs(s, xi) and b f (xi, f ), we must have that
qT [ML] contains the atoms bs(s, y) and b f (y, f ). This is impossible, since y is an existential variable introduced by the
unfolding of qT with ML , and hence can appear in the unfolding of just one atom of qT . But there is no atom of qT that
contains both s and f , and that could generate both bs(s, y) and b f (y, f ). So, the only possibility for a homomorphism
from qG [ML] to qT is to map each xi of qG [ML] to one of the variables r, g , or b. The existence of such a homomorphism
implies that G is 3-colorable. "

Corollary 5.7. MSimp[sound,lav,ucq,cq] and MSimp[sound,lav,ucq,ucq] are NP-hard.

Proof. From Theorem 5.6 we trivially get the result for MSimp[sound,lav,ucq,cq], and by considering Lemma 5.3, we get
the result also for MSimp[sound,lav,ucq,ucq]. "

It is easy to see that the proof of Theorem 5.6 shows also NP-hardness of simplification for exact mappings.

Theorem 5.8. MSimp[exact,lav,cq,cq] and hence MSimp[exact,lav,ucq,cq] are NP-hard.

We conjecture that the Π
p
2 upper bound for MSimp[exact,lav,ucq,ucq] is also tight.

Next, we turn to maximal solutions to lav simplification. We observe that all our upper bound results are based on
deriving a bound on the number of atoms that may constitute the queries in a possible solution to the simplification
problem, and on the possibility to guess (or enumerate) all solutions within the derived bound. Hence, it becomes possible
to check also further properties of the guessed (or enumerated) solutions. Specifically, we can obtain a cq-based lav-
mapping that is a maximal solution to simplification of ucq-based mappings by guessing a candidate mapping and checking
that it is a solution; then, to check that it is maximal, we generate all other mappings and check that, if they are solutions,
they are contained in our candidate solution. This immediately results in a technique to solve maximal mapping synthesis
in Σ

p
3 .
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Theorem 5.9. A solution to MaxMSynt[lav,sound,cq,cq] and to MaxMSynt[lav,sound,ucq,cq] can be computed in Σ
p
3 .

Unfortunately, we are not able to use the same argument for deriving a solution to MaxMSynt[lav,sound,ucq,ucq] in Σ
p
3 ,

since we have no guarantee that a maximal ucq-based solution is of polynomial size.

5.2. The case of GAV

Next, we consider the case of simplifying (U)CQ-based mappings in terms of gav mappings. Note that for exact mappings,
gav simplification is the same problem as lav simplification, so we focus here on sound mappings. We start by considering
sound cq-based mappings and show the following upper bound.

Theorem 5.10. MSimp[sound,gav,cq,cq] is in NP.

Proof. Consider a sound cq-based mapping M consisting of a single assertion qs ! qt and assume there exists some sound
cq-based gav mapping MG such that qs ( qt[MG ], witnessed by a homomorphism h, and qt[MG ] %= trueDt . We show that
there is a sound cq-based gav mapping M ′

G of bounded size such that qs ( qt[M ′
G ]. Indeed, since qt[MG ] %= trueDt , there

must be one distinguished variable x and one symbol b ∈ Σt , such that x occurs in an atomic formula with the symbol b
in MG(b). We now obtain M ′

G(b) from MG(b) by selecting in MG(b) such an atom. For all other symbols b′ ∈ Σt , we take
M ′

G(b′) to be true. By constructing M ′
G in this way, we have that the atoms in qt[M ′

G ] are a subset of the atoms in qt[MG ],
and hence the projection of h on such atoms is still a homomorphism to qs .

In the general case where the mapping M consists of k assertions, we can apply the above argument for each of the
assertions in M . This shows that, if there exists some sound gav mapping MG such that MG |# M , then there is also a gav
mapping M ′

G such that M ′
G(b) has at most k atoms and M ′

G |# M . Hence, in order to check the existence of an appropriate
gav mapping MG , it suffices to guess (avoiding trivial mappings), for each symbol b ∈ Σt appearing in M , a CQ MG(b)
over Σs of size at most k, and check that qs ( qt[MG ], for each qs ! qt ∈ M . "

This result extends immediately to ucq-based mappings, by checking containment between UCQs, instead of CQs.

Theorem 5.11. MSimp[sound,gav,ucq,cq] is in NP.

For UCQ-based mappings, we get the same upper bound, with a somewhat subtler argument.

Theorem 5.12. MSimp[sound,gav,ucq,ucq] is in NP.

Proof. We consider first the case of a sound ucq-based mapping M consisting of a single assertion qs ! qt . Assume there
exists some sound ucq-based gav mapping MG such that qs ( qt[MG ] and qt[MG ] %= trueDt . First note that qs ( qt[MG ], if
for each CQ qi

s of qs we have that qi
s ( qt[MG ]. This means that there are a CQ qi

t of qt and a CQ qi
b for each symbol b ∈ Σt

such that there is a homomorphism from qi
t[M ′

G ] to qi
s , where M ′

G(b) = qi
b . Thus, if qs is a union of $ CQs, then we can

assume that each MG [b] for b ∈ Σt has at most $ CQs. What is left is to bound the size of these CQs.
Let m be the number of CQs in qt . Since qt[MG ] %= trueDt , for each CQ q′

t of qt , there must be one distinguished variable x
and one symbol b ∈ Σt such that x occurs in some atomic formula with the symbol b in each CQ q′

b of MG [b]. Define M ′
G

to keep all such atomic formulas, and only such atomic formulas. M ′
G [b] contains at most $ · m atomic formulas. If we have

k mapping assertions, then M ′
G [b] needs to contain only klm atomic formulas. To check the existence of a simplifying gav

mapping it suffices to guess a mapping M ′
G under such a size bound and check that qs ( qt[M ′

G ]. "

We conjecture that the above upper bounds are tight.
We observe that the arguments we have used above to derive bounds on the size of solutions to gav simplification,

cannot be used to derive bounds for maximal gav solutions, i.e., solutions in which the source queries in the mapping
assertions are as small as possible. Indeed, the problem of synthesizing maximal (u)cq-based gav mappings is still open.

Our results on simplification for (U)CQs are summarized in Table 1.

6. LAV simplification and synthesis for RPQs

In this section, we consider the case of RPQs over graph databases, and study the problem of simplifying an rpq-based
mapping in terms of an rpq-based lav mapping. For our results, we exploit a straightforward language theoretic characteri-
zation of containment between RPQs. We observe that gav simplification is wide open for rpq-based mappings.

Theorem 6.1. (See [42].) Let q1 , q2 be two RPQs, and L(q1), L(q2) the corresponding regular languages. Then q1 ( q2 iff L(q1) ⊆
L(q2).
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In the following, we identify an RPQ q over an alphabet Σ with the language over Σ accepted by the regular expression
or 1NFA representing q. Considering the language-theoretic characterization above, it follows from Propositions 4.1 and 4.2
that, if ML is a lav mapping and M a mapping, both of type sound (resp., exact), then ML |# M and ML %|#triv M iff for each
assertion qs ! qt in M , we have that qs[ML] ⊆ qt (resp., qs[ML] = qt ) and qs[ML] %= ∅. Here, the unfolding qs[ML] of qs w.r.t.
ML denotes the language over Σt obtained from qs by expanding in each word in qs each symbol a ∈ Σs with the language
ML(a). Obviously, such a language can be represented by a regular expression or a 1NFA of size linear in the product of the
sizes of (the representations of) qs and ML .

We start by showing that we can characterize mapping implication ML |# M between a lav mapping ML and a map-
ping M in terms of a single language containment (for sound mappings) or language equality (for exact mappings). For this,
we extend the notion of unfolding of qs w.r.t. ML to the case where qs may contain additional symbols w.r.t. those in Σs .
In particular, the additional symbols are left unchanged by the unfolding.

Proposition 6.2. Let M be an rpq-based mapping of type sound (resp., exact) from Σs to Σt , and let # be a symbol not in Σs ∪ Σt .
Then there are RPQs qM,s over Σs ∪{#} and qM,t over Σt ∪{#}, both of size linear in M, such that an rpq-based lav mapping ML of type
sound (resp., exact) is a solution to MSynt[sound,lav ,rpq,rpq] (resp., MSynt[exact,lav,rpq,rpq]) with input M iff qM,s[ML] ⊆
qM,t (resp., qM,s[ML] = qM,t ) and qM,s[ML] %= ∅.

Proof. Let M = {q1,s ! q1,t, . . . ,qk,s ! qk,t}. We set qM,s = q1,s·# · · ·#·qk,s and qM,t = q1,t ·# · · ·#·qk,t . Intuitively, the fresh
symbol # acts as a separator for the different parts of qM,s and qM,t . It is easy to verify that, for every lav mapping ML ,
we have that qi,s[ML] ⊆ qi,t (resp., qi,s[ML] = qi,t ) for i ∈ {1, . . . ,k} iff qM,s[ML] ⊆ qM,t (resp., qM,s[ML] = qM,t ), and that
qi,s[ML] %= ∅ for i ∈ {1, . . . ,k} iff qM,s[ML] %= ∅. "

In the following, let Σn be a non-empty alphabet of new symbols disjoint from Σs and Σt , and let Σ ′
s = Σs ∪ Σn and

Σ ′
t = Σt ∪Σn . By Proposition 6.2, the problem MSimp[sound,lav,rpq,rpq] (or MSimp[exact,lav,rpq,rpq]) can be polynomially

reduced to the problem of checking, whether for languages qs over Σ ′
s and qt over Σ ′

t there is a lav mapping ML such that
qs[ML] ⊆ qt (resp., qs[ML] = qt ) and qs[ML] %= ∅.

Our technique for mapping simplification exploits a characterization of regular languages by means of congruence
classes [49,50,40]. Recall that two words u, v ∈ Σ∗ are congruent with respect to a language L ⊆ Σ∗ if, for all words
x, y ∈ Σ∗ we have that xuy ∈ L iff xv y ∈ L. Let At = (Σ ′

t , St , s0
t , δt , Ft) be a 1NFA for qt . Then At defines a set of congru-

ence classes partitioning Σ ′ ∗
t . Each congruence class is characterized by a binary relation G ⊆ St × St (i.e., a directed graph

over St ), and we define the congruence class associated with G as

L(G) =
{

w ∈ Σ ′ ∗
t

∣∣ for all s1, s2 ∈ St : s2 ∈ δt(s1, w) iff (s1, s2) ∈ G
}
.

Intuitively, each word w ∈L(G) connects s1 to s2 in At , for each pair (s1, s2) ∈ G . For a word w ∈ Σ ′ ∗
t , we denote by [w]At

the congruence class to which w belongs.
It follows immediately from the characterization of congruence classes in terms of binary relations over the states of At

that the set of congruence classes is closed under concatenation. Specifically, for two congruence classes L(G1) and L(G2),
respectively with associated relations G1 and G2, the binary relation associated with L(G1) ·L(G2) is G1 ◦ G2.3

We introduce some notation that we use here, and later in this section:

• Gt = 2St×St denotes the set of binary relations associated with the congruence classes for At ,
• Gε

t = {(s, s) | s ∈ St}, and
• Gb

t = {(s1, s2) | s2 ∈ δt(s1,b)}, for each b ∈ Σ ′
t .

Then, for each G ∈ Gt , we can characterize the congruence class L(G) associated with G in terms of a DFA.

Lemma 6.3. (See [49].) The languageL(G) is accepted by the DFA AG = (Σ ′
t ,Gt , Gε

t , δAt , FG), where FG = {G} and δAt (R,b) = R ◦Gb
t ,

for each R ⊆ St × St and b ∈ Σ ′
t .

Notice that, if At has m states, then AG has 2m2
states.

We observe next that we need to allow for the presence of empty queries in the lav mapping we are looking for.
Consider, e.g., qs = (a1 + a3) · (a2 + a3) and qt = b1 · b2. It is easy to see that for all lav mappings ML such that qs[ML] ⊆ qt ,
we have that ML(a3) = ∅. Thus, for any lav mapping obtained from simplification we have that no nodes are connected
through an edge with label a3. One such lav mapping ML is

ML(a1) = b1, ML(a2) = b2, ML(a3) = ∅.

Observe also that [b1]At = {b1} and [b2]At = {b2}, where At is the obvious 1NFA for b1 · b2.

3 We use L1 · L2 to denote concatenation between languages, and G1 ◦ G2 to denote composition of binary relations.
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6.1. Upper bounds for sound mapping simplification

We first deal with the case of sound mappings, and prove two preliminary results. The first lemma states that w.l.o.g.
we can restrict the attention to lav mappings in which the queries are singletons, i.e., queries that are either empty or
constituted by a single word.

Lemma 6.4. Let qs be an RPQ over Σ ′
s , and qt an RPQ over Σ ′

t . If there exists an rpq-based lav mapping ML such that qs[ML] ⊆ qt ,
then there exists an rpq-based lav mapping M ′

L such that qs[M ′
L] ⊆ qt in which each query is either a single word over Σt or empty.

Proof. If qt = ε, we can simply set M ′
L(a) = ε, for each a ∈ Σs . Otherwise, since qs[ML] %= ∅ and qs[ML] ⊆ qt , there exist

a nonempty word a1 · · ·ak ∈ qs and a word w1 · · · wk ∈ qs[ML] and hence in qt , where w j ∈ ML(a j). To define the new
lav mapping M ′

L , we consider each a ∈ Σs appearing in a1 · · ·ak . Notice that a might appear in a1 · · ·ak multiple times,
and suppose the occurrences of a are ai1 , . . . ,ai$ , corresponding to wi1 , . . . , wi$ . We chose arbitrarily one wi j and set
M ′

L(a) = wi j . Instead, for each a ∈ Σs not appearing in a1 · · ·ak , we set M ′
L(a) = ∅. Now, qs[M ′

L] %= ∅ by construction, and
since M ′

L(a) ⊆ ML(a) for every a ∈ Σs , we have that qs[M ′
L] ⊆ qs[ML] ⊆ qt . "

The next lemma shows that one can close queries in lav mappings under congruence.

Lemma 6.5. Let qs be an RPQ over Σ ′
s , qt an RPQ over Σ ′

t expressed through a 1NFA At , and ML a singleton mapping such that
qs[ML] ⊆ qt . Then, for M ′

L defined such that

M ′
L(a) =

{ [wa]At , if ML(a) = wa,

∅, if ML(a) = ∅,

we have that qs[M ′
L] ⊆ qt .

Proof. Let At = (Σt , St, s0
t , δt , Ft). Consider a word a1 · · ·ah ∈ qs . If there is one of the ai such that ML(ai) = ∅, then

ML(a1) · · · ML(ah) = ∅ ⊆ qt . Otherwise, we have that ML(ai) = {wai }, for i ∈ {1, . . . ,h}, and since wa1 · · · wah ∈ qs[ML] ⊆ qt ,
there is a sequence s0, s1, . . . , sh of states of At such that s0 = s0

t , sh ∈ Ft , and si ∈ δt(si−1, wai ), for i ∈ {1, . . . ,h}. Con-
sider now, for each i ∈ {1, . . . ,h}, a word w ′

i ∈ M ′
L(ai) = [wai ]At . Making use of the characterization of [wai ]At in terms

of a binary relation over St , we have for each word in [wai ]At , and in particular for w ′
i , that si ∈ δt(si−1, w ′

i). Hence,
sh ∈ δt(s0

t , w ′
1 · · · w ′

h) and w ′
1 · · · w ′

h ∈ qt . "

From these two lemmas we get that, when searching for a lav mapping ML satisfying qs[ML] ⊆ qt , we can restrict the
attention to queries that are congruence classes for At .

Lemma 6.6. Let qs be an RPQ over Σ ′
s , and qt an RPQ over Σ ′

t expressed through a 1NFA At . If there exists an rpq-based lav mapping
ML such that qs[ML] ⊆ qt , then there exists an rpq-based lav mapping M ′

L such that qs[M ′
L] ⊆ qt , and such that M ′

L(a) is a congruence
class for At , for each a ∈ Σs .

Proof. If there exists an rpq-based lav mapping ML such that qs[ML] ⊆ qt , then by Lemma 6.4, w.l.o.g., we can assume that
ML consists of singleton queries. Then, the claim follows from Lemma 6.5. "

We derive now a procedure that, given an RPQ qs over Σ ′
s , and an RPQ qt over Σ ′

t expressed respectively through 1NFAs
As = (Σ ′

s, Ss, s0
s , δs, Fs) and At = (Σ ′

t , St , s0
t , δt , Ft), checks for the existence of a sound rpq-based lav mapping ML such that

(1) qs[ML] %= ∅, and
(2) qs[ML] ⊆ qt .

Specifically, by Lemma 6.6, it is sufficient to consider lav mappings in which each query is constituted by a single congru-
ence class, which can be represented by a binary relation over the state set St of At . Hence, for each a ∈ Σs , we guess such
a binary relation Ga and verify that for the lav mapping ML defined by ML(a) =L(Ga), conditions (1) and (2) are satisfied.
In doing so, we exploit Lemma 6.3, which provides a characterization of L(Ga) in terms of a DFA AGa .

To check condition (1), we proceed as follows:

1.1 for each a ∈ Σs , we check whether a is a bad symbol, i.e., whether L(Ga) = ∅;
1.2 we delete from As each transition labeled by a bad symbol; and
1.3 we check whether the resulting 1NFA accepts a non-empty language.

To check condition (2), we proceed as follows:
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2.1 we construct a 1NFA AML accepting qs[ML];
2.2 we construct the 1NFA A* = AML × Āt as the product NFA of AML and the 1NFA Āt accepting Σ ′ ∗

t \ qt ;
2.3 we check A* for emptiness.

To construct AML , we observe that a word w is in qs[ML] if there are a word a1 · · ·an ∈ qs , and for i ∈ {1, . . . ,n}, words
wi ∈ L(Gai ) such that w = w1 · · · wn . Hence, AML simulates As while accepting words in Σ ′

t that are concatenations of
words in the various languages L(Gai ). Specifically, AML = (Σ ′

t , SML , s0
ML

, δML , F ML ), where

• SML = Σ ′
s × Ss × Gt ;

• s0
ML

= Σ ′
s × {s0

s } × Gε
t ;

• F ML = {(a, s, Ga) | s ∈ Fs,a ∈ Σs} ∪ {(b, s, Gb
t ) | s ∈ Fs,b ∈ Σn};

• and for each a ∈ Σ ′
s , s ∈ Ss , R ∈ Gt , and b ∈ Σ ′

t ,

δML

(
(a, s, R),b

)
=






{(a, s, R ◦ Gb
t )}, if a ∈ Σs, R %= Ga;

{(a, s, R ◦ Gb
t )} ∪ ⋃

a′∈Σ ′
s,s′∈δs(s,a){(a′, s′, Gb

t )}, if a ∈ Σs, R = Ga;⋃
a′∈Σ ′

s,s′∈δs(s,a){(a′, s′, Gε
t )}, if a ∈ Σn,a = b;

∅, otherwise.

Theorem 6.7. MSimp[sound,lav,rpq,rpq] is in PSpace.

Proof. By Lemma 6.6, to check whether MSimp[sound,lav,rpq,rpq] admits a solution, it suffices to guess for each symbol
a ∈ Σs a binary relation Ga over the state set St of At , and check whether for the resulting rpq-based lav mapping ML
conditions (1) and (2) hold. When checking condition (1), the emptiness test in item (1.1) can be done for each a ∈ Σs in
NLogSpace in |AGa |, and since the number of states of AGa is exponential in |At |, in PSpace in |At |. Knowing the set of
bad symbols, the transformation in item (1.2) is linear in |As|. Finally, the non-emptiness test in item (1.3) can be done in
NLogSpace in |As|. When checking condition (2), we do not need to construct AML , Āt , and A* explicitly, but can check
the nonemptiness of A* on the fly while constructing AML and complementing At . Hence, since the number of states of
AML is linear in |As| and exponential in |At |, we get that condition (2) can be checked in PSpace in |At | and in NLogSpace
in |As|. "

6.2. Upper bounds for exact mapping simplification and for maximal mapping synthesis

The method based on congruence classes can be adapted to address also lav simplification for exact mappings. The
difference w.r.t. sound mappings is that in this case we need to consider also lav mappings in which the queries are unions
of congruence classes. Indeed, congruence classes (and hence solutions to the lav mapping synthesis problem) are not
closed under union, as shown by the following example.

Let qs = a1 · a2 and qt = 00 + 01 + 10. Then the following two incomparable mappings are solutions to MaxM-
Synt[sound,lav,rpq,rpq] when the input mapping is {qs ! qt}:

M1
L(a1) = 0, M2

L (a1) = 0 + 1,

M1
L(a2) = 0 + 1, M2

L(a2) = 0.

Notice that the mapping ML , where ML(ai) = M1
L (ai) + M2

L (ai), for i ∈ {1,2}, is not a solution, since qs[ML] includes 11.
On the other hand, we can show that considering mapping in which the queries are unions of congruence classes is

sufficient to obtain maximal unfoldings. We first generalize Lemma 6.5 to non-singleton queries.

Lemma 6.8. Let qs be an RPQ over Σ ′
s , qt an RPQ over Σ ′

t expressed through a 1NFA At , and ML a lav mapping such that qs[ML] ⊆ qt .
Then for M ′

L with

M ′
L(a) =

{⋃
w∈ML(a)[w]At , if ML(a) %= ∅,

∅, if ML(a) = ∅,

we have that qs[M ′
L] ⊆ qt .

Proof. Consider a word a1 · · ·ah ∈ qs . If there is one of the ai such that ML(ai) = ∅, then ML(a1) · · · ML(ah) = ∅ ⊆ qt . Oth-
erwise, we have that, for i ∈ {1, . . . ,h}, for some wai ∈ ML(ai), the word wa1 · · · wah ∈ qs[ML] ⊆ L(At). We show that, for
each i ∈ {1, . . . ,h}, we also have that wa1 · · · wai−1 · w ′ · wai+1 · · · wah ∈ L(At), for each w ′ ∈ ⋃

w∈ML (ai)
[w]At . First, since

qs[ML] ⊆ qt , if wa1 · · · wah ∈ qs[ML] ⊆ L(At), then, for each w ∈ ML(ai), we also have that wa1 · · · wai−1 · w · wai+1 · · · wah ∈
qs[ML] ⊆ L(At). Then there is a sequence s0, s1, . . . , sh of states of At such that s0 = s0

t , sh ∈ Ft , s j ∈ δt(s j−1, wa j ), for
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j ∈ {1, . . . , i−1, i+1, . . . ,h}, and si ∈ δt(si−1, w). Then, by the definition of congruence classes, for each word w ′ ∈ [w]At , we
have that si ∈ δt(si−1, w ′

i), and hence wa1 · · · wai−1 · w ′ · wai+1 · · · wah ∈L(At). "

Lemma 6.9. Given a mapping M = {qs ! qt}, where qt is defined by a 1NFA At , every solution ML to MaxMSynt[sound ,lav,rpq,rpq]
with input M is such that each query in ML is a union of congruence classes for At .

Proof. Consider a solution ML to MaxMSynt[sound,lav,rpq,rpq] with input M , and assume that for some a ∈ Σs , ML(a)
is not a union of congruence classes for At . Then there are some word w ∈ ML(a) and some word w ′ ∈ [w]At such that
w ′ /∈ ML(a). By Lemma 6.8, the mapping M ′

L with M ′
L(a) = ML(a)∪ {w ′} is also a solution to MSynt[sound,lav,rpq,rpq] with

input M , thus contradicting the maximality of ML . "

By observing that every solution to lav simplification for the exact case has to be a maximal lav mapping that implies
the given mapping, we get the following upper bound for lav simplification in the exact case.

Theorem 6.10. MSimp[exact,lav,rpq,rpq] is in ExpSpace.

Proof. By Lemma 6.9, we can nondeterministically choose mappings ML in which the queries are unions of congruence
classes and then test whether qt = qs[ML]. To do so, we build a 1NFA As,ML accepting qs[ML] as follows. We start by
observing that for each union U of congruence classes, we can build the automaton AU = (Gt , st, Rε , δAt , U ) accepting the
words in U , which incidentally, is deterministic. Hence, by substituting each a-transition in the 1NFA As for qs with the 1NFA
AUa , where ML(a) = Ua , we obtain a 1NFA As,ML . Note that, even when As is deterministic, As,ML may be nondeterministic.

To test qs[ML] ⊆ qt , we complement At , obtaining the 1NFA At , and check the 1NFA As,ML × At for emptiness. The size
of As,ML × At is polynomial in the size of As and exponential in the size of At . Checking for emptiness can be done in
exponential time, and considering the initial nondeterministic guess, we get a NExpTime upper bound.

To test qt ⊆ qs[ML], we complement As,ML , obtaining the 1NFA As,ML , and check At × As,ML for emptiness. Since As,ML

is nondeterministic, complementation is exponential. However, we observe again that such a complementation can be done
on the fly in ExpSpace, while checking for emptiness and intersecting with At . As a consequence, considering the initial
nondeteministic guess, MSimp[exact,lav,rpq,rpq] can be decided in NExpSpace, which is equivalent to ExpSpace. "

Note that the proofs of Theorems 6.7 and 6.10 imply that, w.r.t. lav mapping simplification, considering queries that are
RPQs (as opposed to general, possibly non-regular, path languages) is not a restriction, since the existence of general lav
mappings implies the existence of regular ones. This is also in line with a similar observation holding for the existence of
rewritings of RPQs w.r.t. RPQ views [42].

Finally, we observe that using the machinery based on unions of congruence classes, we can also solve the maximal
mapping synthesis problem. We guess a mapping and check that it is a solution to mapping synthesis. To check that it is a
maximal solution, we generate all other mappings and check that, if they are solutions, they are contained in our candidate
solution.

Theorem 6.11. A solution to MaxMSynt[sound,lav,rpq,rpq] and to MaxMSynt[exact,lav,rpq,rpq] can be computed in ExpSpace.

6.3. Lower bounds for mapping simplification

It turns out that the upper bound established for the sound case is tight:

Theorem 6.12. MSimp[sound,lav,rpq,rpq] is PSpace-hard.

Proof. The proof is by a reduction from the universality problem for REs. Given an RE e over the alphabet Σt = {b1, . . . ,bn},
let Σs = {a1, . . . ,an}, and let Me be the mapping constituted by the following assertions:

Σ∗
s ! e, (5)

a1 ! b1 · · · an ! bn. (6)

We show that e is universal iff MSimp[sound,lav,rpq,rpq] with input Me admits a solution. For the “only-if” part, assume
that e is universal and consider the lav mapping ML consisting of the mapping assertions (6). We have that Σ∗

s [ML] = Σ∗
t ,

and since e is universal, also Σ∗
s [ML] ⊆ e. For the “if” part, consider a lav mapping ML such that qs[ML] ⊆ qt and qs[ML] %= ∅,

for each mapping assertion qs ! qt in Me . By the mapping assertions (6), we have that ML(ai) %= ∅ (since ai is the left-hand
side of a mapping assertion) and that ML(ai) must include bi , for i ∈ {1, . . . ,n}, and hence Σ∗

s [ML] = Σ∗
t . Since Σ∗

s [ML] ⊆ e,
we have that e is universal. "

It is easy to see that the above proof shows also PSpace-hardness of simplification for exact mappings.
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Corollary 6.13. MSimp[exact,lav,rpq,rpq] is PSpace-hard.

We do not have a tight upper bound for MSimp[exact,lav,rpq,rpq]. We do, however, show a tight lower bound for a
generalization of MSimp[exact,lav,rpq,rpq] in which we allow the input mapping to contain both sound and exact mapping
assertions. We do so by showing an ExpSpace lower bound for a problem that is closely related to the mapping simplification
problem.

Consider a finite alphabet Σ and a finite set V of variables. A language constraint is a statement of the form e1 ( e2,
where e1 and e2 are regular expressions over Σ ∪ V . A language-constraint problem P is a finite set of language con-
straints. A solution to P is an assignment σ : V → 2Σ∗

, assigning a language over Σ to each variable in V such that
L(e1[σ ]) = L(e2[σ ]). It is easy to express the universality problem for context-free grammars as a language-constraint
problem, which implies that the latter is undecidable. Here we consider left-handed language constraint problems, where
we allow constraints of the form e1 ( e2 and e1 = e2, but require that variables appear only in the left-hand side of the
constraint. The technique for the exact version of the lav mapping-simplification problem can be used to show an ExpSpace
upper bound for solving left-handed language constraint problems. We now show a matching lower bound.

To prove the result we exploit a reduction from tiling problems [51,52]. A tile is a unit square of one of several types and
the tiling problem we consider is specified by means of a finite set ) of tile types, two binary relations H and P over ),
representing horizontal and vertical adjacency relations, respectively, and two distinguished tile types tS , tF ∈ ). The tiling
problem here consists in determining whether, for a given number n in unary, a region of the integer plane of size 2n × k,
for some k > 0, can be tiled consistently with the adjacency relations H and P , and with the left bottom tile of the region
of type tS and the right upper tile of type tF . We also require that the last tile of a row and the first tile of the next row
are consistent with H . Using a reduction from acceptance of ExpSpace Turing machines analogous to the one in [51], it can
be shown that this tiling problem is ExpSpace-complete.

Theorem 6.14. Solving left-handed language constraints is ExpSpace-complete.

Proof. Let T = (), H, P , tS , tF ) be an instance of the ExpSpace-complete tiling problem above and n a number in unary.
The alphabet is Σ = ) ∪ {0,1}3 ∪ {#}. Intuitively, the letters in ) denote tiles, symbols in {0,1}3 denote address bits, and
# denotes a separation marker. The idea is to encode each tiled cell by a word of length n + 2 of the form # · ({0,1}3)n · ),
consisting of a marker, an n-bit address, and a tile symbol. We use an element in {0,1}3 for each address bit to make it
easy to check that two n-bit addresses are consecutive; we use n-bits for the current address, n bits for the carry, and n bits
for the next address. Thus, each tiling can be described by a word in (# · ({0,1}3)n · ))∗ , obtained by encoding each cell as
described above, and then concatenating the symbols, first column by column and then row by row.

Consider a word w ∈ Σ∗ . Such a word does not describe a proper tiling if one of the following errors can be found in
the word:

1. The symbol # does not occur precisely in positions (n + 2)i, for i = 0,1, . . . .
2. The symbols in ) do not occur precisely in positions n + 1 + (n + 2)i, for i = 0,1, . . . .
3. The first address is not 0n .
4. The last address is not 1n .
5. There is a pair of adjacent but not successive addresses.
6. The first tile is not tS .
7. The last tile is not tF .
8. There is a pair of adjacent blocks with tiles that violate the relation H .
9. There is a pair of vertically adjacent blocks with tiles that violate the relation P .

We do need to define the notion of vertical adjacency. Two blocks are vertically adjacent if their addresses agree and
either both addresses are 0n and there is no occurrence of 0n between them, or both addresses are not 0n and there is
precisely one occurrence of 0n between them.

If the tiling problem has no solution, then every word in Σ∗ must contain an error. Conversely, if the tiling problem
has a solution, then that solution can be described by a word with no errors. We now define a constraint of the form
eerror = Σ∗ , where the “task” of eerror is to discover errors in candidate words. The expression eerror is the sum of several
terms corresponding to the various errors. We now sketch how to “discover” these possible errors. In order to have the
left-hand sides use only variables, we introduce a variable va for each letter a ∈ Σ , accompanied by the constraint va = a.
We use VΣ to abbreviate

∑
a∈Σ va .

Most of the errors can be discovered with a single regular expression. For example, the error where the symbol # does
not occur precisely in positions (n + 2)i, for i = 0,1, . . . , is described using the expression

(
Vn+2

Σ

)∗ ·
( ∑

16i6n+1

V i
Σ

)
· # · V∗

Σ .
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We encode addresses by words in ({0,1}3)n , which consist of three n-bit words: the first word is an n-bit address, the
second word is the successor of that address, and the third word is the sequence of n carry bits. The expression eerror
contains a term that finds errors in words of the form ({0,1}3)n used in the encoding candidate solutions. To ensure that
adjacent addresses are successive, eerror contains, for 06 i 6 n − 1, the expression

(
Vn+2

Σ

)∗ · # ·
(
{0,1}3)i · {0,1} × {0} × {0,1} ·

(
{0,1}3)n−i−1 · )

· # ·
(
{0,1}3)i · {1} × {0,1}2 ·

(
{0,1}3)n−i−1 ·

(
Vn+2

Σ

)∗

as well as the expression

(
Vn+2

Σ

)∗ · # ·
(
{0,1}3)i · {0,1} × {1} × {0,1} ·

(
{0,1}3)n−i−1 · )

· # ·
(
{0,1}3)i · {0} × {0,1}2 ·

(
{0,1}3)n−i−1 ·

(
Vn+2

Σ

)∗
.

These expressions compare corresponding bits in adjacent addresses; the successor of the first address has to agree with
the second address.

The one error that is challenging is where there is a pair of vertically adjacent blocks with tiles that violate the relation P .
Discovering this error is more difficult and cannot be done by one regular expression; rather, several additional constraints
are needed. For simplicity we ignore here the fact that each address bit is encoded by three bits rather than one.

Let enza be a regular expression that describes non-zero addresses:
∑

06i6n−1{0,1}i · 1 · {0,1}n−i−1.
We add to eerror the following term, which discovers non-matching tiles at zero-addressed vertically adjacent tiles:

∑

(t,t′)/∈P

(
V∗

Σ · # · 0n · t · (# · enza · ))∗ · # · 0n · t′ · V∗
Σ

)
.

We need to deal with non-zero-addressed vertically adjacent blocks. For this we use several constraints. First:

vnzava (
∑

(t,t′)/∈P

(
# · enza · t · (# · enza · ))∗ · # · 0n · ) · (# · enza · ))∗ · # · enza · t′).

This says that vnzava describes sequences of blocks that start and end with a pair of non-matching non-zero-addressed
blocks, with a single zero-addressed block in between. We still have to impose the constraint that the first and last block
have equal addresses. We do this with n constraints, one for each bit of the address. That is for each i, 0 6 i 6 n − 1, we
add the constraint:

vnzava (
(
# · {0,1}i · 0 · {0,1}n−i−1 · ) ·

(
# · {0,1}n · )

)∗ · # · {0,1}i · 0 · {0,1}n−i−1 · )
)

+
(
# · {0,1}i · 1 · {0,1}n−i−1 · ) ·

(
# · {0,1}n · )

)∗ · # · {0,1}i · 1 · {0,1}n−i−1 · )
)
.

This constraint says that the i-th bits of the first and last addresses are either both 0 or both 1.
Now we can add to eerror the term V∗

Σ · vnzava · V∗
Σ , which discovers all errors due to not-matching, non-zero-addressed

vertically adjacent blocks.
Note that the constraint system constructed is of size quadratic in the size of the tiling system. If the tiling problem

has no solution, then every word in Σ∗ contains an error and the constraint problem constructed is satisfiable. If the tiling
problem has a solution, then a word describing a proper tiling has no error, and for no assignment σ : V → 2Σ∗

we have
L(eerror[σ ]) = Σ∗ , since eerror captures only errors. "

Let MSimp[mixed,lav,rpq,rpq] be the following decision problem: given an rpq-based schema mapping M consisting
both of sound and of exact mapping assertions, check whether there exists an rpq-based lav schema mapping M ′ of type
exact such that M ′ |# M and M ′ %|#triv M .

As a corollary of Theorem 6.14, we get the following result.

Corollary 6.15. MSimp[mixed,lav,rpq,rpq] is ExpSpace-complete.

We conjecture that MSimp[exact,lav,rpq,rpq] is also ExpSpace-complete.
Our results on simplification for RPQs are summarized in Table 1.

7. Extensions

In this section we sketch the extension of the results of the previous section on simplification in terms of lav mappings
to more expressive classes of queries: 2RPQs and their conjunctions.
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7.1. 2RPQs

Consider now simplification for mappings based on 2RPQs, expressed by means of 1NFAs over the alphabets Σ±
s and Σ±

t .
A key concept for 2RPQs is that of folding of a language [22], which intuitively denotes the set of words that are the result

of repeatedly canceling out adjacent occurrences of a symbol and its inverse. Let u, v ∈ Σ± . We say that v folds onto u,
denoted v u, if v can be “folded” on u, e.g., abb−bc abc. Formally, we say that v = v1 · · · vm folds onto u = u1 · · · un if
there is a sequence i0, . . . , im of positive integers between 0 and |u| such that

• i0 = 0 and im = n, and
• for j ∈ {0, . . . ,m}, either i j+1 = i j + 1 and v j+1 = ui j+1, or i j+1 = i j − 1 and v j+1 = u−

i j+1
.

Let L be a language over Σ± . We define fold(L) = {u | v u, v ∈ L}.
A language-theoretic characterization for containment of 2RPQs was provided in [22]:

Lemma 7.1. Let q1 and q2 be 2RPQs. Then q1 ( q2 iff L(q1) ⊆ fold(L(q2)).

Furthermore, it is shown in [22] that if A is an n-state 1NFA over Σ± , then there is a 2NFA A f over Σ for fold(L(A))
with n · (|Σ±| + 1) states. (We use 2NFA to refer to two-way automata.)

In the mapping simplification problem, we are given 2RPQs qs and qt , expressed as 1NFAs As and At , respectively, and
we are asked whether there exists a 2RPQ-based lav mapping ML such that qs[ML] ( qt or qs[ML] = qt , and also qs[V ] %≡ ∅.

The approach using congruence classes described above applies also to 2RPQs. A simplistic approach would be to convert
the 2NFA for fold(L(At)) into a 1NFA, with an exponential blow-up, and proceed as in Section 6. To avoid this exponential
blowup, we need an exponential bound on the number of congruence classes. For a 1NFA, we saw that each congruence
class can be defined in terms of a binary relation over its set of states. It turns out that for a 2NFA A, a congruence class
can be defined in terms of four binary relations over the set St of states of A:

1. Rlr : a pair (s1, s2) ∈ Rlr means that there is a word w that leads A from s1 to s2, where w is entered on the left and
exited on the right.

2. Rrl: a pair (s1, s2) ∈ Rrl means that there is a word w that leads A from s1 to s2, where w is entered on the right and
exited on the left.

3. Rll: a pair (s1, s2) ∈ Rll means that there is a word w that leads A from s1 to s2, where w is entered on the left and
exited on the left.

4. Rrr : a pair (s1, s2) ∈ Rrr means that there is a word w that leads A from s1 to s2, where w is entered on the right and
exited on the right.

That is, every choice of four binary relations over the state space of A f corresponds to a congruence class with respect to
the language of A f . Thus, the number of congruence classes when A f has m states is 24m2

rather than 2m2
, which is still

an exponential. This enables us to adapt the technique of Section 6 with essentially the same complexity bounds.

Theorem 7.2. MSimp[sound,lav,2rpq,2rpq] is PSpace-complete.
MSimp[exact,lav,2rpq,2rpq] is in ExpSpace.

7.2. Conjunctions of 2RPQs and their unions

Finally, we consider the mapping simplification problem for conjunctions of 2RPQs and their unions, abbreviated
(U)C2RPQs [53], which are (unions of) conjunctive queries constructed from binary atoms whose predicate is a 2RPQ. Specif-
ically, a C2RPQ q of arity n is written in the form

{
(x1, . . . , xn)

∣∣ q1(y1, y2) ∧ · · · ∧ qm(y2m−1, y2m)
}

where x1, . . . , xn, y1, . . . , y2m range over a set {z1, . . . , zk} of variables, {x1, . . . , xn} ⊆ {y1, . . . , y2m}, and each q j is a 2RPQ.
When evaluated over a database D over Σ , the C2RPQ q computes the set of tuples (o1, . . . ,on) of objects such that there
is a total mapping ϕ from {z1, . . . , zk} to the objects in D with ϕ(xi) = oi , for i ∈ {1, . . . ,n}, and (ϕ(y2 j−1),ϕ(y2 j)) ∈ qDj ,
for j ∈ {1, . . . ,m}.

Consider first the mapping simplification problem for the case where the input mapping is expressed in terms of CRPQs,
where the constituent RPQs are expressed by means of 1NFAs, over the alphabets Σ±

s and Σ±
t . Here the lav mappings

have to be in terms of RPQs, rather than CRPQs, since CRPQs are not closed under substitutions. The crux of our approach
is to reduce containment of two CRPQs, q1 and q2 to containment of standard languages. This was done in [53]. Let qh , for
h = {1,2}, be in the form

qh =
{
(x1, . . . , xn)

∣∣ qh,1(yh,1, yh,2) ∧ · · · ∧ qh,mh (yh,2mh−1, yh,2mh )
}
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Table 1
Summary of complexity results on mapping simplification.

Type Form cq-cq ucq-cq ucq-ucq (2)rpq-(2)rpq uc2rpq-2rpq

sound
lav NP-c NP-c NP-c PSpace-c ExpSpace
gav NP NP NP

exact lav/gav NP-c NP-c Π
p
2

ExpSpace
2ExpSpace

PSpace-hard

mixed lav NP-c NP-c Π
p
2 ExpSpace-c 2ExpSpace

and let V1, V2 be the sets of variables of q1 and q2 respectively. It is shown in [53] that the containment q1 ( q2 can be
reduced to the containment L(A1) ⊆ L(A2) of two word automata A1 and A2. A1 is a 1NFA, whose size is exponential
in q1 and it accepts certain words of the form

$d1 w1d2$d3 w2d4$ · · · $d2m1−1 wm1d2m1 $

where each di is a subset of V1 and the words wi are over the alphabet of A1. Such words constitute a linear representation
of certain graph databases that are canonical for q1 in some sense. A2 is a 2NFA, whose size is exponential in the size of q2,
and it accepts words of the above form if the there is an appropriate mapping from q2 to the database represented by these
words. The reduction of the containment q1 ( q2 to L(A1) ⊆L(A2) is shown in [53].

The ability to reduce containment of CRPQs to containment of word automata means that we can also apply the
congruence-class technique of Section 6. Suppose that we have an rpq-based lav mapping ML such that L(As[ML]) ⊆L(At).
Then we can again assume that the queries in the lav mapping are closed with respect to the congruence classes of At .
Thus, the techniques of Section 6 can be applied, and one can show that MSimp[sound,lav,crpq,rpq] is in ExpSpace and
MSimp[exact,lav,crpq,rpq] is in 2ExpSpace.

Finally, dealing with UC2RPQ queries, which combine UCQs and 2RPQs, requires combining the techniques developed
for RPQs, 2RPQs, and CRPQs. The key idea is the reduction of query containment to containment of word automata. The
resulting upper bounds are identical to those for CRPQs.

8. Conclusions

We have introduced the problem of simplifying schema mappings based on logical implication. The problem comes in
different forms, depending on the type of simplification to achieve, on whether the mappings are sound or exact, and on the
types of queries used in the mappings. We have provided a formalization of the problem, and we have presented techniques
and complexity bounds for both relational and graph databases. We have concentrated on lav simplification, and we have
discussed the gav case only for relational schema mappings. Our results are summarized in Table 1. There are a number of
results left open by our investigation. In particular, gav simplification and synthesis for RPQs is largely open. Moreover, in
lav tight lower-bounds are missing for the cases of UCQs and RPQs. We observe that the techniques we have presented in
Sections 5, 6, and 7 to prove our upper bounds for lav simplification in the sound and exact cases are based on performing
suitable guesses and containment checks independently for each input mapping assertion. Hence, they extend easily to the
mixed case, providing the same upper bounds as for the exact case, which justifies the entries in the last row of the table.

In the future, we plan to continue investigating schema mapping simplification along different directions. In particular,
we aim at addressing gav simplification for graph databases, and we plan to study schema mapping simplification for
tree-based (e.g., XML) semi-structured data.
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