On simplification of schema mappings

Diego Calvanese ${ }^{\mathrm{a}, *}$, Giuseppe De Giacomo ${ }^{\text {b }}$, Maurizio Lenzerini ${ }^{\mathrm{b}}$, Moshe Y. Vardi ${ }^{\text {c }}$
${ }^{\text {a }}$ KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100 Bolzano, Italy
${ }^{\mathrm{b}}$ Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma, Via Ariosto 25, I-00185 Roma, Italy
${ }^{\text {c }}$ Dep. of Computer Science, Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA

A R T I C L E I N F O

Article history:

Received 3 October 2011
Received in revised form 3 July 2012
Accepted 16 January 2013
Available online 21 January 2013

Keywords:

Schema mappings
Mapping simplification
LAV
GAV
GLAV
Graph databases
Regular path queries

Abstract

A schema mapping is a formal specification of the relationship holding between the databases conforming to two given schemas, called source and target, respectively. While in the general case a schema mapping is specified in terms of assertions relating two queries in some given language, various simplified forms of mappings, in particular LAV and GAV, have been considered, based on desirable properties that these forms enjoy. Recent works propose methods for transforming schema mappings to logically equivalent ones of a simplified form. In many cases, this transformation is impossible, and one might be interested in finding simplifications based on a weaker notion, namely logical implication, rather than equivalence. More precisely, given a schema mapping M, find a simplified (LAV, or GAV) schema mapping M^{\prime} such that M^{\prime} logically implies M. In this paper we formally introduce this problem, and study it in a variety of cases, providing techniques and complexity bounds. The various cases we consider depend on three parameters: the simplified form to achieve (LAV, or GAV), the type of schema mapping considered (sound, or exact), and the query language used in the schema mapping specification (conjunctive queries and variants over relational databases, or regular path queries and variants over graph databases). Notably, this is the first work on comparing schema mappings for graph databases.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A schema mapping is a formal specification of the relationship holding between the databases conforming to two given schemas. Many papers in the last decade point out the importance of schema mappings in several data management tasks, especially those requiring inter-operability between different information systems, such as data integration [1,2], data exchange [3,4], and model management [5].

In data integration, schema mappings are established between the source schema and the global schema, also called mediated schema. In this context, schema mappings are used by the query processor when planning the accesses to the source data for answering queries posed in terms of the global schema. In data exchange, schema mappings are specified in terms of a source schema and a target schema, and determine how the source data should be transferred to the target in order to populate a database conforming to the target schema. Schema mappings are also the main objects of interest

[^0]in model management, whose goal is to support the creation, compilation, reuse, evolution, and execution of mappings between schemas, expressed in a wide range of models.

A schema mapping is constituted by two schemas and a set of mapping assertions between the two. We follow the data exchange terminology, and call the two schemas source and target, respectively. As usual, we assume that each assertion relates a query q_{s} expressed over the source schema to a query q_{t} expressed over the target schema, and specifies a correspondence between the tuples computed by q_{s} on the source databases and those computed by q_{t} on the target database. In the following, we consider two types of schema mappings, called sound and exact, respectively. The correspondence specified by assertions in a sound mapping is inclusion, whereas the correspondence specified by assertions in an exact mapping is equality. Semantically, a schema mapping M specified on source schema S and target schema T is characterized by the set of pairs $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ such that \mathcal{D}_{s} is a source database, i.e., a database conforming to S, \mathcal{D}_{t} is a target database, i.e., a database conforming to T, and \mathcal{D}_{s} and \mathcal{D}_{t} satisfy the correspondences sanctioned by the assertions in M, denoted as $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M$.

Although mappings of general form are specified using arbitrary queries, various restricted forms of mappings have been considered in this investigation. Notable cases of restricted forms of mappings are "Local-As-Views" (LAV) and "Global-AsViews" (GAV) mappings [1]. In LAV mappings, the source queries in the assertions are constituted by one atom, and exactly one assertion appears for each relation symbol in the source schema. In other words, a lav mapping associates to each element of the source schema one view over the target schema. Conversely, a GAV mapping associates to each element of the target schema one view over the source schema. Extending the above terminology, the term glav is often used to refer to unrestricted forms of schema mappings.

Since the pioneering work in data integration [6], schema mappings have been widely investigated in the last years. Recently, several research works have been focused on principles and tools for comparing both schema mapping languages, and schema mappings expressed in a certain language [7-12]. In [10], schema mapping optimization is studied, based on logical equivalence. A set of optimality criteria are proposed for an important class of relational schema mappings, and rewriting rules for transforming a schema mapping into an equivalent optimal one are presented. Notably, lav and gav enjoy many of the optimality criteria mentioned in the paper. It follows that the proposed rewriting rules often lead to transforming an input schema mapping into one of the two simplified forms.

Most of the work on optimization and simplification of schema mappings has concentrated so far on transformations preserving logical equivalence. However, there are cases where equivalence preserving simplification is not possible, as demonstrated for lav by Example 1.1 below. To address such cases, we argue that simplification should be based on a weaker notion, namely logical implication, rather than equivalence. A mapping M logically implies a mapping M^{\prime}, denoted $M \models M^{\prime}$, if whenever $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M$, we also have that ($\left.\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M^{\prime}$.

Example 1.1. We restrict our attention to schema mappings constituted by mapping assertions using positive queries. Consider a source schema S consisting of the relations $r_{1} / 3$ and $r_{2} / 2$ and a target schema T consisting of the relations $t_{1} / 3$ and $t_{2} / 2$. Notice that a lav mapping from S to T has the form

$$
\begin{aligned}
& \left\{(x, y, z) \mid r_{1}(x, y, z)\right\} \sim q_{1}, \\
& \left\{(x, y) \mid r_{2}(x, y)\right\} \sim q_{2}
\end{aligned}
$$

where q_{1} and q_{2} are two queries over T with arity three and two respectively. Consider now a schema mapping M consisting of the following mapping assertion

$$
\left\{(x, w, z) \mid r_{1}(x, w, y) \wedge r_{2}(y, z)\right\} \leadsto\left\{(x, w, z) \mid t_{1}(x, w, v) \wedge t_{1}(v, w, e) \wedge t_{2}(e, z)\right\}
$$

Suppose that M is interpreted under the sound semantics. Now, let \mathcal{D}_{s} be a database such that $r_{1}^{\mathcal{D}_{s}} \neq \emptyset$, and $r_{2}^{\mathcal{D}_{s}}=\emptyset$, and let \mathcal{D}_{t} be the empty database. Clearly, $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M$. On the other hand, for any sound lav mapping M^{\prime} on the same alphabet as M, it holds that $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \not \vDash M^{\prime}$, because $r_{1}^{\mathcal{D}_{s}} \neq \emptyset$, while the query $M^{\prime}\left(r_{1}\right)$ that M^{\prime} associates to r_{1} is such that $M^{\prime}\left(r_{1}\right)^{\mathcal{D}_{t}}=\emptyset$, and therefore the assertion $r_{1} \leadsto M^{\prime}\left(r_{1}\right)$ in M^{\prime} cannot be satisfied by ($\mathcal{D}_{s}, \mathcal{D}_{t}$). It follows that no lav mapping M^{\prime} exists such that $M \models M^{\prime}$, and therefore equivalence preserving Lav simplification of M is impossible to achieve.

Example 1.2. Refer again to the schema mapping M of Example 1.1, and consider the sound Lav mapping $M^{\prime \prime}$ constituted by the following two mapping assertions:

$$
\begin{aligned}
& \left\{(x, w, y) \mid r_{1}(x, w, y)\right\} \sim\left\{(x, w, y) \mid t_{1}(x, w, v) \wedge t_{1}(v, w, y)\right\}, \\
& \left\{(x, y) \mid r_{2}(x, y)\right\} \sim\left\{(x, y) \mid t_{2}(x, y)\right\} .
\end{aligned}
$$

It is not difficult to see that $M^{\prime \prime} \models M$. Therefore, if we are happy with Lav simplification based on logical implication rather than logical equivalence, $M^{\prime \prime}$ represents an acceptable simplification of M.

Mapping simplification based on logical implication is the subject of this paper. The basic problem we consider can be stated as follows: given a schema mapping M, check whether a simplified (lav, or GAV) schema mapping M^{\prime} exists such that M^{\prime} logically implies M (and, if it exists, find one). We formally introduce this problem, and study it in a variety of cases, depending on three parameters:

1. the simplified form to achieve, namely, lav or GAv,
2. the type of schema mapping considered, namely, sound or exact, and
3. the data model and the query language used in the schema mapping specification.

As for the first parameter, we essentially concentrate on lav in this paper. We discuss Gav only briefly, pointing out that GAV simplification is an open problem in several cases.

As for the type of mapping, although the sound semantics is the most popular one in data exchange [3], the importance of considering exact schema mappings is widely recognized for both data exchange [13], and data integration [14].

As for the data model and the query language used in schema mappings, we consider both the relational data model with conjunctive queries and unions thereof, and the graph database model with regular path queries and their extensions. Note that, while schema mappings have been extensively studied for relational data, and, to some extent, for XML data [15], this is the first paper on comparing schema mappings for graph databases. Graph databases [16] were introduced in the 80 's, and are regaining wide attention recently [17-19], for their relevance in areas such as semi-structured data, biological data management, social networks, and the semantic web.

The notion of simplification put forward in our work can be seen as a form of approximation: Given a schema mapping M (of a general form), find a LAV schema mapping M^{\prime} "approximating" M. It is well known that there are at least two ways of approximating a logical theory T : one way is through a theory T_{1} that is stronger than T, i.e., such that T_{1} logically implies T, and the other way is through a theory T_{2} that is weaker than T, i.e., such that T logically implies T_{2}. For example, in the work on Horn approximation of propositional theories, both kinds of approximations have been considered (see, [20,21]). In this paper, we study one of the two approximations, namely the one where we look for a simplified LAV/GAV schema mapping that is stronger (or, more precisely, not weaker) than the given schema mapping. Note that all inferences obtained by means of the original mapping are also obtained by means of the stronger mapping. At the same time, with this form of simplified mapping we can infer more than with the original mapping. On the other hand, with a weak approximation, we would get the opposite: all inferences obtained by means of the simplified mapping are also valid inferences with respect to the original mapping. The weak forms of approximation are also of interest, but are not investigated here and are left for future study.

The results we present in this paper can be summarized as follows. We first illustrate our ideas with relational mappings, where the results follow fairly easily from the characterization of containment for conjunctive queries and unions thereof. We show that LAV simplification is NP-complete in the case of both sound and exact schema mappings based on conjunctive queries. In the case of unions of conjunctive queries, the problem is still in NP for sound mappings, while it is in Π_{2}^{p} for exact ones.

For graph database schema mappings based on regular path queries, we prove that lav simplification is PSPACE-complete under the sound semantics, and in ExpSPACE in the case of exact schema mappings. By exploiting a language-theoretic characterization for containment of regular path queries with inverse (called two-way regular path queries) provided in [22], we also extend the results to the case where queries in schema mappings are two-way regular path queries, as well as conjunctive two-way regular path queries, and unions of such queries.

Note that a regular path query returns the set of node pairs in the graph database connected by a path conforming to the query, and therefore can be seen as the regular language constituted by all the words labeling the paths denoted by the query. Indeed, the simplification problem addressed in this paper has a language theoretic interpretation in terms of language equations. Specifically, we address systems of language constraints of the form

$$
e_{1} \subseteq e_{2}, \quad \text { and } \quad e_{1}=e_{2}
$$

Here, while e_{2} is an ordinary regular expression, e_{1} is a regular expression that may contain variables as additional alphabet symbols, to be substituted by an ordinary regular expression. The key idea of our approach is that we can prove that solutions of the above equations are closed under congruence, which enables us to represent languages as graphs over the finite-state automaton for e_{2}.

The paper is organized as follows. After a discussion on related work in Section 2, we recall some preliminary notions in Section 3. In Section 4, we formally define the problem of schema mapping simplification based on logical implication. In Section 5, we study the problem in the case where queries and views are conjunctive queries, and unions thereof, including a brief discussion on Gav simplification. In Section 6 we illustrate the techniques for the case of regular path queries over graph databases. In Section 7 we extend them to two-way regular path queries, and discuss the case of (unions of) conjunctions thereof. Finally, Section 8 concludes the paper.

2. Related work

As we said in the Introduction, the issue of representing schema mappings, and reasoning on them has been widely investigated in the last years. In [23-27] the emphasis is on providing foundations for data exchange systems based on schema mappings. Other works deal with answering queries posed to the target schema on the basis of both the data at the sources, and a set of source-to-target mapping assertions (see, for instance, [28,25,29] and the surveys in $[6,30,2]$). A large body of work has been devoted to studying operators on schema mappings relevant to model management, notably, composition, merge, and inverse (see, for example [31-34,11,35,36,12,37]).

Recently, there has been a growing interest in principles and tools for comparing both schema mapping languages, and schema mappings expressed in a certain language. Comparing schema mapping languages aims at characterizing such languages in terms of both expressive power, and complexity of mapping-based computational tasks [7,8]. In particular, [7] studies various relational schema mapping languages with the goal of characterizing them in terms of structural properties possessed by the schema mappings specified in these languages.

Methods for comparing schema mappings have been recently proposed in [9-12]. In [11,12], schema mappings are compared with respect to their ability to transfer source data and avoid redundancy in the target databases, as well as their ability to cover target data. More relevant to the present paper is the work in [9], which introduces three notions of equivalence. The first one is the usual notion based on logic: two schema mappings are logically equivalent if they are indistinguishable by the semantics, i.e., if they are satisfied by the same set of database pairs. The other two notions, called data exchange and conjunctive query equivalence, respectively, are relaxations of logical equivalence, capturing indistinguishability for different purposes.

The above discussion shows that the work on optimization and simplification of schema mappings has concentrated so far on equivalence preserving transformations. As we said in the Introduction, we follow a different approach, and address the issue of mapping simplification based on logical implication of schema mappings, rather than logical equivalence.

As we have already observed, the simplification problem in the context of graph databases has a language theoretic interpretation in terms of language equations. In general, solving systems of equations of the form $e=e^{\prime}$, where e and e^{\prime} are regular expressions over an alphabet of constants and variables is undecidable, because it is easy to express the universality problem for Context Free Grammars in this way. In [38], the authors study linear equations of the form

$$
e_{0}+e_{1} \cdot x_{1}+\cdots+e_{n} \cdot x_{n}=e_{0}^{\prime}+e_{1}^{\prime} \cdot x_{1}+\cdots+e_{n}^{\prime} \cdot x_{n}
$$

where $e_{0}, e_{0}^{\prime}, \ldots, e_{n}, e_{n}^{\prime}$ are regular expressions, and x_{1}, \ldots, x_{n} are variables. The authors prove that solving these equations is ExpTime-complete. In contrast, we prove the solvability of another class of problems, namely, systems of language constraints of the form $e_{1} \sqsubseteq e_{2}$ and $e_{1}=e_{2}$ where both e_{1} and e_{2} are regular expressions, and e_{1} contains variables, whereas e_{2} has no variables.

Taking into account the language-theoretic view, our work has also connections with [39,40], which also study language constraints of the forms $e_{1} \sqsubseteq e_{2}$, and $e_{1}=e_{2}$. However, in these works, e_{1} is restricted to be a single word on both the source and the target alphabets.

3. Preliminaries

In this work we deal with two data models, the standard relational model [41], and the graph database model [42].
Given a (relational) alphabet Σ, a database over Σ is a finite structure over Σ. We denote a query of arity n over Σ as $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \alpha\right\}$, where x_{1}, \ldots, x_{n} are pairwise distinct variables, called the distinguished variables of the query, and α is an expression over Σ containing x_{1}, \ldots, x_{n}, to be evaluated on databases over Σ in order to compute the assignment to such variables. For a query q over Σ, we denote by $q^{\mathcal{D}}$ the set of tuples resulting from evaluating q in a database \mathcal{D} over Σ. A query q over Σ is empty if for each database \mathcal{D} over Σ we have $q^{\mathcal{D}}=\emptyset$. Given two queries q_{1} and q_{2} over Σ, we say that q_{1} is contained in q_{2}, denoted $q_{1} \sqsubseteq q_{2}$, if $q_{1}^{\mathcal{D}} \subseteq q_{2}^{\mathcal{D}}$ for every database \mathcal{D} over Σ. The queries q_{1} and q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if both $q_{1} \sqsubseteq q_{2}$ and $q_{2} \sqsubseteq q_{1}$.

We assume familiarity with (unions of) conjunctive queries, (U)CQs, over relational databases. In particular, a CQ over Σ is an expression of the form $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \alpha\right\}$, where α is a conjunction of atoms over Σ that may include constants, distinguished variables, and additional variables that are implicitly existentially quantified. We consider such queries as interpreted under the active domain semantics [41] modified, for technical reasons (see Definition 4.3), by assuming that the active domain contains an additional special constant that does not appear in any relation. For every arity n, we consider two special queries: the universal query denoted true $/ n$, returning the n-cartesian product of the active domain, and the empty query denoted false $/ n$, returning the empty set. We may omit n when it is clear from the context. We recall that containment between (U$) \mathrm{CQs}$ can be characterized in terms of homomorphisms (also called containment mappings) [43]: For two CQs q_{1} and q_{2}, we have that $q_{1} \sqsubseteq q_{2}$ iff there is a homomorphism from q_{2} to q_{1}, i.e., a mapping h from the variables and constants of q_{2} to those of q_{1} that is the identity on distinguished variables and constants and such that, if $r\left(x_{1}, \ldots, x_{k}\right)$ is an atom of q_{2}, then $r\left(h\left(x_{1}\right), \ldots, h\left(x_{k}\right)\right)$ is an atom of q_{1}. For two UCQ q_{1} and q_{2}, we have that $q_{1} \sqsubseteq q_{2}$ iff for each CQ q_{1}^{i} in q_{1} there is a CQ q_{2}^{j} in q_{2} such that $q_{1}^{i} \sqsubseteq q_{2}^{j}$ [44].

We recall the basic notions regarding graph databases and regular path queries. A graph database is a finite graph whose nodes represent objects and whose edges are labeled by elements from an alphabet of binary relational symbols [16,45,46,22]. An edge (o_{1}, r, o_{2}) from object o_{1} to object o_{2} labeled by r represents the fact that relation r holds between o_{1} and o_{2}.

A regular-path query (RPQ) over an alphabet Σ of binary relation symbols is a binary query characterized by a regular language. We denote an $\operatorname{RPQ}\{(x, y) \mid e(x, y)\}$, where e is a regular expression or a nondeterministic finite state automaton (1NFA) over Σ, simply by e. When evaluated on a graph database \mathcal{D} over Σ, an RPQ q computes the set $q^{\mathcal{D}}$ of pairs of objects connected in \mathcal{D} by a path in the regular language $\mathcal{L}(q)$ defined by q. We consider also two-way regular-path queries (2RPQs) [47,22], which extend RPQs with the inverse operator. Formally, let $\Sigma^{ \pm}=\Sigma \cup\left\{r^{-} \mid r \in \Sigma\right\}$ be the alphabet including a new symbol r^{-}for each r in Σ. Intuitively, r^{-}denotes the inverse of the binary relation r. If $p \in \Sigma^{ \pm}$, then we use p^{-}to
mean the inverse of p, i.e., if p is r, then p^{-}is r^{-}, and if p is r^{-}, then p^{-}is r. 2RPQs are expressed by means of a 1 NFA over $\Sigma^{ \pm}$. When evaluated on a database \mathcal{D} over Σ, a 2 RPQ q computes the set $q^{\mathcal{D}}$ of pairs of objects connected in \mathcal{D} by a semipath that conforms to the regular language $\mathcal{L}(q)$. A semipath in \mathcal{D} from x to y (labeled with $p_{1} \ldots p_{n}$) is a sequence of the form $\left(y_{0}, p_{1}, y_{1}, \ldots, y_{n-1}, p_{n}, y_{n}\right)$, where $n \geqslant 0, y_{0}=x, y_{n}=y$, and for each y_{i-1}, p_{i}, y_{i}, we have that $p_{i} \in \Sigma^{ \pm}$, and, if $p_{i}=r$ then $\left(y_{i-1}, y_{i}\right) \in r^{\mathcal{D}}$, and if $p_{i}=r^{-}$then $\left(y_{i}, y_{i-1}\right) \in r^{\mathcal{D}}$. We say that a semipath $\left(y_{0}, p_{1}, \ldots, p_{n}, y_{n}\right)$ conforms to q if $p_{1} \cdots p_{n} \in \mathcal{L}(q)$.

We conclude by observing that (U)CQs, RPQs, 2 RPQ s, and (U)C2RPQs are monotone, where a query q is monotone if, whenever $\mathcal{D}_{1} \subseteq \mathcal{D}_{2}$ (i.e., $r^{\mathcal{D}_{1}} \subseteq r^{\mathcal{D}_{2}}$ for each relation r) we have that $q^{\mathcal{D}_{1}} \subseteq q^{\mathcal{D}_{2}}$.

4. Schema mapping simplification

We refer to a scenario with one source schema, one target schema, and a schema mapping between the two. To model the source and the target schemas we refer to two finite alphabets, the source alphabet Σ_{s} and the target alphabet Σ_{t}, and to specify the mapping, we use a correspondence between queries expressed in a given query language.

Definition 4.1. Given a query language \mathcal{Q}, a \mathcal{Q}-based schema mapping assertion from Σ_{s} to Σ_{t} is a statement of the form $q_{s} \leadsto q_{t}$, where q_{s} and q_{t} are two queries in \mathcal{Q} with the same arity, respectively over Σ_{s} and over Σ_{t}. A \mathcal{Q}-based schema mapping from Σ_{s} to Σ_{t} is a set of mapping assertions from Σ_{s} to Σ_{t}.

In the following, we specify explicitly \mathcal{Q}, Σ_{s}, and Σ_{t} only when they are required or not clear from the context.
We consider two types of schema mappings, called sound and exact. Intuitively, in a sound mapping, the correspondence between the tuples computed by q_{s} and those computed by q_{t} is set containment, while in an exact mapping the correspondence is set equality. Formally, given a source database \mathcal{D}_{s} and a target database \mathcal{D}_{t}, we say that a sound mapping M is satisfied by $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$, denoted $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M$, if for each mapping assertion $q_{s} \sim q_{t}$ in M, we have that $q_{s}^{\mathcal{D}_{s}} \subseteq q_{t}^{\mathcal{D}_{t}}$. Similarly, an exact mapping M is satisfied by $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ if for each $q_{s} \leadsto q_{t}$ in M, we have that $q_{s}^{\mathcal{D}_{s}}=q_{t}^{\mathcal{D}_{t}}$.

A fundamental notion in our setting is that of logical implication between mappings.
Definition 4.2. A mapping M_{1} logically implies a mapping M_{2}, denoted $M_{1} \models M_{2}$, if for every pair ($\mathcal{D}_{s}, \mathcal{D}_{t}$) such that ($\left.\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M_{1}$, we also have that ($\left.\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M_{2}$.

We consider two simplified forms of mappings called LAV (local-as-view) and gav (global-as-view), respectively. In a Lav assertion $q_{s} \leadsto q_{t}$, the query q_{s} is constituted simply by an atom whose predicate symbol belongs to Σ_{s} and whose arguments are pairwise distinct distinguished variables, ${ }^{1}$ while q_{t} is an arbitrary query. ${ }^{2}$ Conversely, in a gav assertion, q_{s} is an arbitrary query while q_{t} is constituted simply by an atom whose predicate symbol belongs to Σ_{t} and whose arguments are pairwise distinct distinguished variables. A lav mapping is a set of lav assertions with one assertion for each symbol in Σ_{s}. If M_{L} is a LAV mapping and $a \in \Sigma_{s}$, we denote by $M_{L}(a)$ the target query to which a is mapped by M_{L}. Conversely, a gav mapping is a set of GAV assertions with one assertion for each symbol in Σ_{t}. Analogously to the case of lav mappings, $M_{G}(a)$ denotes the source query to which the symbol $a \in \Sigma_{t}$ is mapped by the GAV mapping M_{G}. Note that some of the queries in a lav (resp., GAV) mapping may be the empty query.

The problem we consider aims at checking whether a simplified mapping exists that logically implies a given mapping M. Let us consider the case where M is constituted by a single assertion $q_{s} \leadsto q_{t}$, and we aim at simplifying M by means of a Lav schema mapping M^{\prime}. One trivial way to do this is to define M^{\prime} in such a way that, whenever a pair $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ satisfies M^{\prime}, the query q_{s} is empty when evaluated over \mathcal{D}_{s}. Similarly, a trivial gav simplification M^{\prime} would be one that enforces that the query q_{t} returns the whole active domain, when evaluated over \mathcal{D}_{t}. We would like to rule out these meaningless simplifications, and therefore we formally introduce the notion of triviality w.r.t. a mapping assertion, distinguishing the two cases of LAV and GAV.

Definition 4.3. A LAV (resp., GAV) mapping M^{\prime} is said to be trivial w.r.t. a mapping assertion $q_{s} \leadsto q_{t}$, if for each pair $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ with $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M^{\prime}$, we have that $q_{s}^{\mathcal{D}_{s}}=$ false ${ }^{\mathcal{D}_{s}}$ (resp., $q_{t}^{\mathcal{D}_{t}}=\operatorname{true}^{\mathcal{D}_{t}}$). A LAV or gav mapping M^{\prime} is said to be trivial w.r.t. a mapping M, denoted $M^{\prime} \models_{\text {triv }} M$, if there is a mapping assertion $q_{s} \leadsto q_{t} \in M$ such that M^{\prime} is trivial w.r.t. $q_{s} \leadsto q_{t}$.

We observe that our assumption of having an additional constant in the active domain plays a role here. Indeed, without such an assumption, if the target signature consists of a single unary predicate, then the denotation of that predicate in a target instance would necessarily coincide with the active domain of that instance, and therefore, by definition, $M^{\prime} \models_{\text {triv }} M$ would hold, regardless of what M and M^{\prime} look like.

[^1]As an example of Definition 4.3, consider a mapping M constituted by the two assertions

$$
\begin{aligned}
& \left\{(x) \mid a_{1}(x) \wedge a_{2}(x)\right\} \sim\left\{(x) \mid b_{1}(x) \wedge b_{2}(x)\right\}, \\
& \left\{(x) \mid a_{1}(x)\right\} \sim\left\{(x) \mid b_{3}(x)\right\} .
\end{aligned}
$$

Then, the following lav mapping M^{\prime} is trivial w.r.t. M, since for every pair $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ satisfying M^{\prime}, we have that $\{(x) \mid$ $\left.a_{1}(x) \wedge a_{2}(x)\right\}$ evaluates to \emptyset over \mathcal{D}_{s} :

$$
\begin{aligned}
& \left\{(x) \mid a_{1}(x)\right\} \sim \text { true } / 1, \\
& \left\{(x) \mid a_{2}(x)\right\} \sim \text { false } / 1 .
\end{aligned}
$$

Definition 4.4. Let $t p$ be one of sound or exact, fm one of lav or gav, and \mathcal{Q}_{1} and \mathcal{Q}_{2} two query languages. Mapping simplification, denoted

$\operatorname{MSimp}\left[t p, f m, \mathcal{Q}_{1}, \mathcal{Q}_{2}\right]$,

is the following decision problem: given a \mathcal{Q}_{1}-based schema mapping M of type t, check whether there exists a \mathcal{Q}_{2}-based schema mapping M^{\prime} of type $t p$ and form $f m$ such that $M^{\prime} \models M$, and $M^{\prime} \not \vDash_{\text {triv }} M$.

To rule out (uninteresting) cases where all mappings that imply a given mapping M are trivial w.r.t. M, in the following we require that for each mapping assertion $q_{s} \leadsto q_{t}$ in a LAV mapping M, q_{t} is different from false. Analogously, we require that for each mapping assertion $q_{s} \leadsto q_{t}$ in a GAV mapping M, q_{s} is different from true.

If a simplified mapping exists, it is also of interest to actually compute one. Therefore, we consider the corresponding synthesis problem.

Definition 4.5. Let $t p$ be one of sound or EXACT, $f m$ one of lav or GAV, and \mathcal{Q}_{1} and \mathcal{Q}_{2} two query languages. Mapping synthesis, denoted,
$\operatorname{MSYnt}\left[t p, f m, \mathcal{Q}_{1}, \mathcal{Q}_{2}\right]$,
is the following problem: given a \mathcal{Q}_{1}-based schema mapping M of type t, find a \mathcal{Q}_{2}-based schema mapping M^{\prime} of type $t p$ and form $f m$ such that $M^{\prime} \models M$, and $M^{\prime} \not \vDash_{\text {triv }} M$.

In general we may want to synthesize simplified mappings with specific interesting properties. As an example, in this paper we are interested in the tightest simplifications of a mapping M, i.e., the simplifications that best approximate M.

Definition 4.6. Let $t p$ be one of sound or EXACT, $f m$ one of LAV or GAV, and \mathcal{Q}_{1} and \mathcal{Q}_{2} two query languages. Maximal mapping synthesis, denoted,

MaxMSynt[tp, fm, $\left.\mathcal{Q}_{1}, \mathcal{Q}_{2}\right]$,
is the following problem: given a \mathcal{Q}_{1}-based schema mapping M of type $t p$, find a solution M^{\prime} of $\operatorname{MSynt}\left[t p, f m, \mathcal{Q}_{1}, \mathcal{Q}_{2}\right]$ such that no solution $M^{\prime \prime}$ of MSynt $\left[t p, f m, \mathcal{Q}_{1}, \mathcal{Q}_{2}\right]$ satisfies $M^{\prime} \vDash M^{\prime \prime}$ and $M^{\prime \prime} \not \vDash M^{\prime}$.

Observe that, in general, we might have more than one maximal solution for the mapping synthesis problem. In the lav case, a maximal solution M^{\prime} is such that there is no solution $M^{\prime \prime}$ such that: (1) $M^{\prime}(a) \sqsubseteq M^{\prime \prime}(a)$ for every source symbol a, and (2) it is not the case that $M^{\prime \prime}(b) \sqsubseteq M^{\prime}(b)$ for every source symbol b, i.e., the queries $M^{\prime}(a)$ are maximal. Conversely, in the GAV case, a maximal solution M^{\prime} is such that the queries $M^{\prime}(b)$ are minimal, for each target symbol b.

In this paper we study the above problems for a variety of cases, where \mathcal{Q}_{1} and \mathcal{Q}_{2} range over (U)CQs and variants of queries over graph databases.

We start by observing that we can characterize mapping implication, and hence mapping simplification, in terms of query unfolding w.r.t. a set of mappings. We make use of such a characterization in the technical development in the subsequent sections. The notion of query unfolding is formally defined as follows: let q_{s} be a source query and M_{L} a lav mapping. The unfolding of q_{s} w.r.t. M_{L}, denoted $q_{s}\left[M_{L}\right]$, is the target query obtained by replacing each atom α in q_{s} whose predicate symbol is a with $M_{L}(a)$. An analogous definition holds for the unfolding $q_{t}\left[M_{G}\right]$ of a target query q_{t} w.r.t. a GAV mapping M_{G}.

Proposition 4.1. Let \mathcal{Q} be a monotone query language.
(1) Let M_{L} be a LAV mapping and M a mapping, both \mathcal{Q}-based and of type sound (resp., EXACT). Then $M_{L} \models M$ iff for each assertion $q_{s} \leadsto q_{t}$ in M, we have that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$ (resp., $q_{s}\left[M_{L}\right] \equiv q_{t}$).
(2) Let M_{G} be a GAV mapping and M a mapping, both \mathcal{Q}-based and of type sound (resp., EXACT). Then $M_{G} \models M$ iff for each assertion $q_{s} \leadsto q_{t}$ in M, we have that $q_{s} \sqsubseteq q_{t}\left[M_{G}\right]$ (resp., $\left.q_{s} \equiv q_{t}\left[M_{G}\right]\right)$.

Proof. We provide the proof for (1) for the case of sound mappings. The other cases can be proved analogously. We start with the following observation: if M_{L} is a LAV mapping, and \mathcal{D}_{s} is the source database obtained from a target database \mathcal{D}_{t} by letting $r^{\mathcal{D}_{s}}=M_{L}(r)^{\mathcal{D}_{t}}$ for every $r \in \Sigma_{s}$, then for every source query q, we have that $q^{\mathcal{D}_{s}}=q\left[M_{L}\right]^{\mathcal{D}_{t}}$.
" \Rightarrow " Now, assume that there is an assertion $q_{s} \leadsto q_{t}$ in M such that $q_{s}\left[M_{L}\right] \nsubseteq q_{t}$, and let \mathcal{D}_{t} be such that for some tuple \mathbf{d} we have $\mathbf{d} \in q_{s}\left[M_{L}\right]^{\mathcal{D}_{t}}$, and $\mathbf{d} \notin q_{t}^{\mathcal{D}_{t}}$. Let \mathcal{D}_{s} be the source database obtained from \mathcal{D}_{t} by letting $r^{\mathcal{D}_{s}}=M_{L}(r)^{\mathcal{D}_{t}}$ for every $r \in \Sigma_{s}$. Clearly, $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M_{L}$. By the above observation, we have that $q_{s}^{\mathcal{D}_{s}}=q_{s}\left[M_{L}\right]^{\mathcal{D}_{t}}$, and therefore $\mathbf{d} \in q_{s}^{\mathcal{D}_{s}}$. It follows that $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \not \models q_{s} \leadsto q_{t}$, and $M_{L} \not \models M$. A contradiction.
" \Leftarrow " Assume that $M_{L} \not \vDash M$, i.e., there are an assertion $q_{s} \sim q_{t}$ in M, and a pair ($\mathcal{D}_{s}, \mathcal{D}_{t}$) such that ($\left.\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M_{L}$, and $q_{s}^{\mathcal{D}_{s}} \nsubseteq q_{t}^{\mathcal{D}_{t}}$, which means that there is \mathbf{d} such that $\mathbf{d} \in q_{s}^{\mathcal{D}_{s}}$ but $\mathbf{d} \notin q_{t}^{\mathcal{D}_{t}}$. Let \mathcal{D}_{s}^{\prime} be such that $r^{\mathcal{D}_{s}^{\prime}}=M_{L}(r)^{\mathcal{D}_{t}}$ for every $r \in \Sigma_{s}$. Clearly, $\mathcal{D}_{s}^{\prime} \supseteq \mathcal{D}_{s}$, and $\left(\mathcal{D}_{s}^{\prime}, \mathcal{D}_{t}\right) \models M_{L}$. Since q_{s} is monotone, we have that $\mathbf{d} \in q_{s}^{\mathcal{D}_{s}^{\prime}}=q_{s}\left[M_{L}\right]^{\mathcal{D}_{t}}$, and therefore $q_{s}\left[M_{L}\right] \nsubseteq q_{t}$. A contradiction.

Proposition 4.2. Let \mathcal{Q} be a monotone query language, and let M be a mapping and M^{\prime} a LAV (resp., GAv) mapping, both \mathcal{Q}-based and of type sound or EXACT. Then $M^{\prime} \models$ triv M iff for some mapping assertion $q_{s} \leadsto q_{t} \in M$ we have that $q_{s}\left[M^{\prime}\right] \sqsubseteq$ false (resp., true \sqsubseteq $\left.q_{t}\left[M^{\prime}\right]\right)$.

Proof. We first provide the proof for the case of (SOUND or EXACT) LAV mappings.
" \Rightarrow ' ' Since $M^{\prime} \models_{\text {triv }} M$, there is a mapping assertion $q_{s} \leadsto q_{t} \in M$ such that for each pair $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ with $\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right) \models M^{\prime}$, we have that $q_{s}^{\mathcal{D}_{s}}=$ false ${ }^{\mathcal{D}_{s}}$. Assume that $q_{s}\left[M^{\prime}\right] \nsubseteq$ false, i.e., that $q_{s}\left[M^{\prime}\right]^{\mathcal{D}_{t}^{\prime}} \neq \emptyset$ for some target database \mathcal{D}_{t}^{\prime}. But then, for the source database \mathcal{D}_{s}^{\prime} obtained from \mathcal{D}_{t}^{\prime} by letting $r^{\mathcal{D}_{s}^{\prime}}=M^{\prime}(r)^{\mathcal{D}_{t}^{\prime}}$ for every $r \in \Sigma_{s}$, we have that ($\left.\mathcal{D}_{s}^{\prime}, \mathcal{D}_{t}^{\prime}\right) \models M^{\prime}$ (both when M^{\prime} is of type sound and of type EXACT) and $q_{s}^{\mathcal{D}_{s}^{\prime}} \neq$ false ${ }^{\mathcal{D}_{s}^{\prime}}$. A contradiction.
" \Leftarrow " Assume that for some mapping assertion $q_{s} \leadsto q_{t} \in M$ we have that $q_{s}\left[M^{\prime}\right] \sqsubseteq$ false and that $M^{\prime} \not \vDash_{\text {triv }} M$. Then there exists a pair $\left(\mathcal{D}_{s}^{\prime}, \mathcal{D}_{t}^{\prime}\right)$ such that $\left(\mathcal{D}_{s}^{\prime}, \mathcal{D}_{t}^{\prime}\right) \models M^{\prime}$ and $q_{s}^{\mathcal{D}_{s}^{\prime}} \neq$ false $^{\mathcal{D}_{s}^{\prime}}$, i.e., $q_{s}^{\mathcal{D}_{s}^{\prime}} \neq \emptyset$. Consider the source database $\mathcal{D}_{s}^{\prime \prime}$ obtained from \mathcal{D}_{t}^{\prime} by letting $r^{\mathcal{D}_{s}^{\prime \prime}}=M^{\prime}(r)^{\mathcal{D}_{t}^{\prime}}$ for every $r \in \Sigma_{s}$. Since $\left(\mathcal{D}_{s}^{\prime}, \mathcal{D}_{t}^{\prime}\right) \models M^{\prime}$, we have that $r^{\mathcal{D}_{s}^{\prime}} \subseteq M^{\prime}(r)^{\mathcal{D}_{t}^{\prime}}$ (actually, $r^{\mathcal{D}_{s}^{\prime}}=M^{\prime}(r)^{\mathcal{D}_{t}^{\prime}}$ when M^{\prime} is EXACT), hence by monotonicity of q_{s}, we have that $q_{s}^{\mathcal{D}_{s}^{\prime}} \subseteq q_{s}^{\mathcal{D}_{s}^{\prime \prime}}=q_{s}\left[M^{\prime}\right]^{\mathcal{D}_{t}^{\prime}}=$ false ${ }^{\mathcal{D}_{t}^{\prime}}=\emptyset$. A contradiction.

As for the case of GAV mappings, the proof is analogous, but makes use of the fact that the active domain contains an extra constant to deal with the special case where the target alphabet consists of a single unary relation.

For many of the results in the next sections, we make use of the above characterization, without further mentioning Propositions 4.1 and 4.2.

5. Simplification and synthesis for (U)CQs

In this section, we consider the case of mappings based on conjunctive queries (CQs) and their unions (UCQs), and study the problem of simplifying a given mapping M in terms of a LAV or a GAV mapping. The techniques we adopt for establishing our upper bounds are based on determining a polynomial bound on the length of the queries to consider when searching for the simplified mapping logically implying M, and are reminiscent of those in [48].

5.1. The case of LAV

In the following, when we refer to a Lav mapping logically implying a given mapping, we implicitly assume that implication is non-trivial. We start with the problem of simplifying a cQ-based mapping in terms of a CQ-based lav mapping.

Theorem 5.1. Both MSIMP[SOUND,LAV,CQ,CQ] and MSIMP[EXACT,LAV,CQ,CQ] are in NP.
Proof. Consider a sound cQ-based mapping consisting of a single assertion $q_{s} \leadsto q_{t}$, where q_{t} contains $\ell_{q_{t}}$ atoms, and a sound cQ-based Lav mapping M_{L} such that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$. Then, there exists a homomorphism from q_{t} to $q_{s}\left[M_{L}\right]$, and at most $\ell_{q_{t}}$ atoms of $q_{s}\left[M_{L}\right]$ are in the image of this homomorphism. Hence, for each symbol $a \in \Sigma_{s}$ occurring in q_{s}, only at most $\ell_{q_{t}}$ atoms in query $M_{L}(a)$ are needed for the homomorphism. In the general case where the mapping M consists of several assertions, for each $a \in \Sigma_{s}$ we need at most $\ell_{M}=\sum_{q_{s} \sim q_{t} \in M} \ell_{q_{t}}$ atoms in the query $M_{L}(a)$, in order to guarantee the existence of the homomorphisms for all the assertions in M. Hence, in order to check for the existence of an appropriate Lav mapping M_{L}, it suffices to guess, for each symbol $a \in \Sigma_{s}$ appearing in one of the mapping assertions in M, a CQ $M_{L}(a)$ over Σ_{t} of size at most ℓ_{M}, and check that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$, for each $q_{s} \leadsto q_{t} \in M$. In doing so, we rule out the guess of mappings that are trivial w.r.t. M. This gives us immediately an NP upper bound for MSimp[sound,LAv,CQ, CQ].

For MSimp[EXACT,LAV,CQ,CQ], in addition to checking that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$, we need also to check that $q_{t} \sqsubseteq q_{s}\left[M_{L}\right]$. We observe that the bound on the number of atoms in $M_{L}(a)$ derived for the sound case is still valid, since if $q_{t} \sqsubseteq q_{s}\left[M_{L}\right]$ for a lav mapping M_{L}, then also $q_{t} \sqsubseteq q_{s}\left[M_{L}^{\prime}\right]$ for every LAv mapping M_{L}^{\prime} such that $M_{L}^{\prime}(a)$ is constituted by a subset of the atoms of $M_{L}(a)$. Therefore, the overall complexity does not change.

For the case where M is ucQ-based, and the lav mapping M_{L} is still cQ-based, we can generalize the above argument by considering containment between UCQs instead of containment between CQs.

Theorem 5.2. Both MSIMP[SOUND,LAV, UCQ, CQ] and MSIMP[EXACT,LAV,UCQ, CQ] are in NP.

Proof. Consider a sound uce-based mapping M consisting of a single assertion $q_{s} \leadsto q_{t}$ and a sound ce-based Lav mapping M_{L} such that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$. We remind that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$ if for each CQ q_{1} in the UCQ $q_{s}\left[M_{L}\right]$ there is a CQ q_{2} in the UCQ q_{t} such that $q_{1} \sqsubseteq q_{2}$. Then, for each CQ q_{1} in $q_{s}\left[M_{L}\right]$ there exists a homomorphism from some CQ q_{2} in q_{t} to q_{1}, and for each $a \in \Sigma_{s}$ at most $\ell_{q_{t}}$ atoms in the query $M_{L}(a)$ are needed for the homomorphism, where $\ell_{q_{t}}$ is the maximum number of atoms among the CQs in q_{t}. In the general case where the mapping M consists of several assertions, for each $a \in \Sigma_{s}$ at most $\ell_{M}=\sum_{q_{s} \sim q_{t} \in M} \ell_{q_{t}}$ atoms in the query $M_{L}(a)$ are needed for the homomorphisms for all the assertions in M. Thus, in order to check for the existence of an appropriate LAV mapping M_{L}, it suffices to guess (again avoiding trivial mappings), for each symbol $a \in \Sigma_{s}$ appearing in M, a CQ $M_{L}(a)$ over Σ_{t} of size at most $\ell_{M}=\sum_{q_{s} \sim q_{t} \in M} \ell_{q_{t}}$, and check for each $q_{s} \leadsto q_{t} \in M$ that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$ (and $q_{t} \sqsubseteq q_{s}\left[M_{L}\right]$ for the exact variant).

The last case we consider is the one where both M and the lav mapping M_{L} are ucQ-based. In the sound case, we show that simplification to a UCQ-based LAV mapping is equivalent to simplification to a CQ-based LAV mapping.

Lemma 5.3. MSimp[sound,LAV,UCQ, UCQ] admits a solution for a mapping M iff MSimp[sound,LAV,UCQ,CQ] admits a solution for M.
Proof. Let M be a sound ucQ-based mapping and M_{L} a sound ucQ-based lav mapping such that $M_{L} \vDash M$. Consider the cQ-based LAV mapping M_{L}^{\prime} obtained from M_{L} by choosing, for each symbol a in Σ_{s}, as $M_{L}^{\prime}(a)$ one of the CQs in $M_{L}(a)$. We show that $M_{L}^{\prime} \not \vDash_{\text {triv }} M$, and that $M_{L}^{\prime} \models M$. Consider one assertion $q_{s} \leadsto q_{t} \in M$ such that $q_{s}\left[M_{L}\right]$ is a non-empty positive query. Such a mapping assertion exists, since $M_{L} \not \vDash_{\text {triv }} M$. Then, $q_{s}\left[M_{L}^{\prime}\right]$ is a non-empty UCQ, and hence $M_{L}^{\prime} \not \vDash_{\text {triv }} M$. To show that $M_{L}^{\prime} \models M$, it is sufficient to observe that, for each assertion $q_{s} \leadsto q_{t} \in M$, each CQ in $q_{s}\left[M_{L}^{\prime}\right]$ is contained in $q_{s}\left[M_{L}\right]$, and hence in q_{t}.

By the above lemma, we trivially get:

Theorem 5.4. MSimp[sound, LAV, UCQ, UCQ] is in $N P$.

For the exact case, the analog of Lemma 5.3 does not hold. In this case we are able to show a higher upper bound.
Theorem 5.5. MSIMP[EXACT,LAV,UCQ,UCQ] is in Π_{2}^{p}.
Proof. Consider an exact ucQ-based mapping M consisting of a single assertion $q_{s} \leadsto q_{t}$ and an exact ucQ-based lav mapping M_{L} such that $M_{L} \models M$. Let $m_{q_{t}}$ be the number of CQs in q_{t}, and $\ell_{q_{t}}$ the number of atoms in the longest CQ in q_{t}. Let $q_{s, M_{L}}^{\prime}$ be the UCQ obtained from $q_{s}\left[M_{L}\right]$ by distributing, for each atom α of q_{s}, the unions in the UCQ $\alpha\left[M_{L}\right]$ over the conjunctions of each CQ of q_{s}. Since $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$, for each CQ in $q_{s, M_{L}}^{\prime}$, there is a homomorphism from some CQ in q_{t} to it. Hence, for each symbol $a \in \Sigma_{s}$ occurring in q_{s}, for each CQ in the UCQ $M_{L}(a)$, we need at most $\ell_{q_{t}}$ atoms for the homomorphisms from all CQs in q_{t}. To derive a bound for the number of such CQs, we observe that the inclusion $q_{t} \sqsubseteq q_{s}\left[M_{L}\right]$ must also hold. To satisfy this inclusion, it suffices to have in $M_{L}(a)$ one CQ for each occurrence of a in q_{t}, i.e., at most $m_{q_{t}} \cdot \ell_{q_{t}}$ CQs. It follows that, to check for the existence of the Lav mapping M_{L} and the corresponding homomorphism, it suffices to guess for each $a \in \Sigma_{s}$ a UCQ over Σ_{t} consisting of at most $m_{q_{t}} \cdot \ell_{q_{t}}$ CQs, each with at most $\ell_{q_{t}}$ atoms. In the general case where the mapping M consists of several assertions $q_{s} \leadsto q_{t}$, we can proceed analogously to the case above, using instead of $m_{q_{t}}$ and $\ell_{q_{t}}$, the sum of these parameters over all mapping assertions in M. To check whether $q_{t} \sqsubseteq q_{s}\left[M_{L}\right]$, for each of the CQs in q_{t}, it suffices to guess (i) a CQ q^{\prime} in q_{s}, (ii) a CQ in $M_{L}(a)$ for each occurrence of a in q^{\prime}, and (iii) a mapping h from the query $q^{\prime \prime}$ obtained by unfolding q^{\prime} with the selected CQs for each occurrence of a, and check whether h is a homomorphism. This can be done in NP. To check whether $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$, we have to check whether for each CQ q^{\prime} obtained by selecting one of the CQs $q^{\prime \prime}$ in q_{s} and then substituting each atom α in $q^{\prime \prime}$ with one of the CQs in $\alpha\left[M_{L}\right]$, there is a homomorphism from some CQ in q_{t} to q^{\prime}. We can do so by a coNP computation that makes use of an NP oracle to check for the existence of a homomorphism. This gives us the Π_{2}^{p} upper bound.

We now show that the upper bounds for the sound cases established in Theorems 5.1, 5.2, and 5.4 are tight.
Theorem 5.6. MSIMP[sound,LAV,CQ,CQ] is $N P$-hard.
Proof. The proof is by a reduction from 3-colorability. Given a graph $G=(N, E)$, with $N=\left\{n_{1}, \ldots, n_{k}\right\}$, we define the corresponding instance of MSIMP[SOUND,LAV,CQ,CQ] as follows.

As for the source alphabet, we consider $\Sigma_{s}=\left\{a_{e} / 2, a_{s} / 2, a_{f} / 2\right\}$, where intuitively a_{e} is a relation denoting graph edges, a_{s} is a relation between (starting) elements and graph nodes, and a_{t} is a relation between graph nodes and (final) elements. Similarly, for the target alphabet, we consider $\Sigma_{t}=\left\{b_{e} / 2, b_{s} / 2, b_{f} / 2\right\}$. On Σ_{s} and Σ_{t} we define mapping M as follows:

$$
\begin{align*}
& q_{T} \leadsto q_{G} \tag{1}\\
& \left\{(x, y) \mid a_{e}(x, y)\right\} \sim\left\{(x, y) \mid b_{e}(x, y)\right\} \tag{2}\\
& \left\{(x, y) \mid a_{s}(x, y)\right\} \sim\left\{(x, y) \mid b_{s}(x, y)\right\} \tag{3}\\
& \left\{(x, y) \mid a_{f}(x, y)\right\} \sim\left\{(x, y) \mid b_{f}(x, y)\right\} \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
q_{T}=\{(s, f) \mid & a_{s}(s, r) \wedge a_{s}(s, g) \wedge a_{s}(s, b) \wedge \\
& a_{e}(r, g) \wedge a_{e}(g, r) \wedge a_{e}(r, b) \wedge a_{e}(b, r) \wedge a_{e}(g, b) \wedge a_{e}(b, g) \wedge \\
& \left.a_{f}(r, f) \wedge a_{f}(g, f) \wedge a_{f}(b, f)\right\} \\
q_{G}=\{(s, f) \mid & b_{s}\left(s, x_{1}\right) \wedge \cdots \wedge b_{s}\left(s, x_{k}\right) \wedge \\
& \bigwedge_{\left(n_{i}, n_{j}\right) \in E}\left(b_{e}\left(x_{i}, x_{j}\right) \wedge b_{e}\left(x_{j}, x_{i}\right)\right) \wedge \\
& \left.b_{f}\left(x_{1}, f\right) \wedge \cdots \wedge b_{f}\left(x_{k}, f\right)\right\}
\end{aligned}
$$

Intuitively, assertion (1) maps a triangle, whose three vertexes are connected by a_{s} and a_{f} to the distinguished variables s and f respectively, to the graph G, whose nodes are connected by b_{s} and b_{f} to the distinguished variables s and f respectively.

We show that G is 3-colorable iff MSimp[sound,Lav , CQ, CQ] with input M admits a solution. For the "only-if" part, consider the Lav mapping M_{L} consisting of the mapping assertions (2), (3), and (4). If G is 3 -colorable, a coloring of the nodes of G with the three colors r, g, b gives us immediately a homomorphism from $q_{G}\left[M_{L}\right]$ to q_{T} in which each variable x_{i} of $q_{G}\left[M_{L}\right]$ is mapped to the variable of q_{T} corresponding to the color assigned to node n_{i}. Hence we have that $q_{T} \sqsubseteq q_{G}\left[M_{L}\right]$. For the "if-part", consider a LAV mapping M_{L} such that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$ for each mapping assertion $q_{s} \leadsto q_{t}$ in M. By the mapping assertions (2), (3), and (4), we have that the queries $M_{L}\left(a_{e}\right), M_{L}\left(a_{s}\right)$, and $M_{L}\left(a_{f}\right)$, which we assume to have (x, y) as distinguished variables, must include respectively the atoms $b_{e}(x, y), b_{s}(x, y)$, and $b_{f}(x, y)$, plus possibly additional atoms containing existentially quantified variables. Note that these existential variables appear in the unfolding $q_{T}\left[M_{L}\right]$. Now, consider a homomorphism h from $q_{G}(s, f)$ to $q_{T}\left[M_{L}\right](s, f)$. Since s and f are distinguished variables, we have that $h(s)=s$ and $h(f)=f$. Suppose that for some variable $x_{i} \in\left\{x_{1}, \ldots, x_{k}\right\}$ of q_{G}, we have that $h\left(x_{i}\right)$ is an existential variable y in an additional atom in $q_{T}\left[M_{L}\right]$. Then, since q_{G} contains the atoms $b_{s}\left(s, x_{i}\right)$ and $b_{f}\left(x_{i}, f\right)$, we must have that $q_{T}\left[M_{L}\right]$ contains the atoms $b_{s}(s, y)$ and $b_{f}(y, f)$. This is impossible, since y is an existential variable introduced by the unfolding of q_{T} with M_{L}, and hence can appear in the unfolding of just one atom of q_{T}. But there is no atom of q_{T} that contains both s and f, and that could generate both $b_{s}(s, y)$ and $b_{f}(y, f)$. So, the only possibility for a homomorphism from $q_{G}\left[M_{L}\right]$ to q_{T} is to map each x_{i} of $q_{G}\left[M_{L}\right]$ to one of the variables r, g, or b. The existence of such a homomorphism implies that G is 3 -colorable.

Corollary 5.7. MSIMP[SOUND,LAV,UCQ,CQ] and MSIMP[SOUND,LAV,UCQ,UCQ] are NP-hard.
Proof. From Theorem 5.6 we trivially get the result for MSIMP[SOUND,LAV,UCQ,CQ], and by considering Lemma 5.3, we get the result also for MSimp[sound,LAV,ucQ,uce].

It is easy to see that the proof of Theorem 5.6 shows also NP-hardness of simplification for exact mappings.
Theorem 5.8. MSimp[EXACT,LAV,CQ, CQ] and hence MSIMP[EXACT,LAV,UCQ, CQ] are NP-hard.
We conjecture that the Π_{2}^{p} upper bound for MSIMP[EXACT,LAV,UCQ, UCQ] is also tight.
Next, we turn to maximal solutions to Lav simplification. We observe that all our upper bound results are based on deriving a bound on the number of atoms that may constitute the queries in a possible solution to the simplification problem, and on the possibility to guess (or enumerate) all solutions within the derived bound. Hence, it becomes possible to check also further properties of the guessed (or enumerated) solutions. Specifically, we can obtain a ce-based Lavmapping that is a maximal solution to simplification of UcQ-based mappings by guessing a candidate mapping and checking that it is a solution; then, to check that it is maximal, we generate all other mappings and check that, if they are solutions, they are contained in our candidate solution. This immediately results in a technique to solve maximal mapping synthesis in Σ_{3}^{p}.

Theorem 5.9. A solution to MAXMSYnt[LAV,Sound, CQ, CQ] and to MAXMSYnT[LAv,Sound,uce, Ce] can be computed in Σ_{3}^{p}.
Unfortunately, we are not able to use the same argument for deriving a solution to MAXMSynt[LAV,Sound, Uce, uce] in Σ_{3}^{p}, since we have no guarantee that a maximal ucQ-based solution is of polynomial size.

5.2. The case of GAV

Next, we consider the case of simplifying (U)CQ-based mappings in terms of GAv mappings. Note that for exact mappings, GAV simplification is the same problem as LAV simplification, so we focus here on sound mappings. We start by considering sound cQ-based mappings and show the following upper bound.

Theorem 5.10. MSimp[sound, GAv, ce,ce] is in NP.

Proof. Consider a sound cQ-based mapping M consisting of a single assertion $q_{s} \leadsto q_{t}$ and assume there exists some sound CQ-based GAV mapping M_{G} such that $q_{s} \sqsubseteq q_{t}\left[M_{G}\right]$, witnessed by a homomorphism h, and $q_{t}\left[M_{G}\right] \neq \operatorname{true}{ }^{\mathcal{D}_{t}}$. We show that there is a sound cQ-based GAV mapping M_{G}^{\prime} of bounded size such that $q_{s} \sqsubseteq q_{t}\left[M_{G}^{\prime}\right]$. Indeed, since $q_{t}\left[M_{G}\right] \neq$ true ${ }^{\mathcal{D}_{t}}$, there must be one distinguished variable x and one symbol $b \in \Sigma_{t}$, such that x occurs in an atomic formula with the symbol b in $M_{G}(b)$. We now obtain $M_{G}^{\prime}(b)$ from $M_{G}(b)$ by selecting in $M_{G}(b)$ such an atom. For all other symbols $b^{\prime} \in \Sigma_{t}$, we take $M_{G}^{\prime}\left(b^{\prime}\right)$ to be true. By constructing M_{G}^{\prime} in this way, we have that the atoms in $q_{t}\left[M_{G}^{\prime}\right]$ are a subset of the atoms in $q_{t}\left[M_{G}\right]$, and hence the projection of h on such atoms is still a homomorphism to q_{s}.

In the general case where the mapping M consists of k assertions, we can apply the above argument for each of the assertions in M. This shows that, if there exists some sound gav mapping M_{G} such that $M_{G} \models M$, then there is also a gav mapping M_{G}^{\prime} such that $M_{G}^{\prime}(b)$ has at most k atoms and $M_{G}^{\prime} \models M$. Hence, in order to check the existence of an appropriate GAV mapping M_{G}, it suffices to guess (avoiding trivial mappings), for each symbol $b \in \Sigma_{t}$ appearing in M, a CQ $M_{G}(b)$ over Σ_{s} of size at most k, and check that $q_{s} \sqsubseteq q_{t}\left[M_{G}\right]$, for each $q_{s} \leadsto q_{t} \in M$.

This result extends immediately to UCQ-based mappings, by checking containment between UCQs, instead of CQs.

Theorem 5.11. MSimp[sound, GAV, UCQ, CQ] is in $N P$.
For UCQ-based mappings, we get the same upper bound, with a somewhat subtler argument.

Theorem 5.12. MSIMP[SOUND,GAV,UCQ,UCQ] is in $N P$.

Proof. We consider first the case of a sound ucQ-based mapping M consisting of a single assertion $q_{s} \leadsto q_{t}$. Assume there exists some sound uCQ-based GAV mapping M_{G} such that $q_{s} \sqsubseteq q_{t}\left[M_{G}\right]$ and $q_{t}\left[M_{G}\right] \neq$ true ${ }^{\mathcal{D}_{t}}$. First note that $q_{s} \sqsubseteq q_{t}\left[M_{G}\right]$, if for each CQ q_{s}^{i} of q_{s} we have that $q_{s}^{i} \sqsubseteq q_{t}\left[M_{G}\right]$. This means that there are a CQ q_{t}^{i} of q_{t} and a CQ q_{b}^{i} for each symbol $b \in \Sigma_{t}$ such that there is a homomorphism from $q_{t}^{i}\left[M_{G}^{\prime}\right]$ to q_{s}^{i}, where $M_{G}^{\prime}(b)=q_{b}^{i}$. Thus, if q_{s} is a union of ℓ CQs, then we can assume that each $M_{G}[b]$ for $b \in \Sigma_{t}$ has at most ℓ CQs. What is left is to bound the size of these CQs.

Let m be the number of CQs in q_{t}. Since $q_{t}\left[M_{G}\right] \neq$ true ${ }^{\mathcal{D}_{t}}$, for each CQ q_{t}^{\prime} of q_{t}, there must be one distinguished variable x and one symbol $b \in \Sigma_{t}$ such that x occurs in some atomic formula with the symbol b in each CQ q_{b}^{\prime} of $M_{G}[b]$. Define M_{G}^{\prime} to keep all such atomic formulas, and only such atomic formulas. $M_{G}^{\prime}[b]$ contains at most $\ell \cdot m$ atomic formulas. If we have k mapping assertions, then $M_{G}^{\prime}[b]$ needs to contain only klm atomic formulas. To check the existence of a simplifying GAv mapping it suffices to guess a mapping M_{G}^{\prime} under such a size bound and check that $q_{s} \sqsubseteq q_{t}\left[M_{G}^{\prime}\right]$.

We conjecture that the above upper bounds are tight.
We observe that the arguments we have used above to derive bounds on the size of solutions to GAV simplification, cannot be used to derive bounds for maximal gav solutions, i.e., solutions in which the source queries in the mapping assertions are as small as possible. Indeed, the problem of synthesizing maximal (U)cQ-based GAV mappings is still open.

Our results on simplification for (U)CQs are summarized in Table 1.

6. LAV simplification and synthesis for RPQs

In this section, we consider the case of RPQs over graph databases, and study the problem of simplifying an RPQ-based mapping in terms of an RPQ-based LAV mapping. For our results, we exploit a straightforward language theoretic characterization of containment between RPQs. We observe that GAV simplification is wide open for RPQ-based mappings.

Theorem 6.1. (See [42].) Let q_{1}, q_{2} be two $R P Q s$, and $\mathcal{L}\left(q_{1}\right), \mathcal{L}\left(q_{2}\right)$ the corresponding regular languages. Then $q_{1} \sqsubseteq q_{2}$ iff $\mathcal{L}\left(q_{1}\right) \subseteq$ $\mathcal{L}\left(q_{2}\right)$.

In the following, we identify an RPQ q over an alphabet Σ with the language over Σ accepted by the regular expression or 1NFA representing q. Considering the language-theoretic characterization above, it follows from Propositions 4.1 and 4.2 that, if M_{L} is a lav mapping and M a mapping, both of type sound (resp., EXACT), then $M_{L} \models M$ and $M_{L} \not \vDash_{\text {triv }} M$ iff for each assertion $q_{s} \leadsto q_{t}$ in M, we have that $q_{s}\left[M_{L}\right] \subseteq q_{t}$ (resp., $q_{s}\left[M_{L}\right]=q_{t}$) and $q_{s}\left[M_{L}\right] \neq \emptyset$. Here, the unfolding $q_{s}\left[M_{L}\right]$ of q_{s} w.r.t. M_{L} denotes the language over Σ_{t} obtained from q_{s} by expanding in each word in q_{s} each symbol $a \in \Sigma_{s}$ with the language $M_{L}(a)$. Obviously, such a language can be represented by a regular expression or a 1 NFA of size linear in the product of the sizes of (the representations of) q_{s} and M_{L}.

We start by showing that we can characterize mapping implication $M_{L} \models M$ between a lav mapping M_{L} and a mapping M in terms of a single language containment (for sound mappings) or language equality (for exact mappings). For this, we extend the notion of unfolding of q_{s} w.r.t. M_{L} to the case where q_{s} may contain additional symbols w.r.t. those in Σ_{s}. In particular, the additional symbols are left unchanged by the unfolding.

Proposition 6.2. Let M be an RPQ-based mapping of type sound (resp., eXACT) from Σ_{s} to Σ_{t}, and let \# be a symbol not in $\Sigma_{s} \cup \Sigma_{t}$. Then there are RPQs $q_{M, s}$ over $\Sigma_{s} \cup\{\#\}$ and $q_{M, t}$ over $\Sigma_{t} \cup\{\#\}$, both of size linear in M, such that an RPQ-based LAV mapping M_{L} of type sound (resp., EXACT) is a solution to MSynt[sound,LAV ,RPQ,RPQ] (resp., MSynt[EXACT,LAV,RPQ,RPQ]) with input Miff $q_{M, s}\left[M_{L}\right] \subseteq$ $q_{M, t}\left(\right.$ resp., $\left.q_{M, s}\left[M_{L}\right]=q_{M, t}\right)$ and $q_{M, s}\left[M_{L}\right] \neq \emptyset$.

Proof. Let $M=\left\{q_{1, s} \leadsto q_{1, t}, \ldots, q_{k, s} \leadsto q_{k, t}\right\}$. We set $q_{M, s}=q_{1, s} \cdot \# \cdots \# \cdot q_{k, s}$ and $q_{M, t}=q_{1, t} \cdot \# \cdots \# \cdot q_{k, t}$. Intuitively, the fresh symbol \# acts as a separator for the different parts of $q_{M, s}$ and $q_{M, t}$. It is easy to verify that, for every lav mapping M_{L}, we have that $q_{i, s}\left[M_{L}\right] \subseteq q_{i, t}$ (resp., $q_{i, s}\left[M_{L}\right]=q_{i, t}$) for $i \in\{1, \ldots, k\}$ iff $q_{M, s}\left[M_{L}\right] \subseteq q_{M, t}$ (resp., $q_{M, s}\left[M_{L}\right]=q_{M, t}$), and that $q_{i, s}\left[M_{L}\right] \neq \emptyset$ for $i \in\{1, \ldots, k\}$ iff $q_{M, s}\left[M_{L}\right] \neq \emptyset$.

In the following, let Σ_{n} be a non-empty alphabet of new symbols disjoint from Σ_{s} and Σ_{t}, and let $\Sigma_{s}^{\prime}=\Sigma_{s} \cup \Sigma_{n}$ and $\Sigma_{t}^{\prime}=\Sigma_{t} \cup \Sigma_{n}$. By Proposition 6.2, the problem MSimp[SOUND,LAV,RPQ,RPQ] (or MSimp[EXACT,LAV,RPQ,RPQ]) can be polynomially reduced to the problem of checking, whether for languages q_{s} over Σ_{s}^{\prime} and q_{t} over Σ_{t}^{\prime} there is a lav mapping M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$ (resp., $q_{s}\left[M_{L}\right]=q_{t}$) and $q_{s}\left[M_{L}\right] \neq \emptyset$.

Our technique for mapping simplification exploits a characterization of regular languages by means of congruence classes $[49,50,40]$. Recall that two words $u, v \in \Sigma^{*}$ are congruent with respect to a language $L \subseteq \Sigma^{*}$ if, for all words $x, y \in \Sigma^{*}$ we have that $x u y \in L$ iff $x v y \in L$. Let $A_{t}=\left(\Sigma_{t}^{\prime}, S_{t}, s_{t}^{0}, \delta_{t}, F_{t}\right)$ be a 1NFA for q_{t}. Then A_{t} defines a set of congruence classes partitioning $\Sigma_{t}^{\prime *}$. Each congruence class is characterized by a binary relation $G \subseteq S_{t} \times S_{t}$ (i.e., a directed graph over S_{t}), and we define the congruence class associated with G as

$$
\mathcal{L}(G)=\left\{w \in \Sigma_{t}^{*} \mid \text { for all } s_{1}, s_{2} \in S_{t}: s_{2} \in \delta_{t}\left(s_{1}, w\right) \text { iff }\left(s_{1}, s_{2}\right) \in G\right\}
$$

Intuitively, each word $w \in \mathcal{L}(G)$ connects s_{1} to s_{2} in A_{t}, for each pair $\left(s_{1}, s_{2}\right) \in G$. For a word $w \in \Sigma_{t}^{\prime *}$, we denote by $[w]_{A_{t}}$ the congruence class to which w belongs.

It follows immediately from the characterization of congruence classes in terms of binary relations over the states of A_{t} that the set of congruence classes is closed under concatenation. Specifically, for two congruence classes $\mathcal{L}\left(G_{1}\right)$ and $\mathcal{L}\left(G_{2}\right)$, respectively with associated relations G_{1} and G_{2}, the binary relation associated with $\mathcal{L}\left(G_{1}\right) \cdot \mathcal{L}\left(G_{2}\right)$ is $G_{1} \circ G_{2}$. ${ }^{3}$

We introduce some notation that we use here, and later in this section:

- $\mathcal{G}_{t}=2^{S_{t} \times S_{t}}$ denotes the set of binary relations associated with the congruence classes for A_{t},
- $G_{t}^{\varepsilon}=\left\{(s, s) \mid s \in S_{t}\right\}$, and
- $G_{t}^{b}=\left\{\left(s_{1}, s_{2}\right) \mid s_{2} \in \delta_{t}\left(s_{1}, b\right)\right\}$, for each $b \in \Sigma_{t}^{\prime}$.

Then, for each $G \in \mathcal{G}_{t}$, we can characterize the congruence class $\mathcal{L}(G)$ associated with G in terms of a DFA.
Lemma 6.3. (See [49].) The language $\mathcal{L}(G)$ is accepted by the DFA $A_{G}=\left(\Sigma_{t}^{\prime}, \mathcal{G}_{t}, G_{t}^{\varepsilon}, \delta_{A_{t}}, F_{G}\right)$, where $F_{G}=\{G\}$ and $\delta_{A_{t}}(R, b)=R \circ G_{t}^{b}$, for each $R \subseteq S_{t} \times S_{t}$ and $b \in \Sigma_{t}^{\prime}$.

Notice that, if A_{t} has m states, then A_{G} has $2^{m^{2}}$ states.
We observe next that we need to allow for the presence of empty queries in the lav mapping we are looking for. Consider, e.g., $q_{s}=\left(a_{1}+a_{3}\right) \cdot\left(a_{2}+a_{3}\right)$ and $q_{t}=b_{1} \cdot b_{2}$. It is easy to see that for all LAV mappings M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$, we have that $M_{L}\left(a_{3}\right)=\emptyset$. Thus, for any lav mapping obtained from simplification we have that no nodes are connected through an edge with label a_{3}. One such Lav mapping M_{L} is

$$
M_{L}\left(a_{1}\right)=b_{1}, \quad M_{L}\left(a_{2}\right)=b_{2}, \quad M_{L}\left(a_{3}\right)=\emptyset .
$$

Observe also that $\left[b_{1}\right]_{A_{t}}=\left\{b_{1}\right\}$ and $\left[b_{2}\right]_{A_{t}}=\left\{b_{2}\right\}$, where A_{t} is the obvious 1 NFA for $b_{1} \cdot b_{2}$.

[^2]
6.1. Upper bounds for sound mapping simplification

We first deal with the case of sound mappings, and prove two preliminary results. The first lemma states that w.l.o.g. we can restrict the attention to lav mappings in which the queries are singletons, i.e., queries that are either empty or constituted by a single word.

Lemma 6.4. Let q_{s} be an RPQ over Σ_{s}^{\prime}, and q_{t} an $R P Q$ over Σ_{t}^{\prime}. If there exists an RPQ-based LAV mapping M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$, then there exists an RPQ-based Lav mapping M_{L}^{\prime} such that $q_{s}\left[M_{L}^{\prime}\right] \subseteq q_{t}$ in which each query is either a single word over Σ_{t} or empty.

Proof. If $q_{t}=\varepsilon$, we can simply set $M_{L}^{\prime}(a)=\varepsilon$, for each $a \in \Sigma_{s}$. Otherwise, since $q_{s}\left[M_{L}\right] \neq \emptyset$ and $q_{s}\left[M_{L}\right] \subseteq q_{t}$, there exist a nonempty word $a_{1} \cdots a_{k} \in q_{s}$ and a word $w_{1} \cdots w_{k} \in q_{s}\left[M_{L}\right]$ and hence in q_{t}, where $w_{j} \in M_{L}\left(a_{j}\right)$. To define the new Lav mapping M_{L}^{\prime}, we consider each $a \in \Sigma_{s}$ appearing in $a_{1} \cdots a_{k}$. Notice that a might appear in $a_{1} \cdots a_{k}$ multiple times, and suppose the occurrences of a are $a_{i_{1}}, \ldots, a_{i_{\ell}}$, corresponding to $w_{i_{1}}, \ldots, w_{i_{\ell}}$. We chose arbitrarily one $w_{i_{j}}$ and set $M_{L}^{\prime}(a)=w_{i_{j}}$. Instead, for each $a \in \Sigma_{s}$ not appearing in $a_{1} \cdots a_{k}$, we set $M_{L}^{\prime}(a)=\emptyset$. Now, $q_{s}\left[M_{L}^{\prime}\right] \neq \emptyset$ by construction, and since $M_{L}^{\prime}(a) \subseteq M_{L}(a)$ for every $a \in \Sigma_{s}$, we have that $q_{s}\left[M_{L}^{\prime}\right] \subseteq q_{s}\left[M_{L}\right] \subseteq q_{t}$.

The next lemma shows that one can close queries in lav mappings under congruence.
Lemma 6.5. Let q_{s} be an $R P Q$ over $\Sigma_{s}^{\prime}, q_{t}$ an $R P Q$ over Σ_{t}^{\prime} expressed through a $1 N F A A_{t}$, and M_{L} a singleton mapping such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$. Then, for M_{L}^{\prime} defined such that

$$
M_{L}^{\prime}(a)= \begin{cases}{\left[w^{a}\right]_{A_{t}},} & \text { if } M_{L}(a)=w^{a}, \\ \emptyset, & \text { if } M_{L}(a)=\emptyset,\end{cases}
$$

we have that $q_{s}\left[M_{L}^{\prime}\right] \subseteq q_{t}$.
Proof. Let $A_{t}=\left(\Sigma_{t}, S_{t}, s_{t}^{0}, \delta_{t}, F_{t}\right)$. Consider a word $a_{1} \cdots a_{h} \in q_{s}$. If there is one of the a_{i} such that $M_{L}\left(a_{i}\right)=\emptyset$, then $M_{L}\left(a_{1}\right) \cdots M_{L}\left(a_{h}\right)=\emptyset \subseteq q_{t}$. Otherwise, we have that $M_{L}\left(a_{i}\right)=\left\{w^{a_{i}}\right\}$, for $i \in\{1, \ldots, h\}$, and since $w^{a_{1}} \cdots w^{a_{h}} \in q_{s}\left[M_{L}\right] \subseteq q_{t}$, there is a sequence $s_{0}, s_{1}, \ldots, s_{h}$ of states of A_{t} such that $s_{0}=s_{t}^{0}, s_{h} \in F_{t}$, and $s_{i} \in \delta_{t}\left(s_{i-1}, w^{a_{i}}\right)$, for $i \in\{1, \ldots, h\}$. Consider now, for each $i \in\{1, \ldots, h\}$, a word $w_{i}^{\prime} \in M_{L}^{\prime}\left(a_{i}\right)=\left[w^{a_{i}}\right]_{A_{t}}$. Making use of the characterization of [$\left.w^{a_{i}}\right]_{A_{t}}$ in terms of a binary relation over S_{t}, we have for each word in $\left[w^{a_{i}}\right]_{A_{t}}$, and in particular for w_{i}^{\prime}, that $s_{i} \in \delta_{t}\left(s_{i-1}, w_{i}^{\prime}\right)$. Hence, $s_{h} \in \delta_{t}\left(s_{t}^{0}, w_{1}^{\prime} \cdots w_{h}^{\prime}\right)$ and $w_{1}^{\prime} \cdots w_{h}^{\prime} \in q_{t}$.

From these two lemmas we get that, when searching for a Lav mapping M_{L} satisfying $q_{s}\left[M_{L}\right] \subseteq q_{t}$, we can restrict the attention to queries that are congruence classes for A_{t}.

Lemma 6.6. Let q_{s} be an RPQ over Σ_{s}^{\prime}, and q_{t} an RPQ over Σ_{t}^{\prime} expressed through a 1NFA A_{t}. If there exists an RPQ-based LAV mapping M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$, then there exists an RPQ-based Lav mapping M_{L}^{\prime} such that $q_{s}\left[M_{L}^{\prime}\right] \subseteq q_{t}$, and such that $M_{L}^{\prime}(a)$ is a congruence class for A_{t}, for each $a \in \Sigma_{s}$.

Proof. If there exists an RPQ-based LaV mapping M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$, then by Lemma 6.4 , w.l.o.g., we can assume that M_{L} consists of singleton queries. Then, the claim follows from Lemma 6.5.

We derive now a procedure that, given an $\operatorname{RPQ} q_{s}$ over Σ_{s}^{\prime}, and an $\mathrm{RPQ} q_{t}$ over Σ_{t}^{\prime} expressed respectively through 1NFAs $A_{s}=\left(\Sigma_{s}^{\prime}, S_{s}, s_{s}^{0}, \delta_{s}, F_{s}\right)$ and $A_{t}=\left(\Sigma_{t}^{\prime}, S_{t}, s_{t}^{0}, \delta_{t}, F_{t}\right)$, checks for the existence of a sound RPQ-based LAV mapping M_{L} such that
(1) $q_{s}\left[M_{L}\right] \neq \emptyset$, and
(2) $q_{s}\left[M_{L}\right] \subseteq q_{t}$.

Specifically, by Lemma 6.6, it is sufficient to consider lav mappings in which each query is constituted by a single congruence class, which can be represented by a binary relation over the state set S_{t} of A_{t}. Hence, for each $a \in \Sigma_{s}$, we guess such a binary relation G_{a} and verify that for the lav mapping M_{L} defined by $M_{L}(a)=\mathcal{L}\left(G_{a}\right)$, conditions (1) and (2) are satisfied. In doing so, we exploit Lemma 6.3, which provides a characterization of $\mathcal{L}\left(G_{a}\right)$ in terms of a DFA $A_{G_{a}}$.

To check condition (1), we proceed as follows:
1.1 for each $a \in \Sigma_{s}$, we check whether a is a bad symbol, i.e., whether $\mathcal{L}\left(G_{a}\right)=\emptyset$;
1.2 we delete from A_{s} each transition labeled by a bad symbol; and
1.3 we check whether the resulting 1 NFA accepts a non-empty language.

To check condition (2), we proceed as follows:
2.1 we construct a 1 NFA $A_{M_{L}}$ accepting $q_{s}\left[M_{L}\right]$;
2.2 we construct the 1 NFA $A_{\neq}=A_{M_{L}} \times \bar{A}_{t}$ as the product NFA of $A_{M_{L}}$ and the 1 NFA \bar{A}_{t} accepting $\Sigma_{t}^{\prime *} \backslash q_{t}$;
2.3 we check A_{\nsubseteq} for emptiness.

To construct $A_{M_{L}}$, we observe that a word w is in $q_{s}\left[M_{L}\right]$ if there are a word $a_{1} \cdots a_{n} \in q_{s}$, and for $i \in\{1, \ldots, n\}$, words $w_{i} \in \mathcal{L}\left(G_{a_{i}}\right)$ such that $w=w_{1} \cdots w_{n}$. Hence, $A_{M_{L}}$ simulates A_{s} while accepting words in Σ_{t}^{\prime} that are concatenations of words in the various languages $\mathcal{L}\left(G_{a_{i}}\right)$. Specifically, $A_{M_{L}}=\left(\Sigma_{t}^{\prime}, S_{M_{L}}, s_{M_{L}}^{0}, \delta_{M_{L}}, F_{M_{L}}\right)$, where

- $S_{M_{L}}=\Sigma_{s}^{\prime} \times S_{s} \times \mathcal{G}_{t}$;
- $s_{M_{L}}^{0}=\Sigma_{s}^{\prime} \times\left\{s_{s}^{0}\right\} \times G_{t}^{\varepsilon}$;
- $F_{M_{L}}=\left\{\left(a, s, G_{a}\right) \mid s \in F_{s}, a \in \Sigma_{s}\right\} \cup\left\{\left(b, s, G_{t}^{b}\right) \mid s \in F_{s}, b \in \Sigma_{n}\right\}$;
- and for each $a \in \Sigma_{s}^{\prime}, s \in S_{s}, R \in \mathcal{G}_{t}$, and $b \in \Sigma_{t}^{\prime}$,

$$
\delta_{M_{L}}((a, s, R), b)= \begin{cases}\left\{\left(a, s, R \circ G_{t}^{b}\right)\right\}, & \text { if } a \in \Sigma_{s}, R \neq G_{a} ; \\ \left\{\left(a, s, R \circ G_{t}^{b}\right)\right\} \cup \bigcup_{a^{\prime} \in \Sigma_{s}^{\prime}, s^{\prime} \in \delta_{s}(s, a)}\left\{\left(a^{\prime}, s^{\prime}, G_{t}^{b}\right)\right\}, & \text { if } a \in \Sigma_{s}, R=G_{a} ; \\ \bigcup_{a^{\prime} \in \Sigma_{s}^{\prime}, s^{\prime} \in \delta_{s}(s, a)}\left\{\left(a^{\prime}, s^{\prime}, G_{t}^{\varepsilon}\right)\right\}, & \text { if } a \in \Sigma_{n}, a=b ; \\ \emptyset, & \text { otherwise }\end{cases}
$$

Theorem 6.7. MSIMP[sound,LAV,RPQ,RPQ] is in PSPACE.

Proof. By Lemma 6.6, to check whether MSimp[SOUND,LAV,RPQ,RPQ] admits a solution, it suffices to guess for each symbol $a \in \Sigma_{s}$ a binary relation G_{a} over the state set S_{t} of A_{t}, and check whether for the resulting RPQ-based lav mapping M_{L} conditions (1) and (2) hold. When checking condition (1), the emptiness test in item (1.1) can be done for each $a \in \Sigma_{s}$ in NLogSpace in $\left|A_{G_{a}}\right|$, and since the number of states of $A_{G_{a}}$ is exponential in $\left|A_{t}\right|$, in PSpace in $\left|A_{t}\right|$. Knowing the set of bad symbols, the transformation in item (1.2) is linear in $\left|A_{s}\right|$. Finally, the non-emptiness test in item (1.3) can be done in NLogSpace in $\left|A_{s}\right|$. When checking condition (2), we do not need to construct $A_{M_{L}}, \bar{A}_{t}$, and A_{\nsubseteq} explicitly, but can check the nonemptiness of A_{\nsubseteq} on the fly while constructing $A_{M_{L}}$ and complementing A_{t}. Hence, since the number of states of $A_{M_{L}}$ is linear in $\left|A_{s}\right|$ and exponential in $\left|A_{t}\right|$, we get that condition (2) can be checked in PSpace in $\left|A_{t}\right|$ and in NLogSpace in $\left|A_{s}\right|$.

6.2. Upper bounds for exact mapping simplification and for maximal mapping synthesis

The method based on congruence classes can be adapted to address also lav simplification for exact mappings. The difference w.r.t. sound mappings is that in this case we need to consider also lav mappings in which the queries are unions of congruence classes. Indeed, congruence classes (and hence solutions to the Lav mapping synthesis problem) are not closed under union, as shown by the following example.

Let $q_{s}=a_{1} \cdot a_{2}$ and $q_{t}=00+01+10$. Then the following two incomparable mappings are solutions to MaxMSYnt[sound,LAV,RPQ,RPQ] when the input mapping is $\left\{q_{s} \leadsto q_{t}\right\}$:

$$
\begin{array}{lr}
M_{L}^{1}\left(a_{1}\right)=0, & M_{L}^{2}\left(a_{1}\right)=0+1, \\
M_{L}^{1}\left(a_{2}\right)=0+1, & M_{L}^{2}\left(a_{2}\right)=0 .
\end{array}
$$

Notice that the mapping M_{L}, where $M_{L}\left(a_{i}\right)=M_{L}^{1}\left(a_{i}\right)+M_{L}^{2}\left(a_{i}\right)$, for $i \in\{1,2\}$, is not a solution, since $q_{s}\left[M_{L}\right]$ includes 11 .
On the other hand, we can show that considering mapping in which the queries are unions of congruence classes is sufficient to obtain maximal unfoldings. We first generalize Lemma 6.5 to non-singleton queries.

Lemma 6.8. Let q_{s} be an $R P Q$ over $\Sigma_{s}^{\prime}, q_{t}$ an $R P Q$ over Σ_{t}^{\prime} expressed through a $1 N F A A_{t}$, and M_{L} a LAv mapping such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$. Then for M_{L}^{\prime} with

$$
M_{L}^{\prime}(a)= \begin{cases}\bigcup_{w \in M_{L}(a)}[w]_{A_{t}}, & \text { if } M_{L}(a) \neq \emptyset \\ \emptyset, & \text { if } M_{L}(a)=\emptyset\end{cases}
$$

we have that $q_{s}\left[M_{L}^{\prime}\right] \subseteq q_{t}$.
Proof. Consider a word $a_{1} \cdots a_{h} \in q_{s}$. If there is one of the a_{i} such that $M_{L}\left(a_{i}\right)=\emptyset$, then $M_{L}\left(a_{1}\right) \cdots M_{L}\left(a_{h}\right)=\emptyset \subseteq q_{t}$. Otherwise, we have that, for $i \in\{1, \ldots, h\}$, for some $w^{a_{i}} \in M_{L}\left(a_{i}\right)$, the word $w^{a_{1}} \cdots w^{a_{h}} \in q_{s}\left[M_{L}\right] \subseteq \mathcal{L}\left(A_{t}\right)$. We show that, for each $i \in\{1, \ldots, h\}$, we also have that $w^{a_{1}} \cdots w^{a_{i-1}} \cdot w^{\prime} \cdot w^{a_{i+1}} \cdots w^{a_{h}} \in \mathcal{L}\left(A_{t}\right)$, for each $w^{\prime} \in \bigcup_{w \in M_{L}\left(a_{i}\right)}[w]_{A_{t}}$. First, since $q_{s}\left[M_{L}\right] \subseteq q_{t}$, if $w^{a_{1}} \cdots w^{a_{h}} \in q_{s}\left[M_{L}\right] \subseteq \mathcal{L}\left(A_{t}\right)$, then, for each $w \in M_{L}\left(a_{i}\right)$, we also have that $w^{a_{1}} \cdots w^{a_{i-1}} \cdot w \cdot w^{a_{i+1}} \cdots w^{a_{h}} \in$ $q_{s}\left[M_{L}\right] \subseteq \mathcal{L}\left(A_{t}\right)$. Then there is a sequence $s_{0}, s_{1}, \ldots, s_{h}$ of states of A_{t} such that $s_{0}=s_{t}^{0}, s_{h} \in F_{t}, s_{j} \in \delta_{t}\left(s_{j-1}, w^{a_{j}}\right)$, for
$j \in\{1, \ldots, i-1, i+1, \ldots, h\}$, and $s_{i} \in \delta_{t}\left(s_{i-1}, w\right)$. Then, by the definition of congruence classes, for each word $w^{\prime} \in[w]_{A_{t}}$, we have that $s_{i} \in \delta_{t}\left(s_{i-1}, w_{i}^{\prime}\right)$, and hence $w^{a_{1}} \cdots w^{a_{i-1}} \cdot w^{\prime} \cdot w^{a_{i+1}} \cdots w^{a_{h}} \in \mathcal{L}\left(A_{t}\right)$.

Lemma 6.9. Given a mapping $M=\left\{q_{s} \leadsto q_{t}\right\}$, where q_{t} is defined by a $1 N F A A_{t}$, every solution M_{L} to MAxMSYNT[sound, LAV,RPQ,RPQ] with input M is such that each query in M_{L} is a union of congruence classes for A_{t}.

Proof. Consider a solution M_{L} to MaxMSynT[sound,LAV,RPQ,RPQ] with input M, and assume that for some $a \in \Sigma_{s}, M_{L}(a)$ is not a union of congruence classes for A_{t}. Then there are some word $w \in M_{L}(a)$ and some word $w^{\prime} \in[w]_{A_{t}}$ such that $w^{\prime} \notin M_{L}(a)$. By Lemma 6.8, the mapping M_{L}^{\prime} with $M_{L}^{\prime}(a)=M_{L}(a) \cup\left\{w^{\prime}\right\}$ is also a solution to MSYNT[SOUND,LAV,RPQ,RPQ] with input M, thus contradicting the maximality of M_{L}.

By observing that every solution to LAV simplification for the exact case has to be a maximal LAV mapping that implies the given mapping, we get the following upper bound for lav simplification in the exact case.

Theorem 6.10. MSIMP[EXACT,LAV,RPQ,RPQ] is in EXPSPACE.

Proof. By Lemma 6.9, we can nondeterministically choose mappings M_{L} in which the queries are unions of congruence classes and then test whether $q_{t}=q_{s}\left[M_{L}\right]$. To do so, we build a 1 NFA $A_{s, M_{L}}$ accepting $q_{s}\left[M_{L}\right]$ as follows. We start by observing that for each union U of congruence classes, we can build the automaton $A_{U}=\left(\mathcal{G}_{t}, s_{t}, R_{\epsilon}, \delta_{A_{t}}, U\right)$ accepting the words in U, which incidentally, is deterministic. Hence, by substituting each a-transition in the 1 NFA A_{s} for q_{s} with the 1NFA $A_{U_{a}}$, where $M_{L}(a)=U_{a}$, we obtain a 1 NFA $A_{s, M_{L}}$. Note that, even when A_{s} is deterministic, $A_{s, M_{L}}$ may be nondeterministic.

To test $q_{s}\left[M_{L}\right] \subseteq q_{t}$, we complement A_{t}, obtaining the 1NFA $\overline{A_{t}}$, and check the 1 NFA $A_{s, M_{L}} \times \overline{A_{t}}$ for emptiness. The size of $A_{s, M_{L}} \times \overline{A_{t}}$ is polynomial in the size of A_{s} and exponential in the size of A_{t}. Checking for emptiness can be done in exponential time, and considering the initial nondeterministic guess, we get a NExpTime upper bound.

To test $q_{t} \subseteq q_{s}\left[M_{L}\right]$, we complement $A_{s, M_{L}}$, obtaining the 1NFA $\overline{A_{s, M_{L}}}$, and check $A_{t} \times \overline{A_{s, M_{L}}}$ for emptiness. Since $A_{s, M_{L}}$ is nondeterministic, complementation is exponential. However, we observe again that such a complementation can be done on the fly in ExpSpace, while checking for emptiness and intersecting with A_{t}. As a consequence, considering the initial nondeteministic guess, MSIMP[EXACT,LAV,RPQ,RPQ] can be decided in NExpSpace, which is equivalent to ExpSpace.

Note that the proofs of Theorems 6.7 and 6.10 imply that, w.r.t. LAV mapping simplification, considering queries that are RPQs (as opposed to general, possibly non-regular, path languages) is not a restriction, since the existence of general Lav mappings implies the existence of regular ones. This is also in line with a similar observation holding for the existence of rewritings of RPQs w.r.t. RPQ views [42].

Finally, we observe that using the machinery based on unions of congruence classes, we can also solve the maximal mapping synthesis problem. We guess a mapping and check that it is a solution to mapping synthesis. To check that it is a maximal solution, we generate all other mappings and check that, if they are solutions, they are contained in our candidate solution.

Theorem 6.11. A solution to MAXMSYNT[SOUND,LAV,RPQ,RPQ] and to MAXMSYNT[EXACT,LAV,RPQ,RPQ] can be computed in EXPSPACE.

6.3. Lower bounds for mapping simplification

It turns out that the upper bound established for the sound case is tight:
Theorem 6.12. MSIMP[SOUND,LAV,RPQ, RPQ] is PSPACE-hard.
Proof. The proof is by a reduction from the universality problem for REs. Given an RE e over the alphabet $\Sigma_{t}=\left\{b_{1}, \ldots, b_{n}\right\}$, let $\Sigma_{s}=\left\{a_{1}, \ldots, a_{n}\right\}$, and let M_{e} be the mapping constituted by the following assertions:

$$
\begin{align*}
& \Sigma_{s}^{*} \leadsto e, \tag{5}\\
& a_{1} \leadsto b_{1} \quad \cdots \quad a_{n} \leadsto b_{n} . \tag{6}
\end{align*}
$$

We show that e is universal iff MSIMP[SOUND,LAV, RPQ,RPQ] with input M_{e} admits a solution. For the "only-if" part, assume that e is universal and consider the lav mapping M_{L} consisting of the mapping assertions (6). We have that $\Sigma_{s}^{*}\left[M_{L}\right]=\Sigma_{t}^{*}$, and since e is universal, also $\Sigma_{s}^{*}\left[M_{L}\right] \subseteq e$. For the "if" part, consider a LAv mapping M_{L} such that $q_{s}\left[M_{L}\right] \subseteq q_{t}$ and $q_{s}\left[M_{L}\right] \neq \emptyset$, for each mapping assertion $q_{s} \leadsto q_{t}$ in M_{e}. By the mapping assertions (6), we have that $M_{L}\left(a_{i}\right) \neq \emptyset$ (since a_{i} is the left-hand side of a mapping assertion) and that $M_{L}\left(a_{i}\right)$ must include b_{i}, for $i \in\{1, \ldots, n\}$, and hence $\Sigma_{s}^{*}\left[M_{L}\right]=\Sigma_{t}^{*}$. Since $\Sigma_{s}^{*}\left[M_{L}\right] \subseteq e$, we have that e is universal.

It is easy to see that the above proof shows also PSPACE-hardness of simplification for exact mappings.

Corollary 6.13. MSIMP[EXACT,LAV,RPQ,RPQ] is PSPACE-hard.

We do not have a tight upper bound for MSIMP[EXACT,LAV,RPQ,RPQ]. We do, however, show a tight lower bound for a generalization of MSIMP[EXACT,LAV,RPQ,RPQ] in which we allow the input mapping to contain both sound and exact mapping assertions. We do so by showing an ExpSPACE lower bound for a problem that is closely related to the mapping simplification problem.

Consider a finite alphabet Σ and a finite set \mathcal{V} of variables. A language constraint is a statement of the form $e_{1} \sqsubseteq e_{2}$, where e_{1} and e_{2} are regular expressions over $\Sigma \cup \mathcal{V}$. A language-constraint problem P is a finite set of language constraints. A solution to P is an assignment $\sigma: \mathcal{V} \rightarrow 2^{\Sigma^{*}}$, assigning a language over Σ to each variable in \mathcal{V} such that $\mathcal{L}\left(e_{1}[\sigma]\right)=\mathcal{L}\left(e_{2}[\sigma]\right)$. It is easy to express the universality problem for context-free grammars as a language-constraint problem, which implies that the latter is undecidable. Here we consider left-handed language constraint problems, where we allow constraints of the form $e_{1} \sqsubseteq e_{2}$ and $e_{1}=e_{2}$, but require that variables appear only in the left-hand side of the constraint. The technique for the exact version of the LAV mapping-simplification problem can be used to show an ExpSPACE upper bound for solving left-handed language constraint problems. We now show a matching lower bound.

To prove the result we exploit a reduction from tiling problems [51,52]. A tile is a unit square of one of several types and the tiling problem we consider is specified by means of a finite set Δ of tile types, two binary relations H and P over Δ, representing horizontal and vertical adjacency relations, respectively, and two distinguished tile types $t_{s}, t_{F} \in \Delta$. The tiling problem here consists in determining whether, for a given number n in unary, a region of the integer plane of size $2^{n} \times k$, for some $k>0$, can be tiled consistently with the adjacency relations H and P, and with the left bottom tile of the region of type t_{S} and the right upper tile of type t_{F}. We also require that the last tile of a row and the first tile of the next row are consistent with H. Using a reduction from acceptance of ExpSpace Turing machines analogous to the one in [51], it can be shown that this tiling problem is ExpSpace-complete.

Theorem 6.14. Solving left-handed language constraints is EXPSPACE-complete.

Proof. Let $T=\left(\Delta, H, P, t_{S}, t_{F}\right)$ be an instance of the ExpSPACE-complete tiling problem above and n a number in unary. The alphabet is $\Sigma=\Delta \cup\{0,1\}^{3} \cup\{\#\}$. Intuitively, the letters in Δ denote tiles, symbols in $\{0,1\}^{3}$ denote address bits, and \# denotes a separation marker. The idea is to encode each tiled cell by a word of length $n+2$ of the form \# $\cdot\left(\{0,1\}^{3}\right)^{n} \cdot \Delta$, consisting of a marker, an n-bit address, and a tile symbol. We use an element in $\{0,1\}^{3}$ for each address bit to make it easy to check that two n-bit addresses are consecutive; we use n-bits for the current address, n bits for the carry, and n bits for the next address. Thus, each tiling can be described by a word in $\left(\# \cdot\left(\{0,1\}^{3}\right)^{n} \cdot \Delta\right)^{*}$, obtained by encoding each cell as described above, and then concatenating the symbols, first column by column and then row by row.

Consider a word $w \in \Sigma^{*}$. Such a word does not describe a proper tiling if one of the following errors can be found in the word:

1. The symbol \# does not occur precisely in positions $(n+2) i$, for $i=0,1, \ldots$.
2. The symbols in Δ do not occur precisely in positions $n+1+(n+2) i$, for $i=0,1, \ldots$.
3. The first address is not 0^{n}.
4. The last address is not 1^{n}.
5. There is a pair of adjacent but not successive addresses.
6. The first tile is not t_{S}.
7. The last tile is not t_{F}.
8. There is a pair of adjacent blocks with tiles that violate the relation H.
9. There is a pair of vertically adjacent blocks with tiles that violate the relation P.

We do need to define the notion of vertical adjacency. Two blocks are vertically adjacent if their addresses agree and either both addresses are 0^{n} and there is no occurrence of 0^{n} between them, or both addresses are not 0^{n} and there is precisely one occurrence of 0^{n} between them.

If the tiling problem has no solution, then every word in Σ^{*} must contain an error. Conversely, if the tiling problem has a solution, then that solution can be described by a word with no errors. We now define a constraint of the form $e_{\text {error }}=\Sigma^{*}$, where the "task" of $e_{\text {error }}$ is to discover errors in candidate words. The expression $e_{\text {error }}$ is the sum of several terms corresponding to the various errors. We now sketch how to "discover" these possible errors. In order to have the left-hand sides use only variables, we introduce a variable v_{a} for each letter $a \in \Sigma$, accompanied by the constraint $v_{a}=a$. We use \mathcal{V}_{Σ} to abbreviate $\sum_{a \in \Sigma} v_{a}$.

Most of the errors can be discovered with a single regular expression. For example, the error where the symbol \# does not occur precisely in positions $(n+2) i$, for $i=0,1, \ldots$, is described using the expression

$$
\left(\mathcal{V}_{\Sigma}^{n+2}\right)^{*} \cdot\left(\sum_{1 \leqslant i \leqslant n+1} \mathcal{V}_{\Sigma}^{i}\right) \cdot \# \cdot \mathcal{V}_{\Sigma}^{*}
$$

We encode addresses by words in $\left(\{0,1\}^{3}\right)^{n}$, which consist of three n-bit words: the first word is an n-bit address, the second word is the successor of that address, and the third word is the sequence of n carry bits. The expression e error contains a term that finds errors in words of the form $\left(\{0,1\}^{3}\right)^{n}$ used in the encoding candidate solutions. To ensure that adjacent addresses are successive, $e_{\text {error }}$ contains, for $0 \leqslant i \leqslant n-1$, the expression

$$
\begin{aligned}
& \left(\mathcal{V}_{\Sigma}^{n+2}\right)^{*} \cdot \# \cdot\left(\{0,1\}^{3}\right)^{i} \cdot\{0,1\} \times\{0\} \times\{0,1\} \cdot\left(\{0,1\}^{3}\right)^{n-i-1} \cdot \Delta \\
& \quad \cdot \# \cdot\left(\{0,1\}^{3}\right)^{i} \cdot\{1\} \times\{0,1\}^{2} \cdot\left(\{0,1\}^{3}\right)^{n-i-1} \cdot\left(\mathcal{V}_{\Sigma}^{n+2}\right)^{*}
\end{aligned}
$$

as well as the expression

$$
\begin{aligned}
& \left(\mathcal{V}_{\Sigma}^{n+2}\right)^{*} \cdot \# \cdot\left(\{0,1\}^{3}\right)^{i} \cdot\{0,1\} \times\{1\} \times\{0,1\} \cdot\left(\{0,1\}^{3}\right)^{n-i-1} \cdot \Delta \\
& \cdot \# \cdot\left(\{0,1\}^{3}\right)^{i} \cdot\{0\} \times\{0,1\}^{2} \cdot\left(\{0,1\}^{3}\right)^{n-i-1} \cdot\left(\mathcal{V}_{\Sigma}^{n+2}\right)^{*}
\end{aligned}
$$

These expressions compare corresponding bits in adjacent addresses; the successor of the first address has to agree with the second address.

The one error that is challenging is where there is a pair of vertically adjacent blocks with tiles that violate the relation P. Discovering this error is more difficult and cannot be done by one regular expression; rather, several additional constraints are needed. For simplicity we ignore here the fact that each address bit is encoded by three bits rather than one.

Let $e_{n z a}$ be a regular expression that describes non-zero addresses: $\sum_{0 \leqslant i \leqslant n-1}\{0,1\}^{i} \cdot 1 \cdot\{0,1\}^{n-i-1}$.
We add to $e_{\text {error }}$ the following term, which discovers non-matching tiles at zero-addressed vertically adjacent tiles:

$$
\sum_{\left(t, t^{\prime}\right) \notin P}\left(\mathcal{V}_{\Sigma}^{*} \cdot \# \cdot 0^{n} \cdot t \cdot\left(\# \cdot e_{n z a} \cdot \Delta\right)^{*} \cdot \# \cdot 0^{n} \cdot t^{\prime} \cdot \mathcal{V}_{\Sigma}^{*}\right)
$$

We need to deal with non-zero-addressed vertically adjacent blocks. For this we use several constraints. First:

$$
v_{n z a v a} \sqsubseteq \sum_{\left(t, t^{\prime}\right) \notin P}\left(\# \cdot e_{n z a} \cdot t \cdot\left(\# \cdot e_{n z a} \cdot \Delta\right)^{*} \cdot \# \cdot 0^{n} \cdot \Delta \cdot\left(\# \cdot e_{n z a} \cdot \Delta\right)^{*} \cdot \# \cdot e_{n z a} \cdot t^{\prime}\right) .
$$

This says that $v_{\text {nzava }}$ describes sequences of blocks that start and end with a pair of non-matching non-zero-addressed blocks, with a single zero-addressed block in between. We still have to impose the constraint that the first and last block have equal addresses. We do this with n constraints, one for each bit of the address. That is for each $i, 0 \leqslant i \leqslant n-1$, we add the constraint:

$$
\begin{aligned}
v_{\text {nzava }} \sqsubseteq & \left(\# \cdot\{0,1\}^{i} \cdot 0 \cdot\{0,1\}^{n-i-1} \cdot \Delta \cdot\left(\# \cdot\{0,1\}^{n} \cdot \Delta\right)^{*} \cdot \# \cdot\{0,1\}^{i} \cdot 0 \cdot\{0,1\}^{n-i-1} \cdot \Delta\right) \\
& +\left(\# \cdot\{0,1\}^{i} \cdot 1 \cdot\{0,1\}^{n-i-1} \cdot \Delta \cdot\left(\# \cdot\{0,1\}^{n} \cdot \Delta\right)^{*} \cdot \# \cdot\{0,1\}^{i} \cdot 1 \cdot\{0,1\}^{n-i-1} \cdot \Delta\right) .
\end{aligned}
$$

This constraint says that the i-th bits of the first and last addresses are either both 0 or both 1 .
Now we can add to $e_{\text {error }}$ the term $\mathcal{V}_{\Sigma}^{*} \cdot v_{\text {nzava }} \cdot \mathcal{V}_{\Sigma}^{*}$, which discovers all errors due to not-matching, non-zero-addressed vertically adjacent blocks.

Note that the constraint system constructed is of size quadratic in the size of the tiling system. If the tiling problem has no solution, then every word in Σ^{*} contains an error and the constraint problem constructed is satisfiable. If the tiling problem has a solution, then a word describing a proper tiling has no error, and for no assignment $\sigma: \mathcal{V} \rightarrow 2^{\Sigma^{*}}$ we have $\mathcal{L}\left(e_{\text {error }}[\sigma]\right)=\Sigma^{*}$, since $e_{\text {error }}$ captures only errors.

Let MSIMP[MIXED,LAV,RPQ,RPQ] be the following decision problem: given an RPQ-based schema mapping M consisting both of sound and of EXACT mapping assertions, check whether there exists an RPQ-based LAV schema mapping M^{\prime} of type EXACT such that $M^{\prime} \models M$ and $M^{\prime} \not \forall_{\text {triv }} M$.

As a corollary of Theorem 6.14, we get the following result.
Corollary 6.15. MSIMP[MIXED,LAV,RPQ,RPQ] is EXPSPACE-complete.

We conjecture that MSIMP[EXACT,LAV,RPQ,RPQ] is also EXPSPACE-complete.
Our results on simplification for RPQs are summarized in Table 1.

7. Extensions

In this section we sketch the extension of the results of the previous section on simplification in terms of lav mappings to more expressive classes of queries: 2 RPQ s and their conjunctions.

7.1. $2 R P Q s$

Consider now simplification for mappings based on 2 RPQs, expressed by means of 1 NFAs over the alphabets $\Sigma_{s}^{ \pm}$and $\Sigma_{t}^{ \pm}$.
A key concept for 2 RPQs is that of folding of a language [22], which intuitively denotes the set of words that are the result of repeatedly canceling out adjacent occurrences of a symbol and its inverse. Let $u, v \in \Sigma^{ \pm}$. We say that v folds onto u, denoted $v \rightsquigarrow u$, if v can be "folded" on u, e.g., $a b b^{-} b c \rightsquigarrow a b c$. Formally, we say that $v=v_{1} \cdots v_{m}$ folds onto $u=u_{1} \cdots u_{n}$ if there is a sequence i_{0}, \ldots, i_{m} of positive integers between 0 and $|u|$ such that

- $i_{0}=0$ and $i_{m}=n$, and
- for $j \in\{0, \ldots, m\}$, either $i_{j+1}=i_{j}+1$ and $v_{j+1}=u_{i_{j+1}}$, or $i_{j+1}=i_{j}-1$ and $v_{j+1}=u_{i_{j+1}}^{-}$.

Let L be a language over $\Sigma^{ \pm}$. We define fold $(L)=\{u \mid v \rightsquigarrow u, v \in L\}$.
A language-theoretic characterization for containment of 2RPQs was provided in [22]:
Lemma 7.1. Let q_{1} and q_{2} be $2 R P Q$ s. Then $q_{1} \sqsubseteq q_{2}$ iff $\mathcal{L}\left(q_{1}\right) \subseteq$ fold $\left(\mathcal{L}\left(q_{2}\right)\right)$.
Furthermore, it is shown in [22] that if A is an n-state 1 NFA over $\Sigma^{ \pm}$, then there is a 2 NFA A^{f} over Σ for fold $(\mathcal{L}(A))$ with $n \cdot\left(\left|\Sigma^{ \pm}\right|+1\right)$ states. (We use 2NFA to refer to two-way automata.)

In the mapping simplification problem, we are given 2 RPQs q_{s} and q_{t}, expressed as 1 NFAs A_{s} and A_{t}, respectively, and we are asked whether there exists a 2 RPQ-based Lav mapping M_{L} such that $q_{s}\left[M_{L}\right] \sqsubseteq q_{t}$ or $q_{s}\left[M_{L}\right]=q_{t}$, and also $q_{s}[V] \not \equiv \emptyset$.

The approach using congruence classes described above applies also to 2RPQs. A simplistic approach would be to convert the 2NFA for fold $\left(\mathcal{L}\left(A_{t}\right)\right)$ into a 1NFA, with an exponential blow-up, and proceed as in Section 6 . To avoid this exponential blowup, we need an exponential bound on the number of congruence classes. For a 1NFA, we saw that each congruence class can be defined in terms of a binary relation over its set of states. It turns out that for a 2NFA A, a congruence class can be defined in terms of four binary relations over the set S_{t} of states of A :

1. $R_{l r}$: a pair $\left(s_{1}, s_{2}\right) \in R_{l r}$ means that there is a word w that leads A from s_{1} to s_{2}, where w is entered on the left and exited on the right.
2. $R_{r l}$: a pair $\left(s_{1}, s_{2}\right) \in R_{r l}$ means that there is a word w that leads A from s_{1} to s_{2}, where w is entered on the right and exited on the left.
3. $R_{l l}$: a pair $\left(s_{1}, s_{2}\right) \in R_{l l}$ means that there is a word w that leads A from s_{1} to s_{2}, where w is entered on the left and exited on the left.
4. $R_{r r}$: a pair $\left(s_{1}, s_{2}\right) \in R_{r r}$ means that there is a word w that leads A from s_{1} to s_{2}, where w is entered on the right and exited on the right.

That is, every choice of four binary relations over the state space of A^{f} corresponds to a congruence class with respect to the language of A^{f}. Thus, the number of congruence classes when A^{f} has m states is $2^{4 m^{2}}$ rather than $2^{m^{2}}$, which is still an exponential. This enables us to adapt the technique of Section 6 with essentially the same complexity bounds.

Theorem 7.2. MSIMP[SOUND,LAV,2RPQ,2RPQ] is PSPACE-complete.

MSimp[EXACT,LAV,2RPQ,2RPQ] is in EXPSPACE.

7.2. Conjunctions of $2 R P Q$ s and their unions

Finally, we consider the mapping simplification problem for conjunctions of 2 RPQs and their unions, abbreviated (U)C2RPQs [53], which are (unions of) conjunctive queries constructed from binary atoms whose predicate is a 2RPQ. Specifically, a C2RPQ q of arity n is written in the form

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid q_{1}\left(y_{1}, y_{2}\right) \wedge \cdots \wedge q_{m}\left(y_{2 m-1}, y_{2 m}\right)\right\}
$$

where $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{2 m}$ range over a set $\left\{z_{1}, \ldots, z_{k}\right\}$ of variables, $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\left\{y_{1}, \ldots, y_{2 m}\right\}$, and each q_{j} is a 2RPQ. When evaluated over a database \mathcal{D} over Σ, the C2RPQ q computes the set of tuples (o_{1}, \ldots, o_{n}) of objects such that there is a total mapping φ from $\left\{z_{1}, \ldots, z_{k}\right\}$ to the objects in \mathcal{D} with $\varphi\left(x_{i}\right)=o_{i}$, for $i \in\{1, \ldots, n\}$, and $\left(\varphi\left(y_{2 j-1}\right), \varphi\left(y_{2 j}\right)\right) \in q_{j}^{\mathcal{D}}$, for $j \in\{1, \ldots, m\}$.

Consider first the mapping simplification problem for the case where the input mapping is expressed in terms of CRPQs, where the constituent RPQs are expressed by means of 1 NFAs , over the alphabets $\Sigma_{s}^{ \pm}$and $\Sigma_{t}^{ \pm}$. Here the lav mappings have to be in terms of RPQs, rather than CRPQs, since CRPQs are not closed under substitutions. The crux of our approach is to reduce containment of two CRPQs, q_{1} and q_{2} to containment of standard languages. This was done in [53]. Let q_{h}, for $h=\{1,2\}$, be in the form

$$
q_{h}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid q_{h, 1}\left(y_{h, 1}, y_{h, 2}\right) \wedge \cdots \wedge q_{h, m_{h}}\left(y_{h, 2 m_{h}-1}, y_{h, 2 m_{h}}\right)\right\}
$$

Table 1
Summary of complexity results on mapping simplification.

Type	Form	CQ-CQ	UCQ-CQ	UCQ-UCQ	(2)RPQ-(2)RPQ	UC2RPQ-2RPQ
SOUND	LAV	NP-c	NP-c	NP-c	PXPSPACE	
	GAV	NP	NP	NP		
EXACT	LAV/GAV	NP-c	NP-c	Π_{2}^{p}	EXPSPACE MIXED	LAV

and let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be the sets of variables of q_{1} and q_{2} respectively. It is shown in [53] that the containment $q_{1} \sqsubseteq q_{2}$ can be reduced to the containment $\mathcal{L}\left(A_{1}\right) \subseteq \mathcal{L}\left(A_{2}\right)$ of two word automata A_{1} and A_{2}. A_{1} is a 1 NFA, whose size is exponential in q_{1} and it accepts certain words of the form

$$
\$ d_{1} w_{1} d_{2} \$ d_{3} w_{2} d_{4} \$ \cdots \$ d_{2 m_{1}-1} w_{m_{1}} d_{2 m_{1}} \$
$$

where each d_{i} is a subset of \mathcal{V}_{1} and the words w_{i} are over the alphabet of A_{1}. Such words constitute a linear representation of certain graph databases that are canonical for q_{1} in some sense. A_{2} is a 2 NFA , whose size is exponential in the size of q_{2}, and it accepts words of the above form if the there is an appropriate mapping from q_{2} to the database represented by these words. The reduction of the containment $q_{1} \sqsubseteq q_{2}$ to $\mathcal{L}\left(A_{1}\right) \subseteq \mathcal{L}\left(A_{2}\right)$ is shown in [53].

The ability to reduce containment of CRPQs to containment of word automata means that we can also apply the congruence-class technique of Section 6. Suppose that we have an RPQ-based Lav mapping M_{L} such that $\mathcal{L}\left(A_{s}\left[M_{L}\right]\right) \subseteq \mathcal{L}\left(A_{t}\right)$. Then we can again assume that the queries in the lav mapping are closed with respect to the congruence classes of A_{t}. Thus, the techniques of Section 6 can be applied, and one can show that MSimp[sound,LAV,CRPQ,RPQ] is in ExpSpace and MSimp[Exact,LAV,CRPQ,RPQ] is in 2ExpSpace.

Finally, dealing with UC2RPQ queries, which combine UCQs and 2RPQs, requires combining the techniques developed for RPQs, 2RPQs, and CRPQs. The key idea is the reduction of query containment to containment of word automata. The resulting upper bounds are identical to those for CRPQs.

8. Conclusions

We have introduced the problem of simplifying schema mappings based on logical implication. The problem comes in different forms, depending on the type of simplification to achieve, on whether the mappings are sound or exact, and on the types of queries used in the mappings. We have provided a formalization of the problem, and we have presented techniques and complexity bounds for both relational and graph databases. We have concentrated on lav simplification, and we have discussed the GAV case only for relational schema mappings. Our results are summarized in Table 1. There are a number of results left open by our investigation. In particular, GAV simplification and synthesis for RPQs is largely open. Moreover, in LAV tight lower-bounds are missing for the cases of UCQs and RPQs. We observe that the techniques we have presented in Sections 5, 6, and 7 to prove our upper bounds for lav simplification in the sound and exact cases are based on performing suitable guesses and containment checks independently for each input mapping assertion. Hence, they extend easily to the mixed case, providing the same upper bounds as for the exact case, which justifies the entries in the last row of the table.

In the future, we plan to continue investigating schema mapping simplification along different directions. In particular, we aim at addressing GAV simplification for graph databases, and we plan to study schema mapping simplification for tree-based (e.g., XML) semi-structured data.

Acknowledgments

The work is partially supported by the EU under the project ACSI (Artifact-Centric Service Interoperation), grant No. FP7257593, by Regione Lazio under the project "Integrazione semantica di dati e servizi per le aziende in rete", and by NSF grants CCF-0613889, CCF-0728882, and CNS 1049862.

References

[1] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), 2002, pp. 233-246.
[2] A.Y. Halevy, A. Rajaraman, J. Ordille, Data integration: The teenage years, in: Proc. of the 32nd Int. Conf. on Very Large Data Bases (VLDB 2006), 2006, pp. 9-16.
[3] P.G. Kolaitis, Schema mappings, data exchange, and metadata management, in: Proc. of the 24th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2005), 2005, pp. 61-75.
[4] P. Barcelò, Logical foundations of relational data exchange, SIGMOD Record 38 (1) (2009) 49-58.
[5] P.A. Bernstein, H. Ho, Model management and schema mappings: Theory and practices, in: Proc. of the 33rd Int. Conf. on Very Large Data Bases (VLDB 2007), 2007, pp. 1439-1440.
[6] J.D. Ullman, Information integration using logical views, in: Proc. of the 6th Int. Conf. on Database Theory (ICDT'97), in: Lecture Notes in Comput. Sci., vol. 1186, Springer, 1997, pp. 19-40.
[7] B. ten Cate, P.G. Kolaitis, Structural characterizations of schema-mapping languages, in: Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009), 2009, pp. 63-72.
[8] B. Alexe, P. Kolaitis, W.-C. Tan, Characterizing schema mappings via data examples, in: Proc. of the 29th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2010), 2010, pp. 261-271.
[9] R. Fagin, P.G. Kolaitis, A. Nash, L. Popa, Towards a theory of schema-mapping optimization, in: Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2008), 2008, pp. 33-42.
[10] G. Gottlob, R. Pichler, V. Savenkov, Normalization and optimization of schema mappings, Proc. VLDB Endowment 2 (1) (2009) $1102-1113$.
[11] R. Fagin, P.G. Kolaitis, L. Popa, W.C. Tan, Reverse data exchange: Coping with nulls, in: Proc. of the 28 th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2009), 2009, pp. 23-32.
[12] M. Arenas, R. Fagin, A. Nash, Composition with target constraints, in: Proc. of the 13th Int. Conf. on Database Theory (ICDT 2010), 2010, pp. 129-142.
[13] A. Fuxman, P.G. Kolaitis, R.J. Miller, W.C. Tan, Peer data exchange, ACM Trans. Database Systems 31 (4) (2005) 1454-1498.
[14] G. Grahne, A.O. Mendelzon, Tableau techniques for querying information sources through global schemas, in: Proc. of the 7th Int. Conf. on Database Theory (ICDT'99), in: Lecture Notes in Comput. Sci., vol. 1540, Springer, 1999, pp. 332-347.
[15] M. Arenas, L. Libkin, XML data exchange: Consistency and query answering, in: Proc. of the 24th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2005), 2005, pp. 13-24.
[16] I.F. Cruz, A.O. Mendelzon, P.T. Wood, A graphical query language supporting recursion, in: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, 1987, pp. 323-330.
[17] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: from Relations to Semistructured Data and XML, Morgan Kaufmann, 2000.
[18] E. Franconi, S. Tessaris, The logic of RDF and SPARQL: a tutorial, in: S. Vansummeren (Ed.), Proc. of the 25 th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2006), 2006, p. 355.
[19] P. Barcelò, C.A. Hurtado, L. Libkin, P.T. Wood, Expressive languages for path queries over graph-structured data, in: Proc. of the 29th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2010), 2010, pp. 3-14.
[20] B. Selman, H. Kautz, Knowledge compilation and theory approximation, J. ACM 43 (2) (1996) 193-224.
[21] M. Schaerf, M. Cadoli, Tractable reasoning via approximation, Artificial Intelligence 74 (2) (1995) 249-310.
[22] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Reasoning on regular path queries, SIGMOD Record 32 (4) (2003) 83-92.
[23] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: Semantics and query answering, Theoret. Comput. Sci. 336 (1) (2005) 89-124.
[24] R. Fagin, P.G. Kolaitis, L. Popa, Data exchange: Getting to the core, ACM Trans. Database Systems 30 (1) (2005) 174-210.
[25] M. Arenas, P. Barcelo, R. Fagin, L. Libkin, Locally consistent transformations and query answering in data exchange, in: Proc. of the 23rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004), 2004, pp. 229-240.
[26] A. Fuxman, P.G. Kolaitis, R. Miller, W.C. Tan, Peer data exchange, in: Proc. of the 24th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2005), 2005, pp. 160-171.
[27] L. Libkin, C. Sirangelo, Data exchange and schema mappings in open and closed worlds, in: Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2008), 2008, pp. 139-148.
[28] S. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), 1998, pp. 254-265.
[29] A. Calì, D. Calvanese, G. De Giacomo, M. Lenzerini, Data integration under integrity constraints, Information Systems 29 (2004) 147-163.
[30] A.Y. Halevy, Answering queries using views: A survey, Very Large Database J. 10 (4) (2001) 270-294.
[31] J. Madhavan, A.Y. Halevy, Composing mappings among data sources, in: Proc. of the 29th Int. Conf. on Very Large Data Bases (VLDB 2003), 2003, pp. 572-583.
[32] R. Fagin, P.G. Kolaitis, L. Popa, W.-C. Tan, Composing schema mappings: Second-order dependencies to the rescue, ACM Trans. Database Systems 30 (4) (2005) 994-1055.
[33] R. Fagin, Inverting schema mappings, ACM Trans. Database Systems 32 (4) (2007) 25:2-25:53.
[34] R. Fagin, P.G. Kolaitis, L. Popa, W.-C. Tan, Quasi-inverses of schema mappings, ACM Trans. Database Systems 33 (2) (2008) 1-52.
[35] M. Arenas, J. Pérez, C. Riveros, The recovery of a schema mapping: Bringing exchanged data back, ACM Trans. Database Systems 34 (4) (2009) 22:122:48.
[36] P.C. Arocena, A. Fuxman, R.J. Miller, Composing local-as-view mappings: Closure and applications, in: Proc. of the 13th Int. Conf. on Database Theory (ICDT 2010), 2010, pp. 209-218.
[37] M. Arenas, J. Pérez, J.L. Reutter, C. Riveros, Foundations of schema mapping management, in: Proc. of the 29th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2010), 2010, pp. 227-238.
[38] F. Baader, R. Küsters, Unification in a description logic with transitive closure of roles, in: R. Nieuwenhuis, A. Voronkov (Eds.), Proc. of the 8th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001), in: Lecture Notes in Comput. Sci., vol. 2250, Springer, 2001 , pp. 217-232.
[39] S. Abiteboul, G. Gottlob, M. Manna, Distributed XML design, in: Proc. of the 28th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2009), 2009, pp. 247-258.
[40] W. Martens, M. Niewerth, T. Schwentick, Schema design for XML repositories: Complexity and tractability, in: Proc. of the 29th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2010), 2010, pp. 239-250.
[41] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley Publ. Co., 1995.
[42] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Rewriting of regular expressions and regular path queries, J. Comput. System Sci. 64 (3) (2002) 443-465.
[43] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), 1977, pp. 77-90.
[44] Y. Sagiv, M. Yannakakis, Equivalences among relational expressions with the union and difference operators, J. ACM 27 (4) (1980) 633-655.
[45] P. Buneman, Semistructured data, in: Proc. of the 16 th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'97), 1997, pp. 117121.
[46] S. Abiteboul, Querying semi-structured data, in: Proc. of the 6th Int. Conf. on Database Theory (ICDT'97), 1997, pp. 1-18.
[47] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Query processing using views for regular path queries with inverse, in: Proc. of the 19th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2000), 2000, pp. 58-66.
[48] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in: Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'95), 1995, pp. 95-104.
[49] J.-E. Pin, Syntactic semigroups, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Language Theory, vol. 1, Springer, 1997, pp. 679-746. Ch. 10.
[50] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, View synthesis from schema mappings, CoRR Technical Report abs/1003.1179, arXiv.org e-Print archive, available at http://arxiv.org/abs/1003.1179, Mar. 2010.
[51] P. van Emde Boas, The convenience of tilings, in: A. Sorbi (Ed.), Complexity, Logic, and Recursion Theory, in: Lect. Notes Pure Appl. Math., vol. 187, Marcel Dekker Inc., 1997, pp. 331-363.
[52] R. Berger, The undecidability of the dominoe problem, Mem. Amer. Math. Soc. 66 (1966) 1-72.
[53] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Containment of conjunctive regular path queries with inverse, in: Proc. of the 7th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2000), 2000, pp. 176-185.

[^0]: * Corresponding author. Fax: +39 0471016009.

 E-mail addresses: calvanese@inf.unibz.it (D. Calvanese), degiacomo@dis.uniroma1.it (G. De Giacomo), lenzerini@dis.uniroma1.it (M. Lenzerini), vardi@cs.rice.edu (M.Y. Vardi).

 URLs: http://www.inf.unibz.it/~calvanese/ (D. Calvanese), http://www.dis.uniroma1.it/~degiacomo/ (G. De Giacomo), http://www.dis.uniroma1.it/~lenzerini/ (M. Lenzerini), http://www.cs.rice.edu/~vardi/ (M.Y. Vardi).

[^1]: ${ }^{1}$ Note that the assumption of having pairwise distinct variables is in line with the data integration framework, where all source tuples should be mapped to the target.
 2 For RPQs and 2RPQs, where query variables are not represented explicitly, we consider an atom to be simply a binary predicate symbol.

[^2]: ${ }^{3}$ We use $L_{1} \cdot L_{2}$ to denote concatenation between languages, and $G_{1} \circ G_{2}$ to denote composition of binary relations.

