
Simplifying Schema Mappings

Diego Calvanese
KRDB Research Centre

Free Univ. of Bozen-Bolzano
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

Giuseppe De Giacomo
Maurizio Lenzerini

Dip. di Inf. e Sist.
Univ. di Roma “La Sapienza”

I-00185 Roma, Italy
lastname@dis.uniroma1.it

Moshe Y. Vardi
Dep. of Computer Science

Rice University, P.O. Box 1892
Houston, TX 77251-1892,

U.S.A.
vardi@cs.rice.edu

ABSTRACT
A schema mapping is a formal specification of the relation-
ship holding between the databases conforming to two given
schemas, called source and target, respectively. While in
the general case a schema mapping is specified in terms of
assertions relating two queries in some given language, var-
ious simplified forms of mappings, in particular LAV and
GAV, have been considered, based on desirable properties
that these forms enjoy. Recent works propose methods for
transforming schema mappings to logically equivalent ones
of a simplified form. In many cases, this transformation is
impossible, and one might be interested in finding simplifica-
tions based on a weaker notion, namely logical implication,
rather than equivalence. More precisely, given a schema
mapping M , find a simplified (LAV, or GAV) schema map-
ping M ′ such that M ′ logically implies M . In this paper
we formally introduce this problem, and study it in a vari-
ety of cases, providing techniques and complexity bounds.
The various cases we consider depend on three parameters:
the simplified form to achieve (LAV, or GAV), the type of
schema mapping considered (sound, or exact), and the query
language used in the schema mapping specification (conjunc-
tive queries and variants over relational databases, or regular
path queries and variants over graph databases). Notably,
this is the first work on comparing schema mappings for
graph databases.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—data
mapping ; H.2.3 [Database Management]: Languages—
query languages

General Terms
Theory

Keywords
Schema mappings, GAV, LAV, graph databases, conjunctive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00.

queries

1. INTRODUCTION
A schema mapping is a formal specification of the rela-

tionship holding between the databases conforming to two
given schemas. Many papers point out the importance of
schema mappings in several data management tasks, espe-
cially those requiring inter-operability between different in-
formation systems, such as data integration [38, 36], data
exchange [37, 14], and model management [17].

In data integration, schema mappings are established be-
tween the source schema and the global (mediated) schema,
and are used to decide how to access the source data for
answering queries posed in terms of the global schema. In
data exchange, schema mappings are specified in terms of
a source schema and a target schema, and determine how
the source data should be transferred to the target in order
to populate a database conforming to the target schema.
Schema mappings are also the main objects of interest in
model management, whose goal is to support the creation,
compilation, reuse, evolution, and execution of mappings
between schemas, expressed in a wide range of model.

A schema mapping is constituted by two schemas and a
set of mapping assertions between the two. We follow the
data exchange terminology, and call the two schema source
and target, respectively. As usual, we assume that each as-
sertion relates a query qs over the source to a query qt over
the target, and specifies a correspondence between the tu-
ples computed by qs in source databases and those computed
by qt in target databases. In the following, we consider two
types of schema mappings, called sound and exact, respec-
tively. The correspondence specified by assertions in a sound
mapping is inclusion, whereas the correspondence specified
by assertions in an exact mapping is equality. Semantically,
a schema mapping M is characterized by the set of pairs
(Ds,Dt) of databases such that Ds is a source database, Dt
is a target database, and they satisfy the correspondences
sanctioned by the assertions in M .

Since the pioneering work on schema mappings in data
integration [46], various restricted forms of mappings have
been considered, in particular LAV and GAV. In LAV
(Local-As-Views) mappings, the source queries in the asser-
tions are constituted by one atom, and exactly one assertion
appears for each relation symbol in the source schema. In
other words, a LAV mapping associates to each element of
the source schema one view over the target schema. Con-
versely, a GAV (Global-As-Views) mapping associates to
each element of the target schema one view over the source

1

schema. Extending the above terminology, the term GLAV
is often used to refer to unrestricted forms of schema map-
pings.

Schema mappings have been widely investigated in the
last years. In [26, 28, 7, 40] the emphasis is on provid-
ing foundations for data exchange systems based on schema
mappings. Other works deal with answering queries posed
to the target schema on the basis of both the data at the
sources, and a set of source-to-target mapping assertions
(see, for instance, [3, 7] and the surveys in [46, 36]). A large
body of work has been devoted to studying operators on
schema mappings relevant to model management, notably,
composition, merge, and inverse (see, for example [41, 30,
31, 29, 11, 12, 8, 10]).

Recently, there has been a growing interest in principles
and tools for comparing both schema mapping languages,
and schema mappings expressed in a certain language. Com-
paring schema mapping languages aims at characterizing
such languages in terms of both expressive power, and com-
plexity of mapping-based computational tasks [45, 6]. In
particular, [45] studies various relational schema mapping
languages with the goal of characterizing them in terms
of structural properties possessed by the schema mappings
specified in these languages.

Methods for comparing schema mappings have been re-
cently proposed in [27, 34, 29, 8]. In [29, 8], schema map-
pings are compared with respect to their ability to transfer
source data and avoid redundancy in the target databases,
as well as their ability to cover target data. More relevant to
the present paper is the work in [27], which introduces three
notions of equivalence. The first one is the usual notion
based on logic: two schema mappings are logically equivalent
if they are indistinguishable by the semantics, i.e., if they are
satisfied by the same set of database pairs. The other two
notions, called data exchange and conjunctive query equiv-
alence, respectively, are relaxations of logical equivalence,
capturing indistinguishability for different purposes. In [34],
schema mapping optimization is studied, based on logical
equivalence. In particular, a set of optimality criteria are
proposed for an important class of relational schema map-
pings, and rewriting rules for transforming a schema map-
ping into an equivalent optimal one are presented. Notably,
LAV and GAV enjoy many of the optimality criteria men-
tioned in the paper. It follows that the proposed rewriting
rules often lead to transforming an input schema mapping
into one of the two simplified forms.

The above discussion shows that the work on optimiza-
tion and simplification of schema mappings has concentrated
so far on equivalence preserving transformations. However,
there are cases where equivalence preserving simplification
is not possible, as demonstrated for LAV by the following
example.

Example 1. Consider the schema mapping M consti-
tuted by the following mapping assertion

{(x,w, z) | r1(x,w, y) ∧ r2(y, z)} ;

{(x,w, z) | t1(x,w, v) ∧ t1(v, w, e) ∧ t2(e, z)}

Suppose that M is interpreted under the sound semantics.
Now, let Ds be a database such that rDs

1 6= ∅, and rDs
2 = ∅,

and let Dt be the empty database. Clearly, (Ds,Dt) |= M .
On the other hand, for any sound LAV mapping M ′ on the
same alphabet as M , it holds that (Ds,Dt) 6|= M ′, because
rDs
1 6= ∅, while the query M ′(r1) that M ′ associates to r1 is

such that M ′(r1)Dt = ∅, and therefore the assertion r1 ;

M ′(r1) in M ′ cannot be satisfied by (Ds,Dt). It follows
that no LAV mapping M ′ exists such that M |= M ′, and
therefore equivalence preserving LAV simplification of M is
impossible to achieve.

To address such cases, we argue that simplification should
be based on a weaker notion, namely logical implication,
rather than equivalence.

Example 2. Refer again to the schema mapping M of
Example 1, and consider the sound LAV mapping M ′′ con-
stituted by the following two mapping assertions:

{(x,w, y) | r1(x,w, y)};{(x,w, y) | t1(x,w, v) ∧ t1(v, w, y)}
{(x, y) | r2(x, y)};{(x, y) | t2(x, y)}

It is not difficult to see that M ′′ |= M . Therefore, if we are
happy with LAV simplification based on logical implication
rather than logical equivalence, M ′′ represents an acceptable
simplification of M .

Mapping simplification based on logical implication is the
subject of this paper. The problem can be stated as fol-
lows: given a schema mapping M , check whether a simpli-
fied (LAV, or GAV) schema mapping M ′ exists such that
M ′ logically implies M (and, if it exists, find one). We for-
mally introduce this problem, and study it in a variety of
cases, depending on three parameters:

1. the simplified form to achieve (LAV, or GAV),
2. the type of schema mapping considered (sound, or ex-

act), and
3. the data model and the query language used in the

schema mapping specification.

As for the first parameter, we essentially concentrate on LAV
in this paper. We discuss GAV only briefly, pointing out that
GAV simplification is an open problem in several cases.

As for the type of mapping, although the sound semantics
is the more popular one in data exchange [37], the impor-
tance of considering exact schema mappings is widely recog-
nized for both data exchange [33], and data integration [35].

As for the data model and the query language used in
schema mappings, we consider both the relational data
model with conjunctive queries and unions thereof, and the
graph database model with regular path queries and their
extensions. Note that, while schema mappings have been
extensively studied for relational data, and, to some ex-
tent, for XML data [9], this is the first paper on comparing
schema mappings for graph databases. Graph databases [25]
were introduced in the ’80s, and are regaining wide atten-
tion recently [2, 32, 15], for their relevance in areas such
as semi-structured data, biological data management, social
networks, and the semantic web.

The results we present in this paper can be summarized
as follows. We first illustrate our ideas with relational map-
pings, where the results follow fairly easily from the charac-
terization of containment for conjunctive queries and unions
thereof. We show that LAV simplification is NP-complete
in the case of both sound and exact schema mappings based
on conjunctive queries. In the case of unions of conjunctive
queries, the problem is still in NP for sound mappings, while
it is in Πp

2 for exact ones.

2

For graph database schema mappings based on regular
path queries, we prove that LAV simplification is PSpace-
complete under the sound semantics, and in ExpSpace
in the case of exact schema mappings. By exploiting a
language-theoretic characterization for containment of reg-
ular path queries with inverse (called two-way regular path
queries) provided in [22], we also extend the results to the
case where queries in schema mappings are two-way regular
path queries, as well as conjunctive two-way regular path
queries, and unions of such queries.

Note that a regular path query returns the set of node
pairs in the graph database connected by a path conform-
ing to the query, and therefore can be seen as the regular
language constituted by all the words labeling the paths de-
noted by the query. Indeed, the simplification problem ad-
dressed in this paper has a language theoretic interpretation
in terms of language equations. In general, solving systems
of equations of the form e = e′, where e and e′ are regular
expressions over an alphabet of constants and variables is
undecidable, because it is easy to express the universality
problem for Context Free Grammars in this way. In [13],
the authors study linear equations of the form

e0 + e1 · x1 + · · ·+ en · xn = e′0 + e′1 · x1 + · · ·+ e′n · xn
where e0, e

′
0, . . . , en, e

′
n are regular expressions, and they

prove that solving these equations is ExpTime-complete. In
contrast, we prove the solvability of another class of prob-
lems, namely, systems of language constraints of the form
e1 v e2 and e1 = e2 where e2 has no variables. The key idea
of our approach is that we can prove that solutions of the
above equations are closed under congruence, which enables
us to represent languages as graphs over the finite-state au-
tomaton for e2. Taking into account the language-theoretic
view, our work has also connections with [4, 42], which also
study language constraints of the forms e1 v e2, and e1 = e2.
However, in these works, e1 is restricted to be a single word
on both the source and the target alphabets.

The paper is organized as follows. In Section 2, we recall
some preliminary notions. In Section 3, we formally define
the problem of schema mapping simplification based on log-
ical implication. In Section 4, we study the problem in the
case where queries and views are conjunctive queries, and
unions thereof. In Section 5 we illustrate the techniques for
the case of RPQs over graph databases, and in Section 6
we extend them to two-way RPQs, and to (unions of) con-
junctive two-way RPQs. Section 7 briefly discusses GAV
simplification, and Section 8 concludes the paper.

2. PRELIMINARIES
In this work we deal with two data models, the standard

relational model [5], and the graph database model [21].
Given a (relational) alphabet Σ, a database D over Σ is

a finite structure over Σ. For a query q over Σ, we denote
with qD the set of tuples resulting from evaluating q in D.
A query q over Σ is empty if for each database D over Σ
we have qD = ∅. Given two queries q1 and q2 over Σ, we
say that q1 is contained in q2, denoted q1 v q2, if qD1 ⊆ qD2
for every database D over Σ. The queries q1 and q2 are
equivalent, denoted q1 ≡ q2, if both q1 v q2 and q2 v q1.

We assume familiarity with (unions of) conjunctive
queries, (U)CQs, over a relational database. In particular,
we consider such queries as interpreted under the active do-
main semantics [5]. The relational alphabets we are inter-

ested in, always include two unary predicates true and false,
returning respectively the active domain and the empty set.
Hence, for every n, we can express what we call the univer-
sal query and the empty query of arity n, denoted true/n,
respectively false/n, as the CQ that consist of one atom
true(x), respectively false(x), for every distinguished vari-
able x. We may omit n when it is clear from the context.
We recall that containment between (U)CQs can be charac-
terized in terms of homomorphisms (also called containment
mappings) [24]: For two CQs q1 and q2, we have that q1 v q2
iff there is a homomorphisms from q2 to q1, i.e., a mapping
h from the variables and constants of q2 to those of q1 that
is the identity on distinguished variables and constants and
such that, if r(x1, . . . , xk) is an atom of q2 with r 6= true,
then r(h(x1), . . . , h(xk)) is an atom of q1. For two UCQ q1
and q2, we have that q1 v q2 iff for each CQ qi1 in q1 there
is a CQ qj2 in q2 such that qi1 v qj2 [44].

We recall the basic notions regarding graph databases and
regular path queries. A graph database is a finite graph
whose nodes represent objects and whose edges are labeled
by elements from an alphabet of binary relational sym-
bols [25, 18, 1, 22]. An edge (o1, r, o2) from object o1 to
object o2 labeled by r represents the fact that relation r
holds between o1 and o2. A regular-path query (RPQ) over
an alphabet Σ of binary relation symbols is expressed as a
regular expression or a nondeterministic finite state automa-
ton (1NFA) over Σ. When evaluated on a graph database
D over Σ, an RPQ q computes the set qD of pairs of ob-
jects connected in D by a path in the regular language L(q)
defined by q.

We consider also two-way regular-path queries
(2RPQs) [20, 22], which extend RPQs with the in-
verse operator. Formally, let Σ± = Σ ∪ {r− | r ∈ Σ} be
the alphabet including a new symbol r− for each r in Σ.
Intuitively, r− denotes the inverse of the binary relation
r. If p ∈ Σ±, then we use p− to mean the inverse of p,
i.e., if p is r, then p− is r−, and if p is r−, then p− is r.
2RPQs are expressed by means of a 1NFA over Σ±. When
evaluated on a database D over Σ, a 2RPQ q computes the
set qD of pairs of objects connected in D by a semipath
that conforms to the regular language L(q). A semipath
in D from x to y (labeled with p1 · · · pn) is a sequence of
the form (y0, p1, y1, . . . , yn−1, pn, yn), where n ≥ 0, y0 = x,
yn = y, and for each yi−1, pi, yi, we have that pi ∈ Σ±,
and, if pi = r then (yi−1, yi) ∈ rD, and if pi = r− then
(yi, yi−1) ∈ rD. We say that a semipath (y0, p1, . . . , pn, yn)
conforms to q if p1 · · · pn ∈ L(q).

Finally, we consider conjunctions of 2RPQs and their
unions, abbreviated (U)C2RPQs [19], which are (unions of)
conjunctive queries constituted only by binary atoms whose
predicate is a 2RPQ. Specifically, a C2RPQ q of arity n is
written in the form

{ (x1, . . . , xn) | q1(y1, y2) ∧ · · · ∧ qm(y2m−1, y2m) }

where x1, . . . , xn, y1, . . . , y2m range over a set {z1, . . . , zk}
of variables, {x1, . . . , xn} ⊆ {y1, . . . , y2m}, and each qj is
a 2RPQ. When evaluated over a database D over Σ, the
C2RPQ q computes the set of tuples (o1, . . . , on) of objects
such that there is a total mapping ϕ from {z1, . . . , zk} to
the objects in D with ϕ(xi) = oi, for i ∈ {1, . . . , n}, and
(ϕ(y2j−1), ϕ(y2j)) ∈ qDj , for j ∈ {1, . . . ,m}.

We conclude by observing that (U)CQs, RPQs, 2RPQs,
and (U)C2RPQs are monotone, where a query q is monotone

3

if, whenever D1 ⊆ D2 (i.e., rD1 ⊆ rD2 for each relation r)
we have that qD1 ⊆ qD2 .

3. SCHEMA MAPPING SIMPLIFICATION
We refer to a scenario with one source schema, one target

schema, and a schema mapping between the two. To model
the source and the target schemas we refer to two finite
alphabets, the source alphabet Σs and the target alphabet
Σt, and to specify the mapping, we use a correspondence
between queries expressed in a given query language.

Definition 1. Given a query language Q, a Q-based
(schema) mapping assertion from Σs to Σt is a statement
of the form qs ; qt, where qs and qt are two queries in Q
with the same arity, respectively over Σs and over Σt. A Q-
based (schema) mapping from Σs to Σt is a set of mapping
assertions from Σs to Σt.

In the following, we specify explicitly Q, Σs, and Σt only
when they are required or not clear from the context.

We consider two types of schema mappings, called sound
and exact. Intuitively, in a sound mapping, the correspon-
dence between the tuples computed by qs and those com-
puted by qt is set containment, while in an exact mapping
the correspondence is set equality. Formally, given a source
database Ds and a target database Dt, we say that a sound
mapping M is satisfied by (Ds,Dt), denoted (Ds,Dt) |= M ,
if for each mapping assertion qs ; qt in M , we have that
qDs
s ⊆ qDt

t . Similarly, an exact mapping M is satisfied by
(Ds,Dt) if for each qs ; qt in M , we have that qDs

s = qDt
t .

A fundamental notion in our setting is that of logical im-
plication between mappings.

Definition 2. A mapping M1 logically implies a map-
ping M2, denoted M1 |= M2, if for every pair (Ds,Dt) such
that (Ds,Dt) |= M1, we also have that (Ds,Dt) |= M2.

We consider two simplified forms of mappings called lav
(local-as-view) and gav (global-as-view), respectively. A
lav assertion is an assertion qs ; qt, where qs is consti-
tuted simply by an atom whose predicate symbol belongs to
Σs, while qt is an arbitrary query1. Conversely, in a gav
assertion, qt is constituted simply by an atom (whose pred-
icate symbol belongs to Σt), while qs is an arbitrary query.
A lav mapping is a set of lav assertions with one asser-
tion for each symbol in Σs. If ML is a lav mapping and
a ∈ Σs, we denote with ML(a) the target query to which
a is mapped by ML. Conversely, a gav mapping is a set
of gav assertions with one assertion for each symbol in Σt.
Analogously to the case of lav mappings, MG(a) denotes
the source query to which the symbol a ∈ Σt is mapped by
the gav mapping MG. Note that some of the queries in a
lav (resp., gav) mapping may be the empty query.

The problem we consider aims at checking whether a sim-
plified mapping exists that logically implies a given mapping
M . We would like to rule out simplified mappings that triv-
ially imply M by making the query on the left-hand (resp.,
right-hand) side of some mapping assertion of M evaluate
to ∅ (resp., the active domain).

1For RPQs and 2RPQs, where query variables are not repre-
sented explicitly, we consider an atom to be simply a binary
predicate symbol.

Definition 3. A lav (resp., gav) mapping M ′ is said to
trivially imply a mapping M , denoted M ′ |=triv M , if there
is a mapping assertion qs ; qt ∈M such that for each pair
(Ds,Dt) with (Ds,Dt) |= M ′, we have that qDs

s = falseDs

(resp., qDt
t = trueDt).

Definition 4. Let t be one of sound or exact, f one of
lav or gav, and Q1 and Q2 two query languages. Mapping
simplification, denoted

MSimp[t, f,Q1,Q2],

is the following decision problem: given a Q1-based schema
mapping M of type t, check whether there exists a Q2-based
schema mapping M ′ of type t and form f such that M ′ |= M ,
and M ′ 6|=triv M .

If a simplified mapping exists, we are also interested in
actually computing one. Therefore, we consider the corre-
sponding synthesis problem.

Definition 5. Let t be one of sound or exact, f one of
lav or gav, and Q1 and Q2 two query languages. Mapping
synthesis, denoted,

MSynt[t, f,Q1,Q2],

is the following problem: given a Q1-based schema mapping
M of type t, find a Q2-based schema mapping M ′ of type t
and form f such that M ′ |= M , and M ′ 6|=triv M .

To rule out (uninteresting) cases where all LAV (or GAV)
mappings that imply a given mapping M do so trivially,
in the following we require that for each mapping assertion
qs ; qt ∈M , both qs and qt are different from false.

In general we are interested in the tightest simplification
of a mapping M , i.e., the simplification that better approx-
imates M . Hence, we also consider the maximal mapping
synthesis problem, MaxMSynt[t, f,Q1,Q2], where, given a
Q1-based mapping M of type t, we aim at computing a Q2-
based mapping M ′ of type t and form f such that M ′ |= M
and there is no Q2-based mapping M ′′ of type t and form f
such that M ′′ |= M , M ′ |= M ′′, and M ′′ 6|= M ′.

In this paper we study the above problems for a variety
of cases, where Q1 and Q2 range over (U)CQs and variants
of queries over graph databases.

We start by observing that we can characterize mapping
implication, and hence mapping simplification, in terms of
query unfolding wrt a set of mappings. We make use of such
a characterization in the technical development in the sub-
sequent sections. The notion of query unfolding is formally
defined as follows: let qs be a source query and ML a lav
mapping. The unfolding of qs wrt ML, denoted qs[ML], is
the target query obtained by replacing each atom α in qs
whose predicate symbol is a with ML(a). An analogous def-
inition holds for the unfolding qt[MG] of a target query qt
wrt a gav mapping MG.

Theorem 6. Let Q be a monotone query language.
(1) Let ML be a lav mapping and M a mapping, both Q-

based and of type sound (resp., exact). Then ML |= M iff
for each assertion qs ; qt in M , we have that qs[ML] v qt
(resp., qs[ML] ≡ qt).

(2) Let MG be a gav mapping and M a mapping, both Q-
based and of type sound (resp., exact). Then MG |= M iff
for each assertion qs ; qt in M , we have that qs v qt[MG]
(resp., qs ≡ qt[MG]).

4

Proof (sketch). We provide the proof for (1), in par-
ticular for the case of sound mappings. The other cases can
be proved analogously.

We start with the following observation, which is easy
to prove: if ML is a lav mapping, and Ds is the source
database obtained from a target database Dt by letting
rDs = ML(r)Dt for every r ∈ Σs, then for every source
query q, we have that qDs = q[ML]Dt .

“⇒” Now, assume that there is an assertion qs ; qt in
M such that qs[ML] 6v qt, and let Dt be such that for some
tuple d we have d ∈ qs[ML]Dt , and d 6∈ qDt

t . Let Ds be the
source database obtained from Dt by letting rDs = ML(r)Dt

for every r ∈ Σs. Clearly, (Ds,Dt) |= ML. By the above
observation, we have that qDs

s = qs[ML]Dt , and therefore
d ∈ qDs

s . It follows that (Ds,Dt) 6|= qs ; qt, and ML 6|= M .
“⇐” Assume that ML 6|= M , i.e., there is an assertion

qs ; qt in M , and a pair (Ds,Dt) such that (Ds,Dt) |=
ML, and qDs

s 6⊆ qDt
t , which means that there is d such that

d ∈ qDs
s but d /∈ qDt

t . Let D′s be such that rD
′
s = ML(r)Dt

for every r ∈ Σs. Clearly, D′s ⊇ Ds, and (D′s,Dt) |= ML.

Since qs is monotone, we have that d ∈ q
D′s
s = qs[ML]Dt ,

and therefore qs[ML] 6v qt.

Theorem 7. Let M be a mapping and M ′ a lav (resp.,
gav) mapping. Then M ′ |=triv M iff for some mapping
assertion qs ; qt ∈ M we have that qs[M

′] v false (resp.,
true v qt[M ′]).

Proof sketch. Similar to that of Theorem 6.

For many of the results in the next sections, we make use
of the above characterization, without further mentioning
Theorems 6 and 7.

4. LAV SIMPLIFICATION FOR (U)CQs
In this section, we consider the case of mappings based on

conjunctive queries (CQs) and their unions (UCQs), and
study the problem of simplifying a given mapping M in
terms of a lav mapping. The techniques we adopt for estab-
lishing our upper bounds are based on determining a poly-
nomial bound on the length of the queries to consider when
searching for the lav mapping logically implying M , and
are reminiscent of those in [39].

In the following, when we refer to a lav mapping logi-
cally implying a given mapping, we implicitly assume that
implication is non-trivial. We start with the problem of
simplifying a cq-based mapping in terms of a cq-based lav
mapping.

Theorem 8. Both MSimp[sound,lav,cq,cq] and
MSimp[exact,lav,cq,cq] are in NP.

Proof. Consider a sound cq-based mapping consisting
of a single assertion qs ; qt, where qt contains `qt atoms,
and a sound cq-based lav mapping ML such that qs[ML] v
qt. Then, there exists a homomorphism from qt to qs[ML],
and at most `qt atoms of qs[ML] are in the image of this
homomorphism. Hence, for each symbol a ∈ Σs occurring
in qs, only at most `qt atoms in query ML(a) are needed for
the homomorphism. In the general case where the mapping
M consists of several assertions, for each a ∈ Σs we need
at most `M =

∑
qs;qt∈M `qt atoms in the query ML(a),

in order to guarantee the existence of the homomorphisms

for all the assertions in M . Hence, in order to check for
the existence of an appropriate lav mapping ML, it suffices
to guess, for each symbol a ∈ Σs appearing in one of the
mapping assertions in M , a CQ ML(a) over Σt of size at
most `M , and check that qs[ML] v qt, for each qs ; qt ∈M .
In doing so, we rule out the guess of mappings that trivially
imply M . This gives us immediately an NP upper bound
for MSimp[sound,lav,cq,cq].

For MSimp[exact,lav,cq,cq], in addition to checking
that qs[ML] v qt, we need also to check that qt v qs[ML].
We observe that the bound on the number of atoms inML(a)
derived for the sound case is still valid, since if qt v qs[ML]
for a lav mapping ML, then also qt v qs[M ′L] for every lav
mapping M ′L such that M ′L(a) is constituted by a subset of
the atoms of ML(a). Therefore, the overall complexity does
not change.

For the case where M is ucq-based, and the lav mapping
ML is still cq-based, we can generalize the above argument
by considering containment between UCQs instead of con-
tainment between CQs.

Theorem 9. Both MSimp[sound,lav,ucq,cq] and
MSimp[exact,lav,ucq,cq] are in NP.

The last case we consider is the one where both M and
the lav mapping ML are ucq-based. In the sound case,
we show that simplification to a ucq-based lav mapping is
equivalent to simplification to a cq-based lav mapping.

Lemma 10. MSimp[sound,lav,ucq,ucq] admits a solu-
tion for a mapping M iff MSimp[sound,lav,ucq,cq] ad-
mits a solution for M .

Proof. Let M be a sound ucq-based mapping and ML

a sound ucq-based lav mapping such that ML |= M . Con-
sider the cq-based lav mapping M ′L obtained from ML by
choosing, for each symbol a in Σs, as M ′L(a) one of the CQs
in ML(a). We show that M ′L 6|=triv M , and that M ′L |= M .
Consider one assertion qs ; qt ∈ M such that qs[ML] is a
non-empty positive query. Such a mapping assertion exists,
since ML 6|=triv M . Then, qs[M

′
L] is a non-empty UCQ, and

hence M ′L 6|=triv M . To show that M ′L |= M , it is sufficient
to observe that, for each assertion qs ; qt ∈M , each CQ in
qs[M

′
L] is contained in qs[ML], and hence in qt.

By the above lemma, we trivially get:

Theorem 11. MSimp[sound,lav,ucq,ucq] is in NP.

In the exact case, if we allow for ucq-based lav mappings,
we get a higher upper-bound.

Theorem 12. MSimp[exact,lav,ucq,ucq] is in Πp
2.

We now show that the upper bounds for the sound cases
established in Theorems 8, 9, and 11 are tight.

Theorem 13. MSimp[sound,lav,cq,cq] is NP-hard.

Proof. The proof is by a reduction from 3-colorability.
Consider a graph G = (N,E), with N = {n1, . . . , nk}.

Let Σs = {t/2, as/2, af/2}, Σt = {e/2, bs/2, bf/2},

qT = {(s, f) | as(s, r), as(s, g), as(s, b),
t(r, g), t(g, r), t(r, b), t(b, r), t(g, b), t(b, g),
af (r, f), af (g, f), af (b, f) }

qG = {(s, f) | bs(s, x1), . . . , bs(s, xk),∧
(ni,nj)∈E{e(xi, xj), e(xj , xi)},

bf (x1, f), . . . , bf (xk, f) }

5

and define the following mapping M :

qT ; qG (1)

{(x, y) | t(x, y)} ; {(x, y) | e(x, y)} (2)

{(x, y) | as(x, y)} ; {(x, y) | bs(x, y)} (3)

{(x, y) | af (x, y)} ; {(x, y) | bf (x, y)} (4)

Intuitively, assertion (7) maps a triangle, whose three ver-
texes are connected by as and af to the distinguished vari-
ables s and f respectively, to the graph G, whose nodes are
connected by bs and bf to the distinguished variables s and
f respectively.

One can show that G is 3-colorable iff
MSimp[sound,lav,cq,cq] with input M admits a so-
lution.

Corollary 14. MSimp[sound,lav,ucq,cq] and
MSimp[sound,lav,ucq,ucq] are NP-hard.

Proof. From Theorem 13 we trivially get the result for
MSimp[sound,lav,ucq,cq], and by considering Lemma 10,
we get the result also for MSimp[sound,lav,ucq,ucq].

We conjecture that the upper bounds we provided for the
case where schema mappings are of type exact are tight.

5. LAV SIMPLIFICATION FOR RPQs
In this section, we consider the case of RPQs over graph

databases, and study the problem of simplifying an rpq-
based mapping in terms of an rpq-based lav mapping. For
our results, we exploit a straightforward language theoretic
characterization of containment between RPQs.

Theorem 15 ([21]). Let q1, q2 be two RPQs, and
L(q1), L(q2) the corresponding regular languages. Then
q1 v q2 iff L(q1) ⊆ L(q2).

In the following, we identify an RPQ q over an alphabet Σ
with the language over Σ accepted by the regular expression
(RE) or 1NFA representing q. Considering the language-
theoretic characterization above, it follows from Theorems 6
and 7 that, if ML is a lav mapping and M a mapping,
both of type sound (resp., exact), then ML |= M and
ML 6|=triv M iff for each assertion qs ; qt in M , we have
that qs[ML] ⊆ qt (resp., qs[ML] = qt) and qs[ML] 6= ∅. Here,
the unfolding qs[ML] of qs wrt ML denotes the language over
Σt obtained from qs by expanding in each word in qs each
symbol a ∈ Σs with the language ML(a).

We start by showing that we can characterize mapping
implication ML |= M between a lav mapping ML and a
mapping M in terms of a single language containment (for
sound mappings) or language equality (for exact mappings).
For this, we extend the notion of unfolding of qs wrt ML

to the case where qs may contain additional symbols wrt
those in Σs. In particular, the additional symbols are left
unchanged by the unfolding.

Proposition 16. Let M be an rpq-based mapping of
type sound (resp., exact) from Σs to Σt, and let # be a
symbol not in Σs∪Σt. Then there are RPQs qM,s over Σs∪
{#} and qM,t over Σt ∪ {#}, both of size linear in M , such
that an rpq-based lav mapping ML of type sound (resp.,
exact) is a solution to MSynt[sound,lav,rpq,rpq] (resp.,
MSynt[exact,lav,rpq,rpq]) with input M iff qM,s[ML] ⊆
qM,t (resp., qM,s[ML] = qM,t) and qM,s[ML] 6= ∅.

Proof. Let M = {q1,s ; q1,t, . . . , qk,s ; qk,t}. We set
qM,s = q1,s·# · · ·#·qk,s and qM,t = q1,t·# · · ·#·qk,t. Intu-
itively, the fresh symbol # acts as a separator for the dif-
ferent parts of qM,s and qM,t. It is easy to verify that, for
every lav mapping ML, we have that qi,s[ML] ⊆ qi,t (resp.,
qi,s[ML] = qi,t) for i ∈ {1, . . . , k} iff qM,s[ML] ⊆ qM,t (resp.,
qM,s[ML] = qM,t), and that qi,s[ML] 6= ∅ for i ∈ {1, . . . , k}
iff qM,s[ML] 6= ∅.

In the following, let Σn be an alphabet of new
symbols disjoint from Σs and Σt, and let Σ′s =
Σs ∪ Σn and Σ′t = Σt ∪ Σn. By Proposi-
tion 16, the problem MSimp[sound,lav,rpq,rpq] (or
MSimp[exact,lav,rpq,rpq]) can be polynomially reduced
to the problem of checking, whether for languages qs over
Σ′s and qt over Σ′t there is a lav mapping ML such that
qs[ML] ⊆ qt (resp., qs[ML] = qt) and qs[ML] 6= ∅.

Our technique for mapping simplification exploits a char-
acterization of regular languages by means of congruence
classes [43, 23, 42]. Let At = (Σ′t, St, s

0
t , δt, Ft) be a 1NFA

for qt. Then At defines a set of congruence classes partition-
ing Σ′∗t . Each congruence class is characterized by a binary
relation G ⊆ St×St (i.e., a directed graph over St), and we
define the congruence class associated with G as

L(G) = {w ∈ Σ′∗t | for all s1, s2 ∈ St,
s2 ∈ δt(s1, w) iff (s1, s2) ∈ G}.

Intuitively, each word w ∈ L(G) connects s1 to s2 in At, for
each pair (s1, s2) ∈ G. For a word w ∈ Σ′∗t , we denote with
[w]At the congruence class to which w belongs.

It follows immediately from the characterization of con-
gruence classes in terms of binary relations over the states of
At that the set of congruence classes is closed under concate-
nation. Specifically, for two congruence classes L(G1) and
L(G2), respectively with associated relations G1 and G2, the
binary relation associated with L(G1) · L(G2) is G1 ◦G2.2

We introduce some notation that we use here, and later
in this section:
• Gt = 2St×St denotes the set of binary relations associ-

ated with the congruence classes for At,
• Gεt = {(s, s) | s ∈ St}, and
• Gbt = {(s1, s2) | s2 ∈ δt(s1, b)}, for each b ∈ Σ′t.

Then, for each G ∈ Gt, we can characterize the congruence
class L(G) associated with G in terms of a DFA.

Lemma 17 ([43]). The language L(G) is accepted by
the DFA AG = (Σ′t,Gt, Gεt , δAt , FG), where FG = {G} and
δAt(R, b) = R ◦Gbt , for each R ⊆ St × St and b ∈ Σ′t.

Notice that, if At has m states, then AG has 2m
2

states.

We observe next that we need to allow for the presence
of empty queries in the lav mapping we are looking for.
Consider, e.g., qs = (a1 + a3) · (a2 + a3) and qt = b1 · b2.
It is easy to see that for all lav mappings ML such that
qs[ML] ⊆ qt, we have that ML(a3) = ∅. One such lav
mapping ML is

ML(a1) = b1, ML(a2) = b2, ML(a3) = ∅.

Observe also that [b1]At = {b1} and [b2]At = {b2}, where At
is the obvious 1NFA for b1 · b2.

2We use L1 ·L2 to denote concatenation between languages,
and G1 ◦G2 to denote composition of binary relations.

6

5.1 Upper bounds for sound mappings
We first deal with the case of sound mappings, and prove

two preliminary results. The first lemma states that w.l.o.g.
we can restrict the attention to lav mappings in which the
queries are singletons, i.e., queries that are either empty or
constituted by a single word.

Lemma 18. Let qs be an RPQ over Σ′s, and qt an RPQ
over Σ′t. If there exists an rpq-based lav mapping ML such
that qs[ML] ⊆ qt, then there exists an rpq-based lav map-
ping M ′L such that qs[M

′
L] ⊆ qt in which each query is either

a single word over Σt or empty.

The next lemma shows that one can close queries in lav
mappings under congruence.

Lemma 19. Let qs be an RPQ over Σ′s, qt an RPQ over
Σ′t expressed through a 1NFA At, and ML a singleton map-
ping such that qs[ML] ⊆ qt. Then, for M ′L defined such that

M ′L(a) =

{
[wa]At , if ML(a) = wa

∅, if ML(a) = ∅,

we have that qs[M
′
L] ⊆ qt.

From these two lemmas we get that, when searching for
a lav mapping ML satisfying qs[ML] ⊆ qt, we can restrict
the attention to queries that are congruence classes for At.

Lemma 20. Let qs be an RPQ over Σ′s, and qt an RPQ
over Σ′t expressed through a 1NFA At. If there exists
an rpq-based lav mapping ML such that qs[ML] ⊆ qt,
then there exists an rpq-based lav mapping M ′L such that
qs[M

′
L] ⊆ qt, and such that M ′L(a) is a congruence class for

At, for each a ∈ Σs.

Proof. If there exist an rpq-based lav mapping ML

such that qs[ML] ⊆ qt, then by Lemma 18, w.l.o.g., we can
assume that ML consists of singleton queries. Then, the
claim follows from Lemma 19.

We derive now a procedure that, given an RPQ qs over
Σ′s, and an RPQ qt over Σ′t expressed respectively through
1NFAs As = (Σ′s, Ss, s

0
s, δs, Fs) and At = (Σ′t, St, s

0
t , δt, Ft),

checks for the existence of a sound rpq-based lav mapping
ML such that
(1) qs[ML] 6= ∅, and
(2) qs[ML] ⊆ qt.
Specifically, by Lemma 20, it is sufficient to consider lav
mappings in which each query is constituted by a single con-
gruence class, which can be represented by a binary relation
over the state set St of At. Hence, for each a ∈ Σs, we guess
such a binary relation Ga and verify that for the lav map-
ping ML defined by ML(a) = L(Ga), conditions (1) and (2)
are satisfied. In doing so, we exploit Lemma 17, which pro-
vides a characterization of L(Ga) in terms of a DFA AGa .

To check condition (1), we proceed as follows:
1. for each a ∈ Σs, we check whether a is a bad symbol,

i.e., whether L(Ga) = ∅;
2. we delete from As each transition labeled by a bad

symbol; and
3. we check whether the resulting 1NFA accepts a non-

empty language.

To check condition (2), we proceed as follows:

1. we construct an 1NFA AML accepting qs[ML];
2. we construct the 1NFA A* = AML×Āt as the product

NFA of AML and the 1NFA Āt accepting Σ′∗t \ qt;
3. we check A* for emptiness.

To construct AML , we observe that a word w is in qs[ML] if
there is a word a1 · · · an ∈ qs, and for i ∈ {1, . . . , n}, words
wi ∈ L(Gai) such that w = w1 · · ·wn. Hence, AML sim-
ulates As while accepting words in Σ′t that are concatena-
tions of words in the various languages L(Gai). Specifically,
AML = (Σ′t, SML , s

0
ML

, δML , FML), where
• SML = Σ′s × Ss × G;
• s0

ML
= Σ′s × {s0

s} ×Gεt ;
• FML = {(a, s,Ga) | s ∈ Fs, a ∈ Σs} ∪

{(b, s,Gbt) | s ∈ Fs, b ∈ Σn};
• and for each a ∈ Σ′s, s ∈ Ss, R ∈ G, and b ∈ Σ′t,

δML((a, s,R), b) =

{(a, s, R ◦Gbt)}, if a ∈ Σs, R 6= Ga;

{(a, s, R ◦Gbt)} ∪⋃
a′∈Σ′s,s

′∈δs(s,a){(a
′, s′, Gbt)}, if a ∈ Σs, R = Ga;⋃

a′∈Σ′s,s
′∈δs(s,a){(a

′, s′, Gεt)}, if a ∈ Σn, a = b;

∅, otherwise.

Theorem 21. MSimp[sound,lav,rpq,rpq] is in PSpace.

Proof. By Lemma 20, to check whether
MSimp[sound,lav,rpq,rpq] admits a solution, it suf-
fices guess for each symbol a ∈ Σs a binary relation Ga over
the state set St of At, and check whether for the resulting
rpq-based lav mapping ML conditions (1) and (2) hold.
When checking condition (1), the emptiness test in item (1)
can be done for each a ∈ Σs in NLogSpace in |AGa |, and
since the number of states of AGa is exponential in |At|, in
PSpace in |At|. The non-emptiness test in item (3) can be
done in NLogSpace in |As|. When checking condition (2),
we do not need to construct AML , Āt, and A* explicitly,

but can check the nonemptiness of A* on the fly while

constructing AML and complementing At. Hence, since the
number of states of AML is linear in |As| and exponential
in |At|, we get that condition (2) can be checked in PSpace
in |At| and in NLogSpace in |As|.

5.2 Upper bounds for exact mappings
The method based on congruence classes can be adapted

to address also lav simplification for exact mappings. The
difference wrt sound mappings is that in this case we need to
consider also lav mappings in which the queries are unions
of congruence classes. Indeed, congruence classes (and hence
solutions to the lav mapping synthesis problem) are not
closed under union, as shown by the following example.

Let qs = a1 · a2 and qt = 00 + 01 + 10. Then
the following two incomparable mappings are solutions to
MaxMSynt[sound,lav,rpq,rpq] when the input mapping
is {qs ; qt}:

M1
L(a1) = 0,

M1
L(a2) = 0 + 1.

M2
L(a1) = 0 + 1,

M2
L(a2) = 0.

Notice that the mapping ML, where ML(ai) = M1
L(ai) +

M2
L(ai), for i ∈ {1, 2}, is not a solution, since qs[ML] in-

cludes 11.
On the other hand, we can show that considering map-

ping in which the queries are unions of congruence classes is

7

sufficient to obtain maximal unfoldings. We first generalize
Lemma 19 to non-singleton queries.

Lemma 22. Let qs be an RPQ over Σ′s, qt an RPQ over
Σ′t expressed through an 1NFA At, and ML a lav mapping
such that qs[ML] ⊆ qt. Then for M ′L with

M ′L(a) =

{⋃
w∈ML(a)[w]At , if ML(a) 6= ∅
∅, if ML(a) = ∅.

we have that qs[M
′
L] ⊆ qt.

Proof. Consider a word a1 · · · ah ∈ qs. If there is one
of the ai such that ML(ai) = ∅, then ML(a1) · · ·ML(ah) =
∅ ⊆ qt. Otherwise, we have that, for i ∈ {1, . . . , h}, for
some wai ∈ ML(ai), the word wa1 · · ·wah ∈ qs[ML] ⊆
L(At). We show that, for each i ∈ {1, . . . , h}, we also
have that wa1 · · ·wai−1 · w′ · wai+1 · · ·wah ∈ L(At), for
each w′ ∈

⋃
w∈ML(ai)

[w]At . First, since qs[ML] ⊆ qt, if

wa1 · · ·wah ∈ qs[ML] ⊆ L(At), then, for each w ∈ ML(ai),
we also have that wa1 · · ·wai−1 ·w ·wai+1 · · ·wah ∈ qs[ML] ⊆
L(At). Then there is a sequence s0, s1, . . . , sh of states
of At such that s0 = s0

t , sh ∈ Ft, sj ∈ δt(sj−1, w
aj),

for j ∈ {1, . . . , i−1, i+1, . . . , h}, and si ∈ δt(si−1, w).
Then, by the definition of congruence classes, for each word
w′ ∈ [w]At , we have that si ∈ δt(si−1, w

′
i), and hence

wa1 · · ·wai−1 · w′ · wai+1 · · ·wah ∈ L(At).

The above lemma implies that, when searching for maxi-
mal lav mappings that imply a given mapping, we can re-
strict the attention to queries that are unions of congruence
classes.

Lemma 23. Given a mapping M = {qs ; qt}, where
qt is defined by a 1NFA At, every solution ML to
MaxMSynt[sound,lav,rpq,rpq] with input M is such that
each query in ML is a union of congruence classes for At.

Proof. Consider a solution ML to MaxM-
Synt[sound,lav,rpq,rpq] with input M , and assume
that for some a ∈ Σs, ML(a) is not a union of congruence
classes for At. Then there is some word w ∈ ML(a)
and some word w′ ∈ [w]At such that w′ /∈ ML(a). By
Lemma 22, the mapping M ′L with M ′L(a) = ML(a) ∪ {w′}
is also a solution to MaxMSynt[sound,lav,rpq,rpq] with
input M , thus contradicting the maximality of ML.

We get the following upper bound for the lav simplifica-
tion in the exact case.

Theorem 24. MSimp[exact,lav,rpq,rpq] is in Exp-
Space.

Proof. By Lemma 23, we can nondeterministically
choose mappings ML in which the queries are unions of con-
gruence classes and then test whether qt = qs[ML]. To do
so, we build a 1NFA As,ML accepting qs[ML] as follows.
We start by observing that for each union U of congruence
classes, we can build the automaton AU = (G, st, Rε, δAt , U)
accepting the words in U , which incidentally, is determinis-
tic. Hence, by substituting each a-transition in the 1NFA
As for qs with the 1NFA AUa , where ML(a) = Ua, we obtain
a 1NFA As,ML . Note that, even when As is deterministic,
As,ML may be nondeterministic.

To test qs[ML] ⊆ qt, we complement At, obtaining the
1NFA At, and check the 1NFA As,ML × At for emptiness.
The size of As,ML × At is polynomial in the size of As and
exponential in the size of At. Checking for emptiness can be
done in exponential time, and considering the initial nonde-
terministic guess, we get a NExpTime upper bound.

To test qt ⊆ qs[ML], we complement As,ML , obtaining
the 1NFA As,ML , and check At × As,ML for emptiness.
Since As,ML is nondeterministic, complementation is ex-
ponential. However, we observe again that such a com-
plementation can be done on the fly in ExpSpace, while
checking for emptiness and intersecting with At. As a
consequence, considering the initial nondeteministic guess,
MSimp[exact,lav,rpq,rpq] can be decided in NExpSpace,
which is equivalent to ExpSpace.

Note that the proofs of Theorems 21 and 24 imply that,
wrt lav mapping simplification, considering queries that are
RPQs (as opposed to general, possibly non-regular, path lan-
guages) is not a restriction, since the existence of general lav
mappings implies the existence of regular ones. This is also
in line with a similar observation holding for the existence
of rewritings of RPQs wrt RPQ views [21].

Finally, we observe that using the machinery based on
unions of congruence classes, we can also solve the maximal
mapping synthesis problem. We guess a mapping and check
that it is a solution to mapping synthesis. To check that it
is a maximal solution, we generate all other mappings and
check that they are contained in our candidate solution.

Theorem 25. A solution to MaxMSynt[lav,sound,
rpq,rpq] and to MaxMSynt[lav,exact,rpq,rpq] can be
computed in ExpSpace.

5.3 Lower bounds
It turns out that the upper bound established for the

sound case is tight:

Theorem 26. MSimp[sound,lav,rpq,rpq] is PSpace-
hard.

Proof. The proof is by a reduction from the universal-
ity problem for REs. Given an RE e over the alphabet
Σt = {b1, . . . , bn}, let Σs = {a1, . . . , an}, and let Me be
the mapping constituted by the following assertions:

Σ∗s ; e (5)

a1 ; b1 · · · an ; bn (6)

We show that e is universal iff MSimp[sound,lav,rpq,rpq]
with input Me admits a solution. For the “only-if” part,
assume that e is universal and consider the lav mapping
ML consisting of the mapping assertions (6). We have that
Σ∗s [ML] = Σ∗t , and since e is universal, also Σ∗s [ML] ⊆ e.
For the “if-part”, consider a lav mapping ML such that
qs[ML] ⊆ qt and qs[ML] 6= ∅, for each mapping assertion
qs ; qt in Me. By the mapping assertions (6), we have that
ML(ai) 6= ∅ (since ai is the left-hand side of a mapping as-
sertion) and that ML(ai) must include bi, for i ∈ {1, . . . , n},
and hence Σ∗s [ML] = Σ∗t . Since Σ∗s [ML] ⊆ e, we have that e
is universal.

It is easy to see that the above proof shows also PSpace-
hardness of simplification for exact mappings.

8

Corollary 27. MSimp[exact,lav,rpq,rpq] is
PSpace-hard.

However, we can get a tight lower bound for a generaliza-
tion of MSimp[exact,lav,rpq,rpq] in which we allow the
input mapping to contain both sound and exact mapping
assertions. We do so by showing an ExpSpace lower bound
for a problem that is closely related to the mapping simpli-
cation problem.

Consider a finite alphabet Σ and a finite set V of vari-
ables. A language constraint is a statement of the form
e1 v e2, where e1 and e2 are regular expressions over Σ∪V.
A language-constraint problem P is a finite set of language
constraints. A solution to P is an assignment σ : V → 2Σ∗ ,
assigning a language over Σ to each variable in V such that
L(e1[σ]) = L(e2[σ]). It is easy to express the universality
problem for context-free grammars as a language-constraint
problem, which implies that the latter is undecidable. Here
we consider left-handed language constraint problems, where
we allow constraints of the form e1 v e2 and e1 = e2, but
require that variables appear only in the left-hand side of
the constraint. The technique for the exact version of the
lav mapping simplification problem can be used to show
an ExpSpace upper bound for solving left-handed language
constraint problems. We now show a matching lower bound.

To prove the result we exploit a reduction from tiling prob-
lems [47, 16]. A tile is a unit square of one of several types
and the tiling problem we consider is specified by means of a
finite set ∆ of tile types, two binary relations H and P over
∆, representing horizontal and vertical adjacency relations,
respectively, and two distinguished tile types tS , tF ∈ ∆.
The tiling problem consists in determining whether, for a
given number n in unary, a region of the integer plane of
size 2n × k, for some k > 0, can be tiled consistently with
the adjacency relations H and P , and with the left bottom
tile of the region of type tS and the right upper tile of type
tF . We also require that the last tile of a row and the first
tile of the next row are consistent with H. Using a reduction
from acceptance of ExpSpace Turing machines analogous to
the one in [47], it can be shown that this tiling problem is
ExpSpace-complete.

Theorem 28. Solving left-handed language constraints is
ExpSpace-complete.

Proof sketch. We sketch the lower-bound argument.
Let T = (∆, H, P, tS , tF) be an instance of the ExpSpace-

complete tiling problem above and n a number in unary. The
alphabet is Σ = ∆∪{0, 1}3 ∪{#}. Intuitively, the letters in
∆ denote tiles, symbols in {0, 1}3 denote address bits, and
denotes a separation marker. The idea is to encode each
tiled cell by a word of length n+2 of the form #·({0, 1}3)n·∆,
consisting of a marker, an n-bit address, and a tile symbol.
We use an element in {0, 1}3 for each address bit to make it
easy to check that two n-bit addresses are consecutive; we
use n-bits for the current address, n bits for the carry, and n
bits for the next address. Thus, each tiling can be described
by a word in (# · ({0, 1}3)n ·∆)∗, obtained by encoding each
cell as described above, and then concatenating the symbols,
first column by column and then row by row.

Consider a word w ∈ Σ∗. Such a word does not describe
a proper tiling if one of the following errors can be found in
the word:

1. The symbol # does not occur precisely in positions
(n+ 2)i, for i = 0, 1,

2. The symbols in ∆ do not occur precisely in positions
n+ 1 + (n+ 2)i, for i = 0, 1,

3. The first address is not 0n.
4. The last address is not 1n.
5. There is a pair of adjacent but not successive addresses.
6. The first tile is not tS .
7. The last tile is not tF .
8. There is a pair of adjacent blocks with tiles that violate

the relation H.
9. There is a pair of vertically adjacent blocks with tiles

that violate the relation P .
We do need to define the notion of vertical adjacency. Two
blocks are vertically adjacent if their addresses agree and
either both addresses are 0n and there is no occurrence of
0n between them, or both addresses are not 0n and there is
precisely one ocurrence of 0n between them.

If the tiling problem has no solution, then every word in
Σ∗ must contain an error. We now define a constraint of
the form eerror = Σ∗, where the “task” of eerror is to discover
errors in candidate words. The expression eerror is the sum
of several terms corresponding to the various errors. We
now sketch how to “discover” these possible errors. In order
to have the left-hand sides use only variables, we introduce
a variable va for each letter a ∈ Σ, accompanied by the
constraint va = a. We use VΣ to abbreviate

∑
a∈Σva.

Most of the errors can be discovered with a single regular
expression. For example, the error where the symbol # does
not occur precisely in positions (n + 2)i, for i = 0, 1, . . ., is
described using the expression

(Vn+2
Σ)∗ · (

∑
1≤i≤n+1V

i
Σ) ·# · V∗Σ

The one error that is challenging is where there is a pair
of vertically adjacent blocks with tiles that violate the rela-
tion P . Discovering this error is more difficult and cannot
be done by one regular expression; rather, several additional
constraints are needed. For simplicity we ignore the fact that
each address bit is encoded by three bits rather than one.

Let enza be a regular expression that describes nonzero
addresses:

∑
0≤i≤n−1{0, 1}

i · 1 · {0, 1}n−i−1.
We add to eerror the following term, which discovers non-

matching tiles at zero-addressed vertically adjacent tiles.∑
(t,t′)/∈P

(
V∗Σ ·# · 0n · t · (# · enza ·∆)∗ ·# · 0n · t′ · V∗Σ

)
We need to deal with non-zero-addessed vertically adja-

cent blocks. For this we use several constraints. First:

vnzava v
∑

(t,t′)/∈P (# · enza · t · (# · enza ·∆)∗ ·# · 0n ·∆ ·
(# · enza ·∆)∗ ·# · enza · t′)

This says that vnzava describes sequences of blocks that
start and end with a pair of non-matching non-zero-
addressed blocks, with a single zero-addressed block in be-
tween. We still have to impose the constraint that the first
and last block have equal addresses. We do this with n con-
straints, one for each bit of the address. That is for each i,
0 ≤ i ≤ n− 1, we add the constraint:

vnzava v (# · {0, 1}i · 0 · {0, 1}n−i−1 ·∆ · (# · {0, 1}n ·∆)∗·
· {0, 1}i · 0 · {0, 1}n−i−1 ·∆) +

(# · {0, 1}i · 1 · {0, 1}n−i−1 ·∆ · (# · {0, 1}n ·∆)∗·
· {0, 1}i · 1 · {0, 1}n−i−1 ·∆)

This constraint says that the i-th bits of the first and last
addresses are either both 0 or both 1.

9

Now we can add to eerror the term V∗Σ · vnzava · V∗Σ, which
discovers all errors due to not-matching, non-zero-addressed
vertically adjacent blocks.

Note that the constraint system constructed is of size
quadratic in the size of the tiling system. If the tiling
problem has no solution, then every word in Σ∗ contains
an error and the contraint problem constructed is satisfi-
able. If the tiling problem has a solution, then a word de-
scribing a proper tiling has no error, and for no assignment
σ : V → 2Σ∗ we have L(eerror [σ]) = Σ∗, since eerror captures
only errors.

Let MSimp[mixed,lav,rpq,rpq], be the following deci-
sion problem: given an rpq-based schema mapping M con-
sisting both of sound and of exact mapping assertions,
check whether there exists an rpq-based lav schema map-
ping M ′ of type exact such that M ′ |= M , and M ′ 6|=triv M .

As a corollary of Theorem 28, we get the following result.

Corollary 29. MSimp[mixed,lav,rpq,rpq] is
ExpSpace-complete.

6. EXTENSIONS
In this section we sketch the extension of the results of

the previous section on simplification in terms of lav map-
pings to more expressive classes of queries: 2RPQs, CRPQs,
UCRPQs, and UC2RPQs.

6.1 2RPQs
Consider now simplification for mappings based on

2RPQs, expressed by means of 1NFAs over the alphabets
Σ±s and Σ±t .

A key concept for 2RPQs is that of folding, of a lan-
guage [22], which intuitively denotes the set of words that
are the result of repeatedly cancelling out adjacent occur-
rences of a symbol and its inverse. Let u, v ∈ Σ±. We say
that v folds onto u, denoted v u, if v can be “folded” on
u, e.g., abb−bc abc. Formally, we say that v = v1 · · · vm
folds onto u = u1 · · ·un if there is a sequence i0, . . . , im of
positive integers between 0 and |u| such that
• i0 = 0 and im = n, and
• for j ∈ {0, . . . ,m}, either ij+1 = ij + 1 and vj+1 =
uij+1, or ij+1 = ij − 1 and vj+1 = u−ij+1

.

Let L be a language over Σ±. We define fold(L) = {u | v
u, v ∈ L}.

A language-theoretic characterization for containment of
2RPQs was provided in [22]:

Lemma 30. Let q1 and q2 be 2RPQs. Then q1 v q2 iff
L(q1) ⊆ fold(L(q2)).

Furthermore, it is shown in [22] that if A is an n-state 1NFA
over Σ±, then there is a 2NFA for fold(L(A)) with n·(|Σ±|+
1) states. (We use 2NFA to refer to two-way automata.)

In the mapping simplification problem, we are given
queries qs and qt, expressed as 1NFAs As and At, respec-
tively, and we are asked whether there exist a 2RPQ-based
lav mapping ML such that qs[ML] v qt or qs[ML] = qt, and
also qs[V] 6≡ ∅.

Here we can still use Lemma 23 for the congruence-class
based solution. A simplistic approach would be to convert
the 2NFA for fold(L(At)) into a 1NFA, with an exponen-
tial blow-up, and proceed as in Section 5. To avoid this

exponential blowup, we need an exponential bound on the
number of congruence classes. For a 1NFA, we saw that
each congruence class can be defined in terms of a binary
relation over its set of states. It turns out that for a 2NFA
A, a congruence class can be defined in terms of four binary
relations over the set St of states of A:

1. Rlr: a pair (s1, s2) ∈ Rlr means that there is a word
w that leads A from s1 to s2, where w is entered on
the left and exited on the right.

2. Rrl: a pair (s1, s2) ∈ Rrl means that there is a word
w that leads A from s1 to s2, where w is entered on
the right and exited on the left.

3. Rll: a pair (s1, s2) ∈ Rll means that there is a word w
that leads A from s1 to s2, where w is entered on the
left and exited on the left.

4. Rrr: a pair (s1, s2) ∈ Rrr means that there is a word
w that leads A from s1 to s2, where w is entered on
the right and exited on the right.

Thus, the number of congruence classes when A has m states

is 24m2

rather than 2m
2

, which is still an exponential. This
enables us to adapt the technique of Section 5 with essen-
tially the same complexity bounds.

Theorem 31. MSimp[sound,lav,2rpq,2rpq] is
PSpace-complete. MSimp[exact,lav,2rpq,2rpq] is
in ExpSpace.

6.2 CRPQs and UC2RPQs
Consider now the mapping simplification problem for the

case where the input mapping is expressed in terms of CR-
PQs, where the constituent RPQs are expressed by means of
1NFAs. Here the lav mappings have to be in terms of RPQs,
rather than CRPQs, since CRPQs are not closed under sub-
stitutions. The crux of our approach is to reduce contain-
ment of two CRPQs, q1 and q2 to containment of standard
languages. This was done in [19]. Let qh, for h = {1, 2}, be
in the form

qh = { (x1, . . . , xn) | qh,1(yh,1, yh,2) ∧ · · · ∧
qh,mh(yh,2mh−1, yh,2mh) }

and let V1, V2 be the sets of variables of q1 and q2 respec-
tively. It is shown in [19] that the containment q1 v q2
can be reduced to the containment L(A1) ⊆ L(A2) of two
word automata A1 and A2. A1 is a 1NFA, whose size is
exponential in q1 and it accepts certain words of the form

$d1w1d2$d3w2d4$ · · · $d2m1−1wm1d2m1$

where each di is a subset of V1 and the words wi are over
the alphabet of A1. Such words constitute a linear repre-
sentation of certain graph databases that are canonical for
q1 in some sense. A2 is a 2NFA, whose size is exponential in
the size of q2, and it accepts words of the above form if the
there is an appropriate mapping from q2 to the database rep-
resented by these words. The reduction of the containment
q1 v q2 to L(A1) ⊆ L(A2) is shown in [19].

The ability to reduce containment of CRPQs to con-
tainment of word automata means that we can also ap-
ply the congruence-class technique of Section 5. Suppose
that we have an rpq-based lav mapping ML such that
L(As[ML]) ⊆ L(At). Then we can again assume that the

10

queries in the lav mapping are closed with respect to the
congruence classes of At. Thus, the techniques of Section 5
can be applied.

Theorem 32. MSimp[sound,lav,crpq,rpq] is in Exp-
Space. MSimp[exact,lav,crpq,rpq] is in 2ExpSpace.

Finally, we consider UC2RPQ queries, which combine
UCQs and 2RPQs. This requires combining the techniques
developed for RPQs, 2RPQs, and CRPQs. The key idea is
the reduction of query containment to containment of word
automata. The resulting upper bounds are identical to those
we obtained for CRPQs.

7. GAV SIMPLIFICATION
In this section, we consider the case of simplifying map-

pings in terms of gav mappings. Our results cover only
a subset of the possible combination of the problem space,
specifically gav simplification is wide open for rpq-based
mappings. It should be noted that for exact mappings, the
lav case and gav case coincide, so the results from Section 4
apply; we focus therefore on sound mappings.

We start by considering sound cq-based mappings.

Theorem 33. MSimp[sound,gav,cq,cq] is in NP.

Proof. Consider a sound cq-based mapping M consist-
ing of a single assertion qs ; qt and assume there exists some
sound cq-based gav mapping MG such that qs v qt[MG],
witnessed by a homomorphism h, and qt[MG] 6= trueDt .
We show that there is a sound cq-based gav mapping M ′G
of bounded size such that qs v qt[M

′
G]. Indeed, since

qt[MG] 6= trueDt , there must be one distinguished variable
x and one symbol b ∈ Σt, such that x occur in an atomic
formula with the symbol b in MG[b]. We now obtain M ′G(b)
from MG(b) by selecting in MG(b) such an atom. For all
other symbols b′ ∈ Σt, we take M ′G(b′) to be true. By con-
structing M ′G in this way, we have that the atoms in qt[M

′
G]

are a subset of the atoms in qt[MG], and hence the projection
of h on such atoms is still a homomorphism to qs.

In the general case where the mapping M consists of k
assertions, we can apply the above argument for each of the
assertions in M . This shows that, if there exists some sound
gav mapping MG such that MG |= M , then there is also
a gav mapping M ′G such that M ′G(b) has at most k atoms
and M ′G |= M . Hence, in order to check the existence of an
appropriate gav mapping MG, it suffices to guess (avoiding
trivial mappings), for each symbol b ∈ Σt appearing in M ,
a CQ MG(b) over Σs of size at most k, and check that qs v
qt[MG], for each qs ; qt ∈M .

This result extends immediately to ucq-based mappings,
by checking containment between UCQs, instead of CQs.

Theorem 34. MSimp[sound,gav,ucq,cq] is in NP.

For UCQ-based mappings, we get the same upper bound,
with a somewhat subtler argument.

Theorem 35. MSimp[sound,gav,ucq,ucq] is in NP.

Proof. We consider first the case of a sound ucq-based
mapping M consisting of a single assertion qs ; qt. Assume
there exists some sound ucq-based gav mapping MG such
that qs v qt[MG] and qt[MG] 6= trueDt . First note that qs v

qt[MG], if for each CQ qis of qs we have that qis v qt[MG].
This means that there is a CQ qit of qt and a CQ qib for each
symbol b ∈ Σt such that there is a homomorphism from
qit[M

′
G] to qis, where M ′G(b) = qib. Thus, if qs is a union of l

CQs, then we can assume that each MG[b] for b ∈ Σt has at
most l CQs. What is left is to bound the size of these CQs.

Let m be the number of CQs in qt. Since qt[MG] 6= trueDt ,
for each CQ q′t of qt, there must be one distinguished variable
x and one symbol b ∈ Σt such that x occurs in some atomic
formula with the symbol b in each CQ q′b of MG[b]. Define
M ′G to keep all such atomic formulas, and only such atomic
formulas. M ′G[b] contains at most lm atomic formulas. If we
have k mapping assertions, then M ′G[b] needs to contain only
klm atomic formulas. To check the existence of a simplifying
gav mapping it suffices to guess a mapping M ′G under such
a size bound and check that qs v qt[M ′G].

We conjecture that the above upper bounds are tight.

8. CONCLUSIONS
We have introduced the problem of simplifying schema

mappings based on logical implication. The problem comes
in different forms, depending on the type of simplification
to achieve, on whether the mappings are sound or exact,
and on the types of queries used in the mappings. We have
provided a formalization of the problem, and we have pre-
sented techniques and complexity bounds for both relational
and graph databases. As we said in the introduction, this
is the first investigation on comparing schema mappings for
graph databases.

In this paper we have concentrated on lav simplifica-
tion, and we have discussed the gav case only for relational
schema mappings. In the future, we plan to continue inves-
tigating schema mapping simplification along different di-
rections. In particular, we aim at addressing gav simpli-
fication for graph databases, and we plan to study schema
mapping simplification for tree-based (e.g., XML) semistruc-
tured data.

Acknowledgements
Work partially supported by the EU under the project ACSI
(Artifact-Centric Service Interoperation), grant n. FP7-
257593, by Regione Lazio under the project “Integrazione
semantica di dati e servizi per le aziende in rete”, and by
NSF grants CCF-0613889, CCF-0728882, and CNS 1049862.

9. REFERENCES
[1] S. Abiteboul. Querying semi-structured data. In Proc.

of ICDT’97, pages 1–18.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: from Relations to Semistructured Data and
XML. Morgan Kaufmann, 2000.

[3] S. Abiteboul and O. Duschka. Complexity of
answering queries using materialized views. In Proc. of
PODS’98, pages 254–265.

[4] S. Abiteboul, G. Gottlob, and M. Manna. Distributed
XML design. In Proc. of PODS 2009, pages 247–258.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley Publ. Co., 1995.

[6] B. Alexe, P. Kolaitis, and W.-C. Tan. Characterizing
schema mappings via data examples. In Proc. of
PODS 2010, pages 261–271.

11

[7] M. Arenas, P. Barcelo, R. Fagin, and L. Libkin.
Locally consistent transformations and query
answering in data exchange. In Proc. of PODS 2004.

[8] M. Arenas, R. Fagin, and A. Nash. Composition with
target constraints. In Proc. of ICDT 2010.

[9] M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. In Proc. of
PODS 2005, pages 13–24.

[10] M. Arenas, J. Pérez, J. L. Reutte, and C. Riveros.
Foundations of schema mapping management. In
Proc. of PODS 2010, pages 227–238.

[11] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: Bringing exchanged data back.
ACM Trans. on Database Systems, 34(4), 2009.

[12] P. C. Arocena, A. Fuxman, and R. J. Miller.
Composing local-as-view mappings: Closure and
applications. In Proc. of ICDT 2010, pages 209–218.

[13] F. Baader and R. Küsters. Unification in a description
logic with transitive closure of roles. In R. Nieuwenhuis
and A. Voronkov, editors, Proc. of LPAR 2001,
volume 2250 of LNCS, pages 217–232. Springer.

[14] B. Barcelò. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[15] B. Barcelò, C. A. Hurtado, L. Libkin, and P. T.
Wood. Expressive languages for path queries over
graph-structured data. In Proc. of PODS 2009.

[16] R. Berger. The undecidability of the dominoe
problem. Mem. Amer. Math. Soc., 66:1–72, 1966.

[17] P. A. Bernstein and H. Ho. Model management and
schema mappings: Theory and practices. In Proc. of
VLDB 2007, pages 1439–1440.

[18] P. Buneman. Semistructured data. In Proc. of
PODS’97, pages 117–121.

[19] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In Proc. of KR 2000.

[20] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Query processing using views for regular
path queries with inverse. In Proc. of PODS 2000.

[21] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Rewriting of regular expressions and
regular path queries. J. of Computer and System
Sciences, 64(3):443–465, 2002.

[22] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Reasoning on regular path queries.
SIGMOD Record, 32(4):83–92, 2003.

[23] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. View synthesis from schema mappings.
CoRR Technical Report abs/1003.1179, arXiv.org
e-Print archive, Mar. 2010. Available at
http://arxiv.org/abs/1003.1179.

[24] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In Proc. of STOC’77, pages 77–90.

[25] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A
graphical query language supporting recursion. In
Proc. of ACM SIGMOD, pages 323–330, 1987.

[26] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering.
Theor. Comp. Sci., 336(1):89–124, 2005.

[27] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa.

Towards a theory of schema-mapping optimization. In
Proc. of PODS 2008, pages 33–42.

[28] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. ACM Trans. on Database
Systems, 30(1):174–210, 2005.

[29] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Reverse data exchange: Coping with nulls. In Proc. of
PODS 2009, pages 23–32.

[30] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. on Database
Systems, 30(4):994–1055, 2005.

[31] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Quasi-inverses of schema mappings. ACM Trans. on
Database Systems, 33(2):1–52, 2008.

[32] E. Franconi and S. Tessaris. The logic of RDF and
SPARQL: a tutorial. In Proc. of PODS 2006.

[33] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C.
Tan. Peer data exchange. ACM Trans. on Database
Systems, 31(4):1454–1498, 2005.

[34] G. Gottlob, R. Pichler, and V. Savenkov.
Normalization and optimization of schema mappings.
PVLDB, 2(1):1102–1113, 2009.

[35] G. Grahne and A. O. Mendelzon. Tableau techniques
for querying information sources through global
schemas. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 332–347. Springer.

[36] A. Y. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In Proc. of
VLDB 2006, pages 9–16.

[37] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of PODS 2005.

[38] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of PODS 2002, pages 233–246.

[39] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In Proc.
of PODS’95, pages 95–104.

[40] L. Libkin and C. Sirangelo. Data exchange and
schema mappings in open and closed worlds. In Proc.
of PODS 2008, pages 139–148.

[41] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In Proc. of VLDB 2003.

[42] W. Martens, M. Niewerth, and T. Schwentick. Schema
design for XML repositories: Complexity and
tractability. In Proc. of PODS 2010, pages 239–250.

[43] J.-E. Pin. Syntactic semigroups. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Language
Theory, volume 1, chapter 10, pages 679–746.
Springer, 1997.

[44] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. J. of the ACM, 27(4):633–655, 1980.

[45] B. ten Cate and P. G. Kolaitis. Structural
characterizations of schema-mapping languages. In
Proc. of ICDT 2009, pages 63–72.

[46] J. D. Ullman. Information integration using logical
views. In Proc. of ICDT’97, volume 1186 of LNCS.

[47] P. van Emde Boas. The convenience of tilings. In
Complexity, Logic, and Recursion Theory, volume 187
of Lecture Notes in Pure and Applied Mathematics,
pages 331–363. Marcel Dekker Inc., 1997.

12

APPENDIX: PROOFS

Proof of Theorem 9.
Consider a sound ucq-based mapping M consisting of a

single assertion qs ; qt and a sound cq-based lav mapping
ML such that qs[ML] v qt. We remind that qs[ML] v qt
if for each CQ q1 in the UCQ qs[ML] there is a CQ q2 in
the UCQ qt such that q1 v q2. Then, for each CQ q1 in
qs[ML] there exists a homomorphism from some CQ q2 in
qt to q1, and for each a ∈ Σs at most `qt atoms in the query
ML(a) are needed for the homomorphism, where `qt is the
maximum number of atoms among the CQs in qt. In the
general case where the mapping M consists of several asser-
tions, for each a ∈ Σs at most `M =

∑
qs;qt∈M `qt atoms

in the query ML(a) are needed for the homomorphisms for
all the assertions in M . Thus, in order to check for the
existence of an appropriate lav mapping ML, it suffices to
guess (again avoiding trivial implication), for each symbol
a ∈ Σs appearing in M , a CQ ML(a) over Σt of size at most
`M =

∑
qs;qt∈M `qt , and check for each qs ; qt ∈ M that

qs[ML] v qt (and qt v qs[ML] for the exact variant).

Proof of Theorem 12.
Consider an exact ucq-based mapping M consisting of a

single assertion qs ; qt and an exact ucq-based lav map-
ping ML such that ML |= M . Let mqt be the number of CQs
in qt, and `qt the maximum number of atoms among the CQs
in qt. Let q′s,ML

be obtained from qs[ML] by distributing,
for each atom α of qs, the unions in the UCQ α[ML] over the
conjunctions of each CQ of qs. Note that q′s,ML

is a UCQ,
and is equivalent to qs[ML]. Since qs[ML] v qt, for each CQ
in q′s,ML

, there is a homomorphism from some CQ in qt to
it. Hence, for each symbol a ∈ Σs occurring in qs, for each
CQ in the UCQ ML(a), we need at most `qt atoms for the
homomorphism from qt. To derive a bound for the number
of such CQs, we observe that the inclusion qt v qs[ML] must
also hold. Therefore, we need at most mqt CQs in ML(a)
to satisfy the inclusion of all the CQs in qt. It follows that,
to check for the existence of the lav mapping ML and the
corresponding homomorphism, it suffices to guess for each
a ∈ Σs a UCQ over Σt consisting of at most mqt CQs, each
with at most `qt atoms. In the general case where the map-
ping M consists of several assertions qs ; qt, we can proceed
analogously to the case above, using instead of mqt and `qt ,
the sum of these parameters over all mapping assertions in
M . To check whether qt v qs[ML], it suffices to check for
the existence of a homomorphism from qs[ML] to each of
the CQs in qt, which can be done in NP in the size of qt. To
check whether qs[ML] v qt, we have to check whether for
each CQ q′ obtained by selecting one of the CQs q′′ in qs
and then substituting each atom α in q′′ with one of the CQs
in α[ML], there is a homomorphism from some CQ in qt to
q′. We can do so by a coNP computation that makes use of
an NP oracle to check for the existence of a homomorphism.
This gives us the Πp

2 upper bound.

Proof of Theorem 13.
The proof is by a reduction from 3-colorability. Consider

a graph G = (N,E), with N = {n1, . . . , nk}.

Let Σs = {t/2, as/2, af/2}, Σt = {e/2, bs/2, bf/2},

qT = {(s, f) | as(s, r), as(s, g), as(s, b),
t(r, g), t(g, r), t(r, b), t(b, r), t(g, b), t(b, g),
af (r, f), af (g, f), af (b, f) }

qG = {(s, f) | bs(s, x1), . . . , bs(s, xk),∧
(ni,nj)∈E{e(xi, xj), e(xj , xi)},

bf (x1, f), . . . , bf (xk, f) }

and define the following mapping M :

qT ; qG (7)

{(x, y) | t(x, y)} ; {(x, y) | e(x, y)} (8)

{(x, y) | as(x, y)} ; {(x, y) | bs(x, y)} (9)

{(x, y) | af (x, y)} ; {(x, y) | bf (x, y)} (10)

Intuitively, assertion (7) maps a triangle, whose three ver-
texes are connected by as and af to the distinguished vari-
ables s and f respectively, to the graph G, whose nodes are
connected by bs and bf to the distinguished variables s and
f respectively.

We show that G is 3-colorable iff
MSimp[sound,lav,cq,cq] with input M admits a so-
lution. For the “only-if” part, consider the lav mapping
ML consisting of the mapping assertions (8), (9), and (10).
If G is 3-colorable, a coloring of the nodes of G with the
three colors r, g, b gives us immediately a homomorphism
from qG[ML] to qT in which each variable xi of qG[ML] is
mapped to the variable of qT corresponding to the color
assigned to node ni. Hence we have that qT v qG[ML].
For the “if-part”, consider a lav mapping ML such that
qs[ML] v qt for each mapping assertion qs ; qt in M . By
the mapping assertions (8), (9), and (10), we have that
the queries ML(t), ML(as), and ML(af), which we assume
to have (x, y) as distinguished variables, must include
respectively the atoms e(x, y), bs(x, y), and bf (x, y), plus
possibly additional atoms containing existentially quantified
variables. Note that these existential variables appear in the
unfolding qT [ML]. Now, consider a homomorphism h from
qG(s, f) to qT [ML](s, f). Since s and f are distinguished
variables, we have that h(s) = s and h(f) = f . Suppose
that for some variable xi ∈ {x1, . . . , xk} of qG, we have that
h(xi) is an existential variable y in an additional atom in
qT [ML]. Then, since qG contains the atoms bs(s, xi) and
bf (xi, f), we must have that qT [ML] contains the atoms
bs(s, y) and bf (y, f). This is impossible, since y is an
existential variable introduced by the unfolding of qT with
ML, and hence can appear in the unfolding of just one
atom of qT . But there is no atom of qT that contains both
s and f , and that could generate both bs(s, y) and bf (y, f).
So, the only possibility for a homomorphism from qG[ML]
to qT is to map each xi of qG[ML] to one of the variables
r, g, or b. The existence of such a homomorphism implies
that G is 3-colorable.

Proof of Lemma 18.
If qt = ε, we can simply set M ′L(a) = ε, for each a ∈ Σs.

Otherwise, since qs[ML] 6= ∅ and qs[ML] ⊆ qt, there exists a
nonempty word a1 · · · ak ∈ qs and a word w1 · · ·wk ∈ qs[ML]
and hence in qt, where wj ∈ML(aj). To define the new lav
mapping M ′L, we consider each a ∈ Σs appearing in a1 · · · ak.
Notice that a might appear in a1 · · · ak multiple times, and
suppose the occurrences of a are ai1 , . . . , ai` , correspond-

13

ing to wi1 , . . . , wi` . We chose arbitrarily one wij and set
M ′L(a) = wij . Instead, for each a ∈ Σs not appearing in
a1 · · · ak, we set M ′L(a) = ∅. Now, qs[M

′
L] 6= ∅ by construc-

tion, and since M ′L(a) ⊆ ML(a) for every a ∈ Σs, we have
that qs[M

′
L] ⊆ qs[ML] ⊆ qt.

Proof of Lemma 19.
Let At = (Σt, St, s

0
t , δt, Ft). Consider a word a1 · · · ah ∈

qs. If there is one of the ai such that ML(ai) = ∅, then
ML(a1) · · ·ML(ah) = ∅ ⊆ qt. Otherwise, we have that
ML(ai) = {wai}, for i ∈ {1, . . . , h}, and since wa1 · · ·wah ∈
qs[ML] ⊆ qt, there is a sequence s0, s1, . . . , sh of states of
At such that s0 = s0

t , sh ∈ Ft, and si ∈ δt(si−1, w
ai), for

i ∈ {1, . . . , h}. Consider now, for each i ∈ {1, . . . , h}, a
word w′i ∈ M ′L(ai) = [wai]At . Making use of the charac-
terization of [wai]At in terms of a binary relation over St,
we have for each word in [wai]At , and in particular for w′i,
that si ∈ δt(si−1, w

′
i). Hence, sh ∈ δt(s

t
o, w

′
1 · · ·w′h) and

w′1 · · ·w′h ∈ qt.

14

