
Generalized Planning with Loops under Strong Fairness Constraints

Giuseppe De Giacomo and Fabio Patrizi
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma
Roma, Italy

{degiacomo,patrizi}@dis.uniroma1.it

Sebastian Sardina
School of Computer Science and IT

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Abstract

We consider a generalized form of planning, possibly involv-
ing loops, that arises in nondeterministic domains when ex-
plicit strong fairness constraints are asserted over the plan-
ning domain. Such constraints allow us to specify the ne-
cessity of occurrence of selected effects of nondeterministic
actions over domain’s runs. Also they are particularly mean-
ingful from the technical point of view because they exhibit
the expressiveness advantage of LTL over CTL in verifica-
tion. We show that planning for reachability and maintenance
goals is EXPTIME-complete in this setting, that is, it has the
same complexity as conditional planning in nondeterministic
domains (without strong fairness constraints). We also show
that within the EXPTIME bound one can solve the more gen-
eral problems of realizing agent planning programs as well as
composition-based planning in the presence of strong fairness
constraints.

Introduction
In this paper we consider a generalized form of planning,
possibly involving loops, that arises in nondeterministic do-
mains when explicit strong fairness constraints are asserted
over the planning domain. Such constraints allow us to spec-
ify the necessity of occurrence of selected effects of nonde-
terministic actions over domain’s runs.

More precisely, we consider a standard nondeterministic
planning domain, that is, a finite state transition system de-
scribed in the standard manner by means of action precon-
ditions and nondeterministic effects (Rintanen 2004). On
top of such a domain, we introduce strong fairness con-
straints expressed in Linear-time Temporal Logic (LTL), see
e.g., (Clarke, Grumberg, and Peled 1999; Vardi 1996), that
assert further properties of (possibly infinite) domain runs.
Through such constraints, one can restrict the nondetermin-
ism of actions in nontrivial ways. Specifically, one can spec-
ify that some selected effects of a nondeterministic action
must occur infinitely often along every infinite evolution of
the planning domain. For example, in modeling a gambling
domain, one may specify that using a “Las Vegas” style slot
machine, both winning and loosing happen infinitely often.
We remark that, in general, such type of constraints does not
apply to all nondeterministic actions: the action of chopping

Copyright c⃝ 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a tree may result in the tree being (still) up or the tree falling
down; however, once the tree falls, the former effect does
not occur ever again.

In other words, strong fairness constraints, in particular
on action executions, provide great flexibility in modeling
planning scenarios. They allow for expressing long-term
effects of action repetitions (e.g., tossing a coin an infinite
number of times yields an infinite number of heads), or ac-
tion fairness wrt effects (e.g., an infinite number of tails is
also obtained). They also allow for distinguishing between
those actions that guarantee their nondeterministic effects to
eventually occur and those that do not.

Interestingly, fairness assumptions in nondeterministic
domains are considered in the work on strong cyclic
plans (Cimatti et al. 2003): a strong cyclic plan is a
plan guaranteed to reach the goal under the (implicit) fair-
ness assumption that every effect of a nondeterministic ac-
tion eventually does occur. While this is often a realis-
tic assumption—in particular, when nondeterminism stems
from probabilistic effects like throwing a die or tossing a
coin—in some cases it is not satisfactory. For instance,
imagine a classical (mechanical) slot machine and an elec-
tronic one; the former is guaranteed to be fair, while the lat-
ter may not, due to a potential bug. Both machines have es-
sentially the same description in the planning domain (apart,
perhaps, from action names). Yet, they are very different, in
that if the latter does indeed have a bug, then it may enable
infinite loosing runs. So, in order to eventually win one has
to repeatedly play in the classical machine—no plan guar-
antees winning in the buggy electronic machine. In this pa-
per, we aim then at giving the modeler the ability to control
the nature of nondeterministic choices, by allowing her/him
to state strong fairness conditions on selected effects of se-
lected actions.

Strong fairness conditions are notoriously difficult to deal
with in verification (Clarke, Grumberg, and Peled 1999).
The most common temporal properties in verification are the
following: (i) reachability: eventually something (good) be-
comes true; (ii) maintenance or safety: something (good)
will be true forever; (iii) weak fairness or response: forever
eventually something becomes true; we also have a well-
known generalized form, sometimes called generically live-
ness: forever, every time something becomes true (i.e., the
request), eventually something else becomes true (i.e., the

351

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

response); and (iv) strong fairness or reactivity: if some-
thing becomes true infinitely often, then something else be-
comes true infinitely often, as well. Note that strong fair-
ness constraints generalize liveness constraints, in the sense
that not necessarily all occurrences of the request need to
be taken but infinitely many of them do. Such types of
dynamic properties yield a sort of hierarchy (with reacha-
bility and maintenance together at the bottom) based on in-
creasingly more sophisticated technical machinery required.
The two main formalisms used in verification, LTL and
CTL, can deal with the first four, but only LTL is able
to deal with strong fairness (Clarke, Grumberg, and Peled
1999). Indeed, strong fairness is possibly the single rea-
son that makes LTL the logic of choice (over CTL) for in-
dustrial verification (Accellera 2004; Armoni et al. 2002;
Vardi 2007).

In this paper, then, we study techniques to solve plan-
ning problems in nondeterministic full observable domain
in the presence of strong fairness constraints. Our work is
thoroughly based on literature on verification and is quite
novel in the context of AI. Indeed, most work on using tem-
poral logic for planning in AI is based on CTL, which is
currently the standard logic for planning by model check-
ing (Ghallab, Nau, and Traverso 2004). Previous work on
the use of LTL in planning has mainly focused on deal-
ing with temporally-extended goals (Bacchus and Kabanza
1998; De Giacomo and Vardi 2000; Kerjean et al. 2006;
Baier, Bacchus, and McIlraith 2009), often considering the
temporal goals as complementary properties to be verified
while reaching a main goal on finite runs only. Such comple-
mentary properties are typically used as a declarative means
to control the search. Notice that LTL on finite runs is sub-
stantially simpler that standard LTL on infinite runs. Full
LTL goals have been considered in (De Giacomo and Vardi
2000), where the domain was specified however as a tran-
sition system, possibly with partial observability. Very so-
phisticated forms of domain specification, based on second-
order LTL, where considered in (Calvanese, De Giacomo,
and Vardi 2002), again under partial observability.

Our results directly extend those for conditional plan-
ning. Indeed, by dropping constraints on the runs, we are
left with a standard nondeterministic planning domain with
full observability, and a solution for reachability goals thus
amounts to finding a conditional plan. Hence, the fact that
conditional planning is EXPTIME-complete provides the
complexity lower bound for the problems that we are in-
terested in. A gross upper bound for such problems is also
available off-the-shelf: synthesis for arbitrary LTL formu-
las is 2EXPTIME-complete (Pnueli and Rosner 1989) and
one can readily represent our planning problem under strong
fairness constraints as an LTL synthesis problem. Unfortu-
nately, techniques for full LTL synthesis, though known for a
long time, have been resistant to practical implementations,
due to the need of complementation of automata on trees,
see e.g., (Kupferman, Piterman, and Vardi 2006).

We will show here that planning under strong fairness
constraints in full observable domains remains EXPTIME-
complete for a variety of increasingly sophisticated goals.
To do so we adapt a specific form of LTL synthesis de-

veloped for so-called Generalized Reactivity GR(1) class,
which is based on model checking of game structures (Piter-
man, Pnueli, and Sa’ar 2006) and which admits efficient
symbolic implementation. Nonetheless, we are not able to
use such techniques off-the-shelf, because the presence of
strong fairness constraints gives rise to LTL formulas that
fall outside the GR(1) class. Consequently, we first need
to reduce the problem with strong fairness constraints to
a problem with weak fairness constraints of the required
GR(1) form.

The rest of the paper is organized as follows. We first in-
troduce some preliminary notions on LTL synthesis. Then,
we present planning under strong fairness constraints and
show how to solve it. After that, we move to more ad-
vanced forms of planning, by considering recently intro-
duced agent planning programs (De Giacomo, Patrizi, and
Sardina 2010), and composition-based planning (Sardina,
Patrizi, and De Giacomo 2008), both under strong fairness.
We close the paper with some final remarks.

Preliminaries on LTL
Linear-time Temporal Logic (LTL) is a well-known logic
used to specify dynamic or temporal properties of programs,
see e.g., (Vardi 1996). Formulas of LTL are built from a set
P of atomic propositions and are closed under the boolean
operators, the unary temporal operators ⃝ (next), ✸ (eventu-
ally), and ✷ (always, from now on), and the binary temporal
operator U (something eventually will hold and, until then,
something else always hold). Interesting examples of LTL
formulas are:

• ✸ϕ: goal formula ϕ is eventually reached.
• ✷ϕ: the goal formula ϕ is always maintained true.
• ψ U ϕ: achieve goal ϕ while maintaining ψ.
• ✷✸ϕ: formula ϕ is true infinitely often; this formula ex-

presses “weak fairness” or “responsiveness.”
✷(ψ → ✸ϕ): forever, if formula ψ becomes true, then
ϕ will eventually become true; this formula expresses a
form of “liveness.”

• ✸✷ϕ: eventually formula ϕ becomes true and remains
true forever; this formula expresses “persistence.”

• ✷✸ϕ → ✷✸ψ: if formula ϕ is true infinitely often,
then also ψ is true infinitely often; this formula expresses
“strong fairness” or “reactivity.”

All above formulas except the last one can be also expressed
in CTL. The last one, “strong fairness,” is expressible only
in LTL (cf. Introduction) and is the main focus of this paper.

LTL formulas are interpreted over infinite sequences σ of
propositional interpretations for P , i.e., σ ∈ (2P)ω . The set
of (true) propositions at position i is denoted by σ(i), hence
σ is denoted by σ(0),σ(1), If σ is an interpretation,
i a natural number, and φ is an LTL formula, we denote
by σ, i |= φ the fact that φ holds in model σ at position i,
which is inductively defined as follows (here, p ∈ P is any
proposition and φ,ψ any LTL formulas; we omit until for

352

brevity):

σ, i |= p iff p ∈ σ(i);
σ, i |= φ ∨ ψ iff σ, i |= φ; or σ, i |= φ ∨ ψ;
σ, i |= ¬φ iff σ, i ̸|= φ;
σ, i |= ⃝φ iff σ, i+1 |= φ;
σ, i |= ✸φ iff for some j ≥ i, we have that σ, j |= φ;
σ, i |= ✷φ iff for all j ≥ i, we have that σ, j |= φ.

An interpretation σ satisfies φ, written σ |= φ, if σ, 0 |= φ.
Standard logical tasks such as satisfiability or validity are
defined as usual, e.g., a formula φ is satisfiable if there exists
an interpretation that satisfies it. Checking satisfiability or
validity for LTL is PSPACE-complete.

Here we are interested in a different kind of logical task,
which is called realizability (aka Church problem) or synthe-
sis (Vardi 1996; Pnueli and Rosner 1989). Namely, we parti-
tion P into two disjoint sets X and Y . We assume to have no
control on the truth value of the propositions in X , while we
can control those in Y . The problem then is: can we control
the values of Y so that for all possible values of X a certain
LTL formula remains true? More precisely, interpretations
now assume the form σ = (X0, Y0)(X1, Y1)(X2, Y2) · · · ,
where (Xi, Yi) is the propositional interpretation at the i-
th position in σ, now partitioned in the propositional in-
terpretation Xi for X and Yi for Y . Let us denote by
σX |i the interpretation σ projected only on X and truncated
at the i-th element (included), i.e., σX |i = X0X1 · · ·Xi.
The realizability problem checks the existence of a function
f : (2X)∗ → 2Y such that for all σ with Yi = f(σX |i), σ
satisfies formula ϕ. The synthesis problem consists in ac-
tually computing such a function. Observe that in realiz-
ability/synthesis we have no way of constraining the value
assumed by X propositions: the function we are looking for
only acts on propositions in Y . This means that the most in-
teresting formulas for the synthesis have the form ϕa → ϕr,
where ϕa captures the “relevant” assignments of proposi-
tions in X (and Y) and ϕr specifies the property we want to
assure for such relevant assignments. The realizability (and
actual synthesis) are 2EXPTIME-complete for arbitrary LTL
formulas (Pnueli and Rosner 1989). However, recently, sev-
eral well-behaved patterns of LTL formulas have been iden-
tified, for which efficient procedures based on model check-
ing technologies applied to game structures can be devised.
Here, we focus on one of the most general well-behaved pat-
terns, called “Generalized Reactivity (1)” or GR(1) (Piter-
man, Pnueli, and Sa’ar 2006). Such formulas have the form
ϕa → ϕr, with ϕa and ϕr of the following shapes:

ϕa: Φ[X ,Y] ∧
∧

j ✷Φj [X ,Y,⃝Φ[X]] ∧
∧

k ✷✸Φk[X ,Y],
ϕr: Φ[X ,Y] ∧

∧
j ✷Φj [X ,Y,⃝Φ[X ,Y]] ∧

∧
k ✷✸Φk[X ,Y],

where Φ[Z] stands for any boolean combination of symbols
from Z . Notice that: (i) the first conjunct expresses initial
conditions; (ii) the second (big) conjunct expresses transi-
tions –with the limitation that ϕa cannot talk about the next
value of Y propositions; and (iii) the third (big) conjunct ex-
presses weak fairness constraints of the form “it is always
true that eventually something holds.” However, one cannot
express strong fairness constraints in GR(1) formulas (but

see below). For GR(1) formulas, realizability and synthesis
are substantially simpler than for general LTL formulas:
Theorem 1 (Piterman, Pnueli, and Sa’ar 2006).
Realizability (and synthesis) of GR(1) LTL formulas
ϕa → ϕr can be determined in time O((p ∗ q ∗ w)3), where
p and q are the number of conjuncts of the form ✷✸Φ in ϕa

and ϕr, respectively,1 and w is the number of possible value
assignments of X and Y under the conditions of ϕa’s first
two conjuncts.

Planning under Strong Fairness
The system we are interested to plan on consists of (i) a stan-
dard nondeterministic planning dynamic domain, modeling
the potential evolutions of world, enriched with (ii) a set of
strong fairness constraints, ruling out unfeasible evolutions.

Dynamic domain A dynamic domains is a tuple D =
⟨P, Σ, A, S0, ρ⟩, where:
• P = {p1, . . . , pn} is a finite set of domain propositions;
• Σ = 2P is the set of domain states;
• A = {a1, . . . , ar} is the finite set of domain actions;
• S0 ∈ Σ is the initial state;
• ρ ⊆ Σ × A × Σ is the domain transition relation. We

freely interchange transition notations ⟨S, a, S′⟩ ∈ ρ and
S

a−→ S′ in D.
At each time point, a dynamic domain is in one of its

states; initially, S0. An action a is executable in a state S if
S

a−→ S′ in D for some S′. In such a case, S′ is a (possible)
a-successor of S. An action a is nondeterministic if there
exists a state S having more than one a-successor. Each state
S ∈ Σ represents a complete valuation µ : P .→ {⊤,⊥}
such that µ(p) = ⊤ iff p ∈ S. Consequently, a propo-
sitional formula ϕ identifies a subset of Σ, namely, those
states whose valuations satisfies ϕ.

Dynamic domain’s potential evolutions are called runs.

Technically, a run λ is a sequence of the form S0 a0

−→
S1 a1

−→ · · · such that S0 = S0 and ⟨Si, ai, Si+1⟩ ∈ ρ,
for i ≥ 0. For convenience, and wlog, we take runs to be
infinite. To that end, we assume the existence of a special
proposition end and a special action noOp, which when exe-
cuted in any state S leads to an absorbing state S∪{end}—
at any time point, one can stop executing domain actions
(forever).

Strong fairness constraints In addition to the usual
step-by-step constraints that the domain transition rela-
tion induces on runs, we consider more general con-
straints affecting runs’ whole extension. Formally, a
constraint on domain runs is an LTL formula γ over propo-
sitional vocabulary PROP = P ∪PA, where PA = {act =
a | a ∈ A} is the set of action propositions: proposition

1We assume that both ϕa and ϕr contain at least one conjunct
of such a form, if not, we vacuously add the trivial one ✷✸⊤.

353

(act = a) states that the current action is a. To interpret

such formulas over domain runs of the form λ = S0 a0

−→
S1 a1

−→ · · · , we simply consider the corresponding sequence
σλ = (S0 ∪ {act = a0}), (S1 ∪ {act = a1}), · · · , and say
that λ satisfies a constraint γ (denoted λ |= γ) iff σλ |= γ
as explained in the previous section.

A strong fairness constraint is an LTL formula of the form
✷✸φ → ✷✸ψ over PROP = P ∪ PA, with φ and ψ con-
taining no temporal operator other than ⃝, which can never
occur nested 2 (e.g., ⃝⃝φ and ⃝(p∧⃝q) are not allowed).
Observe that weak fairness (i.e., ✷✸φ) is captured by con-
straints of the form ✷✸⊤ → ✷✸φ. Similarly, persistence
(i.e., ✸✷φ) is captured by ✷✸¬φ→ ✷✸⊥.

To better understand how strong fairness constraints can
help expressing certain domains, let us next illustrate their
use with some examples.
Example 1. The “Las Vegas” slot machine scenario pre-
sented in the Introduction can be easily modeled as a do-
main D = ⟨{win}, {{win}, ∅}, {play}, ∅, {⟨S, play, S′⟩ |
S, S′ ⊆ {win}}⟩. States {win} and ∅ (i.e., ¬win) represent
the cases in which the player has just won and lost, respec-
tively. The domain transition relation states that playing at
any states leads D to evolve nondeterministically to either
states {win} or ∅.

So, in order to win, the best a player can do is play indefi-
nitely (assuming an infinite budget, of course). However, the
always losing sequence λlose = ∅ play−→ ∅ play−→ ∅ play−→ · · · is a
perfectly valid run under D—the possibility that the player
never wins does exist! Consequently, there is no strategy
that can guarantee the player’s ambitious goal.

A natural assumption for real-world slot machines,
though, is that if someone plays infinitely often, then there
will indeed be infinitely many good rounds and, of course,
infinitely many bad ones. Technically, such information
can be easily stated using two strong fairness constraints:
✷✸act=play→✷✸¬win and ✷✸act=play→✷✸win.!
Observe it is not always the case, though, that such con-
straints apply to all effects of a nondeterministic action.
Example 2. In the tree chopping scenario (Sardina et al.
2006): with each chop, a tree may or may not fall down, but
once down, the tree remains as such; also, continuous chop-
ping does eventually bring the tree down. While the first part
of the scenario can be easily captured by a standard domain
(in particular, the fact that once a tree has fallen down, it re-
mains down), the effectiveness of the chopping action can
be captured by means of strong fairness, via the following
constraint: ✷✸act = chop → ✷✸down . !
As it can be seen, the example does not include a strong fair-
ness constraint for one of the possible effects of the chopping
action, that is: ✷✸act = chop → ✷✸¬down . Also, note
that the constraint capturing the effectiveness of the chop-
ping action applies even in a domain where the tree can be
brought up again.

2In fact, nesting of operator ⃝ raises no conceptual obstacle.
We avoid it for readability reasons only.

A dynamic domain with strong fairness constraints is
called a dynamic system. Concretely, a dynamic system is
a pair S = ⟨D, C⟩, where D is a planning dynamic domain
and C is a finite set of strong fairness constraints.

Plans Next, we formalize the notion of plans and their re-
spective executions on a dynamic system S = ⟨D, C⟩.

The length of a generic finite sequence τ = S0 a0

−→
S1 · · ·Sℓ−1 aℓ−1

−→ Sℓ is |τ | .= ℓ + 1, if τ is infinite, then
|τ | .= ∞. Also, if τ is finite, we define last(τ) = Sℓ. Given

a (finite or infinite) sequence τ = S0 a0

−→ S1 a1

−→ · · · , we
define its finite prefix of length k (for 0 < k < |τ | + 1) as

the sequence τ |k = S0 a0

−→ · · · ak−2

−→ Sk−1.
A history of S is a finite prefix of a run of S . The set of

all histories of S is referred to as H. A general plan over S
is a function π : H .→ A. The set of all general plans over a
domain S is referred to as Π.

An execution of a general plan π on system S is a, possi-

bly infinite, sequence η = S0 a0

−→ S1 a1

−→ · · · such that (i)
S0 = S0; (ii) for all 0 < k ≤ |τ |, τ |k is an history of S; (iii)
ak−1 = π(τ |k), for all 0 < k < |τ |; and (iv) if η is finite,
then π(last(η)) is undefined.

When all possible executions of a general plan are finite,
the plan is called a generalized conditional plan (general-
ized since, in the presence of constraints on runs, they may
involve loops). Informally, generalized conditional plan ex-
ecutions are guaranteed to eventually terminate.

Goals We generalize the classical notion of reachabil-
ity goal. Given a dynamic domain S , let φ and ψ
be propositional formulae over P . A general plan π
achieves φ while maintaining ψ (written π |= ψ U φ) if for
each of its (finite or infinite) executions η, there exists a k,
0 ≤ k ≤ |η|, such that Sk |= φ and Sk′ |= ψ, for all
0 ≤ k′ ≤ k, and if η is finite, then k = |η|.
Example 3. In a production line, when component items
reach the assemblage section, they are often dusty and
greasy. The line provides two cleaning methods: one by
spraying air and another by spraying a special solvent. A
finite number (depending on how dirty the item is) of air
sprays ensures all the dust to be eventually removed from
a given item; analogously a finite number of solvent sprays
removes all the grease. Air (resp., solvent) sprays are some-
times also effective in removing grease (resp., dust)—there
is no guarantee for this though.

Figure 1 reports a fragment of the PDDL specification
corresponding to dynamic domain D for the scenario. Ex-
pression when((cond)(eff)) states that if cond holds before
action execution then eff holds after it (i.e., conditional ef-
fects); whereas oneof(e1, ..., en) states that the (nondeter-
ministic) action yields one effect among e1, . . . , en.

Predicates dusty and greasy represent the item’s current
state. The domain provides two nondeterministic actions
sprayAir and spraySol with no precondition and the fol-
lowing effects: (i) if the item is not dusty (greasy), then it

354

(define (domain productionLine)

(:predicates (dusty)(greasy))

(:action sprayAir

:effect(and

(when (not (dusty)) (not (dusty)))

(when (not (greasy)) (not (greasy)))

(when (dusty) (oneof (dusty)(not (dusty))))

(when (greasy) (oneof (greasy)(not (greasy))))))

(:action spraySol ...); see sprayAir

(:init (and (dusty)(greasy))))

Figure 1: Planning domain for the production line example.

remains as such after execution; and (ii) if the item is dusty
(greasy), then dust (grease) may or may not be removed af-
ter execution. The effectiveness of these actions on dust and
grease, respectively, is captured by the following two strong
fairness constraints:

✷✸(act = sprayAir ∧ dusty) →
✷✸(act = sprayAir ∧ dusty ∧⃝¬dusty);

✷✸(act = spraySol ∧ greasy) →
✷✸(act = spraySol ∧ greasy ∧⃝¬greasy).

A procedure is needed to prepare each item for the as-
semblage process, that is, each item needs to be free of
dust and grease. Formally, this requires a plan π such that
π |= ⊤U(¬dusty ∧¬greasy). Clearly, such a plan does ex-
ist: first repeat action sprayAir until no dust is present on
the item, and then repeat action spraySol until no grease
remains. Note that loops are required: one spray may not be
enough. Also, observe that there can be executions where
spraying air (solvent) is enough alone to remove both dust
and grease, so that no further processing is needed. Nonethe-
less, only executing both loops guarantees all runs to even-
tually reach the goal. Of course, other plans may exist, e.g.,
one where both actions are interleaved. !
With this example at hand, let us next see how to effectively
solve our extended planning problems.

Solving Planning under Strong Fairness
Here, we face the problem of building plans that achieve
and maintain desired goal formulae. Let us start by formally
stating the extended planning task: given a dynamic system
S = ⟨D, C⟩, where D = ⟨P, Σ, A, S0, ρ⟩, an achievement
goal φ and a maintenance goal ψ (both being propositional
formulae over P), the problem of planning for reachability
and maintenance under strong fairness constraints requires
to build a general plan π over S such that π |= ψ U φ.

Observe that when ψ = ⊤, we obtain the standard notion
of reachability goal, and if in addition C = ∅, then the prob-
lem reduces to classical planning with nondeterminism and
full observability, for which the following is a known result;
see, e.g., (Rintanen 2004).

Theorem 2. Given a dynamic system S = ⟨D, ∅⟩ and an
achievement goal φ, synthesizing a plan π over S such that
π |= ⊤U φ is EXPTIME-complete.

In order to deal with the cases in which C ̸= ∅, we shall re-
duce the problem to synthesis of GR(1) specifications (Piter-
man, Pnueli, and Sa’ar 2006). To do so, we exploit the con-
struction proposed in (Kesten, Piterman, and Pnueli 2005)
to reduce “fair discrete systems (fds)” to “just discrete sys-
tems (jdf)”, so as to come up with a problem formulation
compliant with the GR(1) form. To ease the presentation,
we present the reduction as a three-step process.

LTL encoding of dynamic systems In the first step, we
develop an LTL encoding ϕ̂S of S , whose runs capture all
S evolutions, where the occurrences of operator ⃝ in strong
fairness constraints are compiled away. This will be useful
in the next step.

Let D be as above. The set of propositions that ϕ̂S is
built upon is P̂ = P ∪ PA ∪ PX , where PX contains one
proposition px ξ for each subformula ⃝ξ appearing in some
strong fairness constraint γ ∈ C. The intended meaning of
proposition px ξ is to hold iff on next state ξ holds.

We stress that px ξ is introduced only for syntactic con-
venience, so as to ease the reduction of the obtained LTL
encoding to the GR(1) form. Moreover, for convenience,
for each state S ∈ Σ, we define a propositional formula
γS =

∧n
i=1 li, where li = pi if pi ∈ S, and li = ¬pi other-

wise.3
So, we define ϕ̂S = ϕ̂S

init ∧ ✷ϕ̂S
trans ∧ ϕ̂S

rc, with
ϕ̂S

trans = ϕ̂S
ρ ∧ ϕ̂S

next, where:

• ϕ̂S
init = γS0 , i.e., D starts in its initial state;

• Formula ϕ̂S
ρ is defined as follows:

∧

S∈Σ,pa∈PA

[γS∧pa∧
∧

p′a∈PA\{pa}

¬p′a → ⃝
∨

⟨S,a,S′⟩∈ρ

γS′],

where pa abbreviates proposition (act = a). Each con-
junct asserts that if D is in state S and action a is to ex-
ecuted, then one of the possible successor states w.r.t. ρ
is indeed the next state of D (an empty set of disjuncts is
assumed ⊥);

• ϕ̂S
next =

∧
px ξ∈PX

px ξ ↔ ⃝ξ, that is px ξ holds in
current state iff ξ will hold in next state;

• ϕ̂S
rc =

∧
γ∈C γ[⃝ξ/px ξ], where γ[α/β] means the for-

mula obtained by replacing each occurrence of subfor-
mula α with formula β in γ. By doing so, each constraint
in ϕ̂S

rc assumes the form γ̂ = ✷✸φ̂ → ✷✸ψ̂, where
φ̂ and ψ̂ are temporal operator free, while preserving its
semantics, due to the above constraint on px ξ.

Observe that the obtained specification is, essentially, an
LTL representation of the original system S , where ϕ̂S

init

3Note that the set of formulae has linear size in the number of
states, which is exponential in the number of propositions, as the
domain transition relation is described using explicit states. How-
ever, if a compact representation is used, as done, e.g., in PDDL, it
can be polynomially encoded in LTL. In any case, as shown later,
our results do not depend on the size of the domain’s LTL encod-
ing, but directly on the size of the domain’s state space.

355

and ϕ̂S
trans capture the information about D, and ϕ̂S

rc rep-
resents the (⃝-free) strong fairness constraints. So, the con-
struction yields the following, straightforward, result:

Lemma 3. A sequence λ = S0 a0

−→ S1 a1

−→ · · · is a run
of S iff σλ |= ϕ̂S , where σλ = (S0 ∪ {pa0} ∪ P 0

X), (S1 ∪
{pa1} ∪ P 1

X), · · · such that for all i ≥ 0, px ξ ∈ P i
X iff

Si+1 |= ξ.

From strong to weak fairness The second step consists
in compiling away the strong fairness constraints. This is
needed to guarantee a GR(1) specification to be obtained
at the end of the reduction process. Precisely, ϕ̂S above is
transformed into an equivalent formula (i.e., satisfied by ex-
actly the same runs) ϕS = ϕinit

S ∧ ✷ϕtrans
S ∧ ϕrc

S , where
each conjunct of ϕrc

S is a weak fairness constraint.
First, we define PC as the set containing one proposi-

tion n φ̂ for each conjunct γ̂ = ✷✸φ̂→ ✷✸ψ̂ occurring in
ϕ̂S

rc. Let Ĉ be the set of all such conjuncts. Each propo-
sition n φ̂ is intended to hold at a given point in a run if,
from that point on, φ̂ remains false forever; in addition, we
introduce a proposition xc becoming true at a given point if
some n φ̂ is a mis-prediction (see below).

Then, we define ϕS ’s conjuncts as follows:

• ϕinit
S = ϕ̂S

init ∧ ¬xc ∧
∧

n bφ∈PC
¬n φ̂;

• ϕtrans
S = ϕ̂S

trans ∧ ϕbφ
S ∧ ϕc

S , where:

– ϕ
bφ
S =

∧
n bφ∈PC

n φ̂→ ⃝n φ̂;

– ϕc
S = ⃝xc ↔ (xc ∨

∨
(✷✸bφ→✷✸ bψ)∈bC(φ̂ ∧ n φ̂));

• ϕrc
S = ✷✸¬xc ∧

∧
(✷✸bφ→✷✸ bψ)∈bC ✷✸(n φ̂ ∨ ψ̂).

Observe that no strong fairness constraint appears in the ob-
tained formula. Indeed, ϕrc

S is a conjunction of weak fair-
ness formulae (✷✸ξ) only. Exploiting the results in (Kesten,
Piterman, and Pnueli 2005) we get:

Lemma 4. For every run σ, σ |= ϕ̂S if and only if σ |= ϕS .

Building plans We can now show the final step of the re-
duction, i.e., the encoding of the problem as a GR(1) specifi-
cation. Taking the LTL formula ϕS as above, we start build-
ing the GR(1) formula Υ = ϕa → ϕr by specifying the sets
of uncontrolled and controlled propositions, and then build
the assumption and requirement formulas.

Uncontrolled and controlled propositions. The set of un-
controlled propositions is X = P ∪ PX ∪ PC ∪ {xc} ∪
{ach,mnt}, where all sets except {ach,mnt} are as above.
Proposition ach is intended to record that formula φ has al-
ready been achieved along a run (either in the current or in
the past); similarly, proposition mnt records that ψ has been
maintained along a run up to the state (included) where φ
has been satisifed. Finally, the set of controlled propositions
is simply Y = PA, i.e., the domain actions.

Assumption formula. The formula encoding how the do-
main is expected to behave when a plan is under execution
is defined as ϕa = ϕinit

a ∧ ϕtrans
a ∧ ϕrc

a .
Propositional formula ϕinit

a = ϕinit
S ∧ ach ≡ φ ∧mnt ≡

ψ characterizes the initial state of the system: S starts in its
initial state and ach and mnt hold iff φ and ψ do, respec-
tively.

LTL formula ϕtrans
a = ✷(ϕtrans

S ∧ϕtrans
ach ∧ϕtrans

mnt) char-
acterizes the assumptions on ach , mnt and S’s evolutions.
Formula ϕtrans

S has been discussed above, whereas ϕtrans
ach

and ϕtrans
mnt are defined as follows:

ϕtrans
ach = (ach → ⃝ach) ∧ (¬ach → ⃝(ach ≡ φ));

ϕtrans
mnt = (¬mnt → ⃝¬mnt) ∧ (mnt ∧ ach → ⃝mnt) ∧

(mnt ∧ ¬ach → ⃝(mnt ≡ ψ)).
That is, ach holds if φ has been achieved in the past or in the
current state, whereas mnt holds iff ψ was never violated in
the past before φ was achieved.

Finally, we simply take ϕrc
a = ϕrc

S so as to capture the
strong fairness constraints originally defined on D’s runs (re-
modeled during the above reduction phase).

Requirement formula. Lastly, we construct formula ϕr =
✷ϕtrans

act ∧ ϕgoal
r capturing the requirements for the plan to

be synthesized. Formula ϕtrans
act encodes the action execu-

tion constraints, requiring one and only one action to be exe-
cuted at each step: ϕtrans

act =
∨

y∈Y [y ∧
∧

y′∈Y\{y} ¬y′]. As
for the synthesis “objective”, it is simply the weak fairness
formula ϕgoal

r = ✷✸(ach ∧ mnt). That is, we require a
successful plan to always eventually bring about φ in every
run (i.e., equivalent to ach being eventually true) while not
violating ψ up to then (i.e., equivalent to not falsifying mnt).

It is not hard to check that the LTL formula Υ obtained
is indeed in GR(1) form. Hence, we can apply the results
from (Piterman, Pnueli, and Sa’ar 2006) and thus obtain the
following theorem.
Theorem 5 (Soundness & Completeness). There exists a
plan over S that achieves φ while maintaing ψ iff LTL for-
mula Υ, constructed as above, is realizable.

As for complexity considerations, analyzing the structure
of Υ, we observe that: (i) ϕa contains as many subformulae
of the form ✷✸ξ as strong fairness constraints in C, namely,
|PC |; (ii) ϕr contains just one such subformula; (iii) the
number of possible value assignments of X and Y under
the conditions of ϕa → ϕr is O(2|P |+|PX |+|PC | · |PA|)
given that only one PA proposition can be true at each
step. Consequently, from Theorem 1, checking the exis-
tence of a plan for reachability and maintenance can be done
in O((|PC | · 1 · (2|P |+|PX |+|PC | · |PA|))3). Hence together
with the EXPTIME-hardness of Theorem 2, we get a tight
complexity characterization for our problem.
Theorem 6 (Complexity). Checking the existence of a plan
that achieves φ while maintaining ψ in a dynamic domain
under strong fairness constraints is EXPTIME-complete.
We remark that the technique of (Piterman, Pnueli, and Sa’ar
2006) synthesizes an actual solution to the problem, not
merely verifies its existence: one actually gets the plan out
of the realizability checking.

356

Agent Planning Programs
In this section we turn our attention to agent planning pro-
grams (De Giacomo, Patrizi, and Sardina 2010), which are
high-level specifications of desired agent behaviors in terms
of declarative goals.

Agent planning programs An agent planning program,
or simply a planning program, for a dynamic domain S is
a tuple T = ⟨T,G, t0, δ⟩, where:
• T = {t0, . . . , tn} is the finite set of program states;
• G is a set of (extended) goals of the form (ψ,φ): achieve
φ while maintaining ψ;

• t0 ∈ T is the program initial state;
• δ ⊆ T × G × T is the transition relation. We freely inter-

change notations ⟨t,ψ,φ, t′⟩ ∈ δ and t
ψ,φ−→ t′ in T .

When an agent planning program is “realized,” the follow-
ing happens: at any point in time, the planning program is
in a state t and the system, or more precisely the domain,
in a state S (initially, states t0 and S0, respectively); the
agent then chooses to perform any transition t

ψ,φ−→ t′ (out-
going from t); then, starting from S, a course of actions that
brings the domain to a state satisfying φ while only travers-
ing states satisfying ψ is executed; finally, the agent plan-
ning program moves to t′ and the agent may choose a new

transition t′
ψ′,φ′−→ t′′, and so on. Notice that the executed

actions must guarantee, at any point in time, the feasibility
of all possible (planning program’s) transitions the agent can
choose next, once the planning program has reached its suc-
cessor state. This is because the agent makes its decisions
in a step-by-step fashion. The problem we deal with in this
section amounts to concretely realizing such programs.

We formalize the planning program semantics by gener-
alizing what was proposed in (De Giacomo, Patrizi, and Sar-
dina 2010) to our context.

An agent planning program T is realizable if there exists
a function, called T -realization, ω : H × δ .→ Π such that:

1. for all transitions t0
ψ,φ−→ t in T , ω(S0, t0

ψ,φ−→ t) is de-
fined, that is, there is a plan for every possible initial re-
quest;

2. if ω(h, t
ψ,φ−→ t′) is defined with ω(h, t

ψ,φ−→ t′) = π, then:
(a) π is a generalized conditional plan for system Sh,

where Sh is obtained from S by replacing its initial
state S0 with state last(h);

(b) π |= ψ U φ in Sh, that is, π achieves φ while maintain-
ing condition ψ when executed in system Sh;

(c) for all π’s executions η and all possible next transitions

t′
ψ′,φ′−→ t′′ ∈ δ, ω(h · η, t′ ψ′,φ′−→ t′′) is defined (note h · η

is well defined as they end and start in the same state,
respectively.)

The problem we are concerned with is then: how such a
function ω can be built? Once again, it turns out that the
problem can be solved by resorting to LTL synthesis for
GR(1) specifications.

Realizing agent planning programs We build a GR(1)
formula Θ = ϕa → ϕr in an analogous way as done in
the previous section. So, assume T is an agent planning
program to be realized in a dynamic system S .

Let ϕS be the corresponding LTL specification with no
strong fairness constraints, obtained as shown before, and
let PϕS = P ∪PX ∪PC ∪ {mnt , ach, xc}. In the following
construction, we shall refer to the reduction presented in the
previous section and often reuse symbols defined there.

Uncontrolled and controlled propositions. The set of un-
controlled propositions is X = PϕS ∪ XT ∪ Xreq , where (i)
PϕS is as above; (ii) XT contains one proposition for each
program state t, denoting the current state of T ; and (iii)
Xreq = {reqφ

ψ | ⟨t,ψ,φ, t′⟩ ∈ δ} contains one proposition
for each program transition: reqφ

ψ states that the agent, ac-
cording to program T , is currently requesting to achieve φ
while maintaining ψ.

The set of controlled propositions is Y = PA ∪ {last},
where PA is as above and proposition last states that last
action of current plan is to be executed next (then, after exe-
cution, the agent can issue a new request).

Assumption formula. The assumption formula is
ϕa = ϕinit

a ∧ ✷ϕtrans
a ∧ ϕrc

a . For legibility, we define for
each program state t ∈ T , a propositional formula reqt =∨

⟨t,ψ,φ,t′⟩∈δ reqφ
ψ representing the fact that the agent is re-

questing at least one transition available in program state t.
Propositional formula ϕinit

a = ϕinit
S ∧t0 characterizes the

(legal) initial state of the overall system. Note no constraints
on last nor on propositions in Xreq are imposed.

LTL formula ϕtrans
a = ϕtrans

S ∧ ϕtrans
T characterizes the

assumptions on the overall evolution. In particular, ϕtrans
S is

the same as that in ϕS of the previous section, while ϕtrans
T

defines the “transition rules” for the planning program, built
as the conjunction of the following formulae:
•

∨
t∈XT

[t ∧
∧

t′∈XT \{t} ¬t′], that is, the program is in ex-
actly one of its states;

•
∧

t∈XT
[t → reqt], that is, in each state, the agent exe-

cuting the program ought to be requesting some of the
possible transitions available in its current state;

•
∧

reqφ
ψ,reqφ′

ψ′∈Xreq ,reqφ
ψ ̸=reqφ′

ψ′
[reqφ

ψ → ¬reqφ′

ψ′], that is, at

most one program transition can be requested at a time;

•
∧

⟨t,ψ,φ,t′⟩∈δ[t ∧ reqφ
ψ ∧ last → ⃝t′], that is, if transition

t
⟨ψ,φ⟩−→ t′ is currently being requested and the last action

of current plan is to be executed next, then the program
shall move next to its successor state t′;

•
∧

t∈XT
[(t ∧ ¬last) → ⃝t], that is, the program remains

still if the current plan is still not completed (new requests
are not allowed if the latest is not fulfilled);

•
∧

t∈XT ,⟨t,ψ,φ,t⟩∈δ[(t ∧ reqφ
ψ ∧ ¬last) → ⃝reqφ

ψ], that is,
the agent remains requesting the same transition if the cur-
rent plan is still not completed.
Finally, ϕrc

a = ϕrc
S , where ϕrc

S includes the reduction of
strong fairness constraints into weak fairness ones, as de-
fined in the previous section.

357

Requirement formula. Now, we build formula
ϕr = ✷ϕtrans

r ∧ ϕgoal
r , which captures the requirements for

the realization (i.e., requirements on function ω).
LTL formula ϕtrans

r = ϕtrans
act ∧ϕtrans

last ∧ϕtrans
maint encodes

the constraints on action executions and how planning pro-
gram transitions are successfully carried out:
• ϕtrans

act requires exactly one domain action to be executed
per step (see previous section);

• ϕtrans
last =

∧
reqφ

ψ∈Xreq
[reqφ

ψ ∧ last → ⃝φ], that is, upon
plan completion, requested achievement goal φ is indeed
achieved;

• ϕtrans
maint =

∧
reqφ

ψ∈Xreq
[reqφ

ψ → ψ], that is, maintenance
goal ψ in current request is respected.
Finally, we encode the synthesis “objective” by means of

just one weak fairness conjunct: ϕreq
goal = ✷✸last .

The following result comes by comparing the above con-
struction with the definition of planning program realization.
Theorem 7 (Soundness & Completeness). There exists a
realization of an agent planning program T over a dynamic
system S iff LTL formula Θ built as above is realizable.

Clearly, Θ is a GR(1) formula, hence by reasoning analo-
gously to Theorem 6 we get:
Theorem 8 (Complexity). Checking the existence of a re-
alization of an agent planning program over a dynamic
domain under strong fairness constraints is EXPTIME-
complete.
Again, the technique proposed actually synthesizes the real-
ization of the planning programs during the checking.
Example 4. Consider an extension the production line sce-
nario, in which items arrive on request and can be placed in
one of three locations: on a workbench, to be processed; in
a storage, to be sent to the assemblage tape; or in a garbage
area, to be disposed of. The PDDL fragment reported in Fig-
ure 2, describes the domain using the following predicates:
dusty and greasy , stating whether the current item is dusty
and greasy, respectively; onWb, stored and disposed , cap-
turing the fact that the current item is on the workbench, in
the storage or in the garbage area, respectively; and grabbed ,
stating whether the arm is holding an item. Initially, the
workbench is empty and the arm not holding anything.

The domain provides actions to manipulate the items. Ac-
tion load places a new item in the workbench, which is re-
quired to be empty. Actions sprayAir and spraySol work
as in Example 3, except that they require the item to be on
the workbench. Actions store and dispose move the cur-
rent item to the storage or the garbage area, respectively,
and can only be executed if the arm holds the item, which
is achieved by executing action grab, executable when the
item is on the workbench and the arm is not holding any-
thing. Effectiveness of sprayAir and spraySol is captured
by the very same fairness constraints as in Example 3.

The items preparation process is captured by the planning
program depicted in Figure 3. Maintenance goals are omit-
ted as all ⊤. Initially, in state t0, the program requires a new
item to be loaded on the workbench. Then, from state t1,

(define (domain productionLine2)

(:predicates (dusty) (greasy) (onWb) (stored)

(disposed) (grabbed))

(:action load

:precondition (not (onWb))

:effect (and (onWb)

(not (stored)) (not (disposed))

(oneof (dusty) (not (dusty)))

(oneof (greasy) (not (greasy)))))

(:action sprayAir

:precondition (onWb)

:effect(and

(when (not (dusty)) (not (dusty)))

(when (not (greasy)) (not (greasy)))

(when (dusty) (oneof (dusty) (not (dusty))))

(when (greasy) (oneof (greasy) (not (greasy))))))

(:action spraySol ...) ;analogous to sprayAir

(:action grab

:precondition (and (onWb) (not (grabbed))

:effect(and (not (onWb)) (grabbed)))

(:action store

:precondition (grabbed)

:effect(and (not (onWb)) (stored)

(not (grabbed))))

(:action dispose

:precondition (grabbed)

:effect(and (not (onWb)) (disposed)

(not (grabbed))))

(:init (not (onWb)) (not (grabbed))))

Figure 2: Planning domain for the production line example.

there are two possible choices: either the item is not stored
(possibly because it is damaged) or it is cleaned and then
stored for the assemblage stage—the choice is under the au-
tonomous agent running the program. Finally, the routine
starts again from state t0 for processing a new item.

The planning program has a realization, which is as fol-
lows. Transition t0

onWb−→ t1 is served by executing load,
thus obtaining a new item, possibly dusty and greasy, on the
workbench. Next, if t1

¬stored−→ t0 is requested, it is served by
the sequence grab; dispose. Observe that, in principle, the
transition could be realized by simply leaving the item on
the workbench. However, that will preclude the next request
t0

onWb−→ t1 to be realized, as the workbench needs to be
empty to load a new item. If transition t1

¬dusty∧¬greasy−→ t2
is requested instead, it can be served by iterating actions
sprayAir and spraySol as necessary (cf. Example 3),
from where next request t2

stored−→ t0 can simply be achieved
by the sequence grab; store. !

358

t0 t1 t2
onWb ¬dusty ∧ ¬greasy

stored

¬stored

Figure 3: Planning program for the item preparation routine

Component-based Planning
Up to now, we have assumed that actions are always avail-
able, of course as long as their preconditions are fulfilled.
However, it is often the case that actions can be carried
out only through certain available actuators, such as a grip-
per, a motor, or a web-browser. Also, these actuators gen-
erally have their own internal logic that needs to be re-
spected and even local actions (e.g., a camera needs to
be turned on before a picture can be taken). To account
for this, in this section, we consider planning in the pres-
ence of fairness constraints but where actions are avail-
able only by means of a set of so-called “available behav-
iors.” We point out that the new task is similar to that
of behavior composition (De Giacomo and Sardina 2007;
Sardina, Patrizi, and De Giacomo 2008) and that of agent
planning programming (De Giacomo, Patrizi, and Sardina
2010), except for two main differences. First, here, we are
interested in solving a standard planning problem, rather
than implementing a desired target system. More impor-
tantly, the representations that we shall use here for behav-
iors is substantially more expressive than the ones used in
such works, in that strong fairness constraints will be used.

So, besides the dynamic system S = ⟨D, C⟩, as before,
we assume also a set of available behaviors modeling the
components at disposal (typically, physical devices or soft-
ware modules). A representation for such behaviors needs
to capture the following features: first, behaviors’ logic may
depend on properties of the domain (e.g., an arm can grab
a block if not holding anything); second, different choices
may be available when activating the behavior (e.g., at some
point the arm may be used to move a block or to flip it).
Finally, being abstractions of actual components, the repre-
sentation needs to be able to accommodate lack of informa-
tion about the internals of the components.

Formally, a behavior over a dynamic system S (with set
of states Σ) is a tuple B = ⟨B, O, b0, G, ϱ, CB⟩, where:

• B is the finite set of behavior’s states;

• O is the finite set of behavior’s actions s.t. O ∩ A ̸= ∅;

• b0 ∈ B is the behavior’s initial state;

• G is a set of guards, that is, boolean functions of the form
g : Σ .→ {⊤,⊥};

• ϱ ⊆ B × G × O × B is the B’s transition relation. We
freely interchange notations ⟨b, g, a, b′⟩ ∈ ϱ and b

⟨g,a⟩−→ b′

in B;

• CB is a finite set of strong fairness constraints over the set
B ∪ {act = o | o ∈ O}.

ba
0

ba
1

ba
2

Arm Ba

ho
ldre

le
as
e

hold

release
sprayAir

bb
0

bb
1

bb
2

Arm Bb

ho
ldre

le
as
e

hold

release

spraySol

bc
0 bc

1Arm Bc load

store/dispose

Figure 4: The three different arms available in the domain.

When a behavior is in a certain state, it can be instructed to
perform any of the actions available from that state due to an
(outgoing) transition whose guard holds true. Observe that
behaviors are, in general, nondeterministic, that is, given a
state and an action, there may be several transitions whose
guards evaluate to ⊤. Consequently, when choosing the ac-
tion to execute next, one cannot be certain of the resulting
state, and hence of which actions will be available later on,
since this depends on what particular transition happens to
take place. In other words, nondeterministic behaviors are
only partially controllable, which captures the fact that one
has incomplete information on the component’s functioning.
Finally, since behaviors can include their own local actions,
that is actions in O that are not in A, it is assumed that those
actions are always possible in the dynamic system and have
no effect on its state.

Example 5. Continuing our production line example, we
now imagine that we cannot act in the world if not by us-
ing the three available robotic arms depicted in Figure 4. All
actions are consequences of any of these arms. We observe
that arms Ba and Bb are nondeterministic when trying to
hold a component item. This is because the arm may fail
to properly hold the item, falling then into state ba

1 and bb
1,

respectively. In that case, the arms cannot do their actual
job—spraying air or solvent—and all they can do is to just
release the item. Only when the devices are successful in
holding the item, reaching thus states ba

2 and bb
2, can the item

be sprayed (and afterwards finally released). Finally, arm Bc

is capable of loading items into the workbench and unload
items by storing or disposing them. For simplicity, we as-
sume no guards in behaviors transitions, though, it is easy
to imagine arms that do require some condition to be true in
the world to be able to perform an action (e.g., arm Bc may
only be able to load items of no more than a certain weight).

Now, consider again the nondeterminism of arms Ba and
Bb when it comes to hold an item for spraying. Under this
setting, the original goal of preparing each item for the as-
semblage process cannot be guaranteed anymore. The rea-
son is that even though one can use arms Ba and Bb to spray
the items to remove their dust and grease, it could happen
that one of the arms can never succeed grabbing the item.

359

Technically, this means that when requesting action hold
in, say, arm Ba, its actual evolution always results in state
ba
1 from where it is not possible to spray the item with air.

Nonetheless, the domain expert knows that while arms can
indeed fail to properly hold an item at some point, they will
eventually succeed with enough tries. To accommodate this
domain information we include the following strong fairness
constraints for behaviors Ba and Bb:

✷✸(ba
0 ∧ act = hold) → ✷✸ba

2 (for behavior arm Ba);

✷✸(bb
0 ∧ act = hold) → ✷✸bb

2 (for behavior arm Bb).

With this extra domain information, it is now possible to
solve the (extended) planning task, namely, it is possible to
build a plan π such that π |= ⊤U(¬dusty ∧ ¬greasy) and
π relies only on the three arms at disposal. As it can be
easily seen, such a plan exists: first, use arm Bc to load the
item; then repetitively use arms Ba and Bc to spray air and
solvent to the item; finally, once processed the item can be
either stored or disposed using arm Bc one again.

We note two important points next. Firstly, in contrast
with the solutions in previous sections, one cannot spray an
item several times in a row anymore. Instead, each spray
should be preceded by a holding operation and followed by
a releasing: this are constraints coming from the available
actuators, not the actual environment. Secondly, in a suc-
cessful run, there could be several failed tries of cleaning a
block, that is, actions hold followed immediately by actions
release. However, due to the strong fairness constraint, we
know that by trying enough times, the arm will eventually
succeed holding, and thus spraying, the item. !

As one can clearly see from the example, the possibility
of using strong fairness constraints in defining available be-
haviors is of ultimate importance. Indeed such constraints
allow the domain expert to accommodate more expressive
kind of incomplete information that could have a big im-
pact in the overall problem. Note that in, e.g.,(De Giacomo
and Sardina 2007; Sardina, Patrizi, and De Giacomo 2008;
De Giacomo, Patrizi, and Sardina 2010), such types of con-
straints are not accounted for, and the problem described in
the above example would yield no solution.

From Behavior Programs to Richer Domains
The problem now is how to solve a planning problem by
acting in the domain only through the available behaviors.

In a similar way as done in (De Giacomo, Patrizi, and
Sardina 2010), we can reduce the component-based plan-
ning task to the original component-free problem. To that
end, we show below how to suitably embed the behavior de-
scriptions into a dynamic system.

Let B1, . . . ,Bn, with Bi = ⟨Bi, Oi, bi0, Gi, ϱi, Ci⟩, be
the set of available behaviors over a dynamic system S =
⟨⟨P, Σ, A, S0, ρ⟩, C⟩. For each Bi, let Bi be a tightest set of
boolean propositions that is large enough to provide a binary
encoding of Bi states (clearly, |Bi| is logarithmic in |Bi|).
We assume all Bi’s pairwise disjoint and disjoint from P .
We represent the encoding of a generic element b ∈ Bi, as
b ∈ 2Bi , under the assumption that b contains all and only
Bi’s propositions evaluating to ⊤ in the encoding of b.

To combine all Bi’s and D into a planning domain, we
build a new dynamic system Ŝ = ⟨⟨P̂ , Σ̂, Â, Ŝ0, ρ̂⟩, Ĉ⟩,
where:

1. P̂ = P ∪ B1 ∪ · · · ∪ Bn is the set of (extended) domain
propositions;

2. Σ̂ = 2 bP is the set of Ŝ states. We denote each state Ŝ ∈ Σ̂
as Ŝ = S ∪ b1 ∪ · · ·∪ bn, making explicit the components
S, representing the state of the original domain D, and bi

representing the state of behavior Bi (i = 1, . . . , n) ;

3. Ŝ0 = S0∪b10∪ · · ·∪bn0, that is, initially D is in its initial
state and so is each available behavior;

4. Â =
⋃n

i=1{⟨a, i⟩ | a ∈ Oi}, i.e., all domain actions are
made available through behaviors. Observe that Â also
contains all behaviors’ local actions (i.e., those not in A);

5. ρ̂ ⊆ Σ̂ × Â × Σ̂ is such that ⟨Ŝ, ⟨a, i⟩, Ŝ′⟩ ∈ ρ̂, where
Ŝ = S ∪ b1 ∪ · · · ∪ bn and Ŝ′ = S′ ∪ b′1 ∪ · · · ∪ b′n, iff

• if a ∈ A, then ⟨S, a, S′⟩ ∈ ρ, that is, domain action a
may evolve the dynamic system D from S to S′;

• if a ̸∈ A, then S = S′, that is, a is a local action for a
behavior and so it has no effects on D;

• there exists a transition ⟨bi, g, a, b′i⟩ ∈ ϱi such that
g(S) = ⊤, that is, action a is indeed enabled in Bi;

• for each j ̸= i, b′j = bj , that is, all non-activated be-
haviors remain still;

6. Ĉ is a set of strong fairness constraint such that ĉ ∈ Ĉ iff
• there exists a strong fairness constraint c ∈ C such

that ĉ is obtained by replacing each occurrence of
atomic propositions of the form (act = a) in c with∨n

i=1(act = ⟨a, i⟩); or
• for some i ∈ {1, . . . , n}, there exists a strong fairness

constraint c ∈ Ci such that ĉ is obtained by replacing:
(i) each occurrence of propositions of the form (act =
a) in c with proposition (act = ⟨a, i⟩); and (ii) each
occurrence of (proposition denoting) state b ∈ Bi with
(the conjunction of literals denoting) its encoding b.

Informally, the above transformation compiles away all be-
haviors by encoding them into an extended dynamic system.
A state in this extended system encodes not only the state of
the original system, but also the state of each available be-
havior. Moreover, actions in the extended systems include
the specific behavior (i.e., its index) where it is carried out.

The main difference with the LTL compilation in (De Gi-
acomo, Patrizi, and Sardina 2010) is that we consider here
strong fairness constraints, both of the dynamic domain D
and in available behaviors.4

At this point, it is not difficult to see that solving the
component-based planning problem of achieving φ while

4In addition, with respect to (De Giacomo, Patrizi, and Sar-
dina 2010), we directly use an efficient (logarithmic) encoding of
behaviors and we avoid introducing the generalized notion of his-
tories and plans to account for behavior delegation. The reason is
that such delegation is already included in the action itself in the
extended dynamic system.

360

maintaining ψ in S by means of operating a set of avail-
able behaviors B1, . . . ,Bn is equivalent to solving the
component-free planning problem in the extended dynamic
system Ŝ , as constructed above. As for complexity, ob-
serve that, when n behaviors are present, we get that |P̂ | =
O(|P |+n∗ log(maxn

i=1 |Bi|)). Recalling that the complex-
ity of planning under strong fairness constraints is exponen-
tial in the number of domain propositions (see discussion
before Theorem 6), we get that this variant of the problem
can also be solved in EXPTIME.

Conclusion
In this work we have tackled strong fairness constraints in
planning. Such constraints have a strong modeling power
in regulating nondeterminism in nondeterministic domains,
and have great theoretical interest, as the ability of express-
ing them is one of the most distinctive advantages of LTL
over CTL in verification. We have shown that quite ad-
vanced forms of planning can be dealt with in presence of
such constraints, while remaining in the same EXPTIME-
complete class of standard conditional planning in nonde-
terministic domains with full observability (Rintanen 2004).
We conclude by stressing that, even if the study in this paper
is substantially theoretical, the technique adopted for solv-
ing such forms of planning is readily implementable through
systems for LTL synthesis, based on model checking game
structures, such as TLV5, Anzu6, and Ratsy7.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful comments. Fabio Patrizi is partially funded by the
IST Programme of the EU Commission – Project SM4All
(FP7-224332). Sebastian Sardina acknowledges the support
of Agent Oriented Software and the Australian Research
Council (under grant LP0882234).

References
Accellera. 2004. Property Specification Language Refer-
ence Manual. www.eda.org/vfv/docs/PSL-v1.1.
pdf.
Armoni, R.; Fix, L.; Flaisher, A.; Gerth, R.; Ginsburg, B.;
Kanza, T.; Landver, A.; Mador-Haim, S.; Singerman, E.;
Tiemeyer, A.; Vardi, M. Y.; and Zbar, Y. 2002. The For-
Spec temporal logic: A new temporal property-specification
language. In Proceedings of the TACAS’02, 296–211.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22:5–27.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence Journal 173(5-
6):593–618.

5www.cs.nyu.edu/acsys/tlv/
6www.ist.tugraz.at/staff/jobstmann/anzu/
7rat.fbk.eu/ratsy/

Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002.
Reasoning about actions and planning in LTL action theo-
ries. In Proc. of KR’02, 593–602.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence Journal 147(1-
2):35–84.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
checking. Cambridge, MA, USA: The MIT Press.
De Giacomo, G., and Sardina, S. 2007. Automatic synthesis
of new behaviors from a library of available behaviors. In
Veloso, M. M., ed., Proc. of IJCAI’07, 1866–1871.
De Giacomo, G., and Vardi, M. Y. 2000. Automata-theoretic
approach to planning for temporally extended goals. In
Proc. of ECP’99, 226–238.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent
programming via planning programs. In Proc. of AA-
MAS’10. To appear.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Kerjean, S.; Kabanza, F.; St.-Denis, R.; and Thiébaux, S.
2006. Analyzing LTL model checking techniques for plan
synthesis and controller synthesis (work in progress). Elec-
tronic Notes in Theoretical Comp. Science 149(2):91–104.
Kesten, Y.; Piterman, N.; and Pnueli, A. 2005. Bridging the
gap between fair simulation and trace inclusion. Information
and Computation 200(1):35 – 61.
Kupferman, O.; Piterman, N.; and Vardi, M. Y. 2006. Safra-
less compositional synthesis. In Proc. of CAV’06, 31–44.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of
reactive(1) designs. In Proc. of VMCAI’06, volume 3855
of Lecture Notes in Computer Science (LNCS), 364–380.
Springer.
Pnueli, A., and Rosner, R. 1989. On the Synthesis of a
Reactive Module. In Proc. of POPL’89, 179–190.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Proc. of ICAPS’04.
Sardina, S.; De Giacomo, G.; Lespérance, Y.; and Levesque,
H. J. 2006. On the Limits of Planning over Belief States. In
Proc. of KR’06, 463–471.
Sardina, S.; Patrizi, F.; and De Giacomo, G. 2008. Behavior
composition in the presence of failure. In Proc. of KR’08,
640–650.
Vardi, M. Y. 1996. An Automata-Theoretic Approach to
Linear Temporal Logic. In Logics for Concurrency: Struc-
ture versus Automata. Springer.
Vardi, M. Y. 2007. Automata-theoretic model checking re-
visited. In Proc. VMCAI’07, 137–150.

361

